人工合成甘蓝型油菜杂种优势与利用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亲本间具有一定的遗传差异是作物利用杂种优势的前提,而作为杂种优势利用最成功的作物之一,甘蓝型油菜遗传基础十分狭窄,且研究主要集中于高产、优质等少数目标性状,加剧了其遗传基础缩小的趋势,为甘蓝型油菜的可持续发展带来隐患。通过二倍体亲本种杂交、人工合成的甘蓝型油菜有着极为广泛的遗传变异,其与栽培油菜亲缘关系较远,如能引入当前油菜杂交育种,将对加快杂种优势利用与保持油菜可持续发展等具有重要意义。通过人工合成甘蓝型油菜与栽培油菜杂交,进行杂种优势利用,已经展现出较好潜力,但是缺乏深入系统的研究,NRFl(人工油菜与栽培油菜F1杂种,hybrid crossed by B.napus cultivars and resynthesized rapeseeds,NRF1)组合的杂种优势表现与利用可行性、产量性状的遗传特性、杂种产量的限制因子及内源激素与产量性状关系等方面的研究未见报道。
     本研究首次利用多学科交叉方式,从数量遗传学、细胞遗传学、激素生理学和分子生物学等多个角度,对NRF1杂种产量优势及其限制因子进行了剖析。以4个人工合成甘蓝型油菜与4个栽培油菜为亲本,按Grifings I法进行完全双列杂交,将56个F1组合分为RS×RS、NRFl(包括RS×BN和BN×RS两种组合)和BN×BN三种类型,系统研究了NRF1杂种产量性状等的杂种优势,讨论其在油菜育种中的利用可行性,并以Hayman方法研究NRF1产量性状的遗传特性,对其基因效应与亲本产量性状及与杂种优势的关系进行分析;通过SSR和SRAP分子标记研究人工合成甘蓝型油菜的遗传多样性,分析分子标记遗传距离与产量性状杂种优势的关系;测定不同类型油菜F1杂种及亲本的内源激素含量,研究内源激素含量及其优势变化规律,讨论其与产量性状的关系。同时,通过研究NRF1杂种的自交不亲和特性、花粉育性和染色体减数分裂行为特征,探讨人工合成甘蓝型油菜产量限制因子一每角粒数的主要机制。研究的具体结果如下:
     1、人工合成甘蓝型油菜杂种优势与产量性状遗传特性
     1.1所有56个F1组合单株产量的中亲优势为-1.53%~134.42%,平均为32.77%,除R7×R13外,其它55个组合均表现正向优势,3个产量组成因子的杂种优势以单株角果数最高,平均为24.49%,其次为每角粒数,平均为15.71%,千粒重优势最低,平均为1.22%。种子含油量具有一定的杂种优势,但优势强度低于单株产量,含油量中亲优势介于-8.47%~15.07%之间,平均为4.43%,其中44个组合表现正向优势,占总数的78.57%。
     1.2将所有F1组合分为RS×Rs、BN×BN和NR三种类型,NRF1杂种显示出比双亲更强的营养生长优势,在所有性状上均与双亲均值达到显著差异水平,与对照ZS10相比,在株高、分枝高、分枝长、分枝数、主花序长和单株角果数等农艺性状也普遍表现出较高的优势。
     1.3 32个NRF1组合的单株产量中,有7个表现正向对照优势,所占比例为21.88%,其中05Rl×XY15的单株产量为24.47g,在所有参试材料中居第二位,人工合成甘蓝型油菜杂种优势具有利用可行性。产量组成因子结果表明:NRF1组合的单株角果数(436.96)极显著高于RS×RS(416.19)和BN×BN组合(370.89);千粒重在3种类型组合中无显著差异;每角粒数则表现为BN×BN(17.35)>NR(11.58)>RS×RS(8.28),是NRF1杂种产量与产量杂种优势的主要限制因子。
     1.4 NRF1组合的产量与产量组成因子符合“加性-显性”模型,单株产量和每角粒数具有较高的狭义遗传力,其遗传表现为加性效应方差大于显性效应方差,单株角果数和千粒重则表现为显性效应方差大于加性效应方差。Wr+Vr与亲本的单株产量、单株角果数、千粒重和每角粒数相关系数分别为-0.86,-0.62,-0.41和0.47,表明显性基因增加前三个性状的表现值而减少每角粒数。所有56个F1组合中,单株产量最高的2个组合ZS10×XY15和05R1×XY15,其一般配合力和特殊配合力均为最高,在杂交育种时,应首先选择一般配合力好的亲本,同时注重选择特殊配合力高的组合。
     1.5分子标记遗传距离与单株产量及产量杂种优势的相关系数分别为-0.12和0.07,均未达到显著相关水平,通过分子标记遗传距离难以预测F1产量优势表现。
     2人工合成甘蓝型油菜遗传距离与遗传多样性
     2.1 SSR和SRAP两种标记在24份材料中共扩增出168条多态性带,其中18对SSR引物共检测到73条多态性条带,平均每对引物扩增4条带;19对SRAP引物共检测到95条多态性条带,平均每个引物扩增5条带,SRAP引物扩增多态性优于SSR标记。
     2.2 UPGMA聚类与主成分分析表明,人工合成甘蓝型油菜与栽培油菜在遗传相似系数O.54处分为单独的2类,两类材料间的遗传基础差异显著,且前者具有更为广泛的遗传多样性。
     3杂种内源激素变化规律及其与产量性状关系
     3.1激素含量在不同组合、不同时期差异很大,3个杂交组合中GA和iPA含量在不同时期总体变化趋势一致,即从苗期到蕾苔期逐渐升高,并在花期达到最高值,随后在15DAP角果中迅速降低。
     3.2所有时期的iPA含量与单株角果数、每角粒数和单株产量都为正相关关系,且三个杂交组合的iPA在所有时期均表现很强的正向优势,表明iPA对产量性状有重要作用,可能通过加快细胞分裂速度,使杂种产生更多的角果数和粒数,并产生较高的产量。
     3.3参试材料在花期花蕾中的4种内源激素含量均达到显著差异水平,表明内源激素含量主要由基因型控制,且GA和iPA在花蕾中含量最高,花期花蕾是内源激素调控的主要器官。
     4 NRF1杂种产量与产量优势主要限制因子(每角粒数)的可能机理
     4.1花期自交和蕾期自交结果表明,NRF1杂种存在着较强的自交不亲和性,不亲和特性的强弱与NRF1杂种结实性密切相关。其中以R2为人工品系亲本的NRF1杂种,其花交结角率、每花结籽数和每角结籽数分别为46.9%、4.3和9.2粒种子,高于其它RS为亲本时的NRF1组合,表明以R2为亲本的NRF1杂种具有相对较强的自交亲和特性,以此推断:以自交亲和性好的人工合成油菜为亲本时,可以显著提高NRF1杂种的结实性。完全双列杂交实验中,32个NRF1组合,只有4个组合的每角粒数表现正向对照优势,分别为:05R1×S72、05R1×HYl 5、05R1×XY15和05R4×xY15,其中的05R1跟R2是同一材料,这4个组合同时是所有32NRF1组合单株产量最高的4个组合。可见,提高NRF1杂种的自交亲和性,改善杂种结实性,可显著提高产量水平。
     4.2 NRF1杂种在细胞减数分裂时期出现异常,但在后期I及以后趋于正常;同时,虽然NRF1杂种的花粉育性(平均为80.7%)低于对照中双9号,但与花器官发育正常与否没有显著关系,表明NRF1杂种的细胞减数分裂异常和较低的花粉育性不是导致其结角率和结实性低的主要原因。
It is generally believed that higher genetic distance between their respective parents results in higher heterosis. Although Brassica napus is one of the most successful crops in heterosis utilization worldwide, its genetic basis is narrow when compared with its diploid parent Brassica rapa and Brassica olecerea. The gene pool of elite rapeseed breeding material has been further eroded by an emphasis on specific traits like high yield, double low quality etc, and the genetic variability in this important oilseed crop is restricted with regard to many valuable characters for breeding purposes. The resynthesized Brassica napus crossed by its diploid parents is a useful strategy for broadening the genetic basis of breeding material, and large genetic distance to rapeseed cultivars make it possible for hybrid rapeseed breeding. So far, few thorough studies have been made on the agronomic and genetic performance of hybrids between resynthesized and natural rapeseed(NRF1).
     In this study, many technologies with quantative genetics, cytogenetics, physiology in hormonal level and molecular biology were first used to analysize seed yield traits of NRF1i in detail. An 8×8 complete diallel experiment using four B. napus cultivars (BN) and four resynthesized rapeseed lines (RS) as parents was designed to study heterosis and genetic inheritance for yield components. SSR and SRAP techniques were employed to assess genetic diversity in 24 materials, including 16 resynthesized rapeseed and 8 cultivars. Relationship between genetic distance and F1 performance was analyzed. Endogenous hormones were tested in three F1 hybrids and their parents to determine heterosis and their relationship to yield components. Self-incompatibility, pollen fertility and meiosis of NRF1 were analysed to detemine the main factor resulting in low seed per pod in NRF1. The main results are as follows:
     1. Heterosis and genetic inheritance of NRF1 combinations
     1.1 All the 56 hybrids had positive mid-parent heterosis (MPH) in seed yield per plant with a mean of 32.77%, except Rl×R7. As for yield components, pods per plant had highest heterosis with a mean of 24.49%, followed with seeds per pod, with a mean of 15.71%, heterosis for 1000 seed weight is low, with a mean of 1.22%. Significant heterosis for seed oil content was also observed, but it was less than that of yield per plant. Among 56 hybrids, the mid-parent heterosis for seed oil content ranged from -8.547% to 15.07% with an average of 4.43%. About 78.6% combinations (44/56) had positive heterosis for seed oil content.
     1.2 The 56 hybrids were divided into three types: RS×RS, BN×BN and NRF1. Compared with the both parents, NRF1 showed better agronomic characters than mid-parent values in all traits. The NRF1 were also taller in plant height, longer in primary branches and main inflorescence, more in branches and increased in pod number per plant when compared with cultivar check (ZS10).
     1.3 There were seven NRF) which showed positive check heterosis in seed yield per plant, accounted for 21.88%, among which 05R1×XY15 had the second highest seed yield per plant in all the 56 hybrids, indicating that NRF1 had great potential in increasing seed yield. The NRF1 had much more pods per plant (436.96) than BNxBN ( 370.89) types, while had lower seeds per pod. Because 1000 seed weight is normal in NRF1, seeds per pod is the limiting factor to increasing plant yield.
     1.4 Diallel analysis showed that both additive and dominant effects were significant for yield components, additive gene effects were larger than non-additive gene effects in yield per plant and seed per pod, while non-additive gene effects were larger than additive gene effects in pods per plant and 1000-seed weight. Dominant genes had positive effects on yield per plant, pods per plant and 1000-seed weight and negative effects on seeds per pod (r=-0.86, -0.62, -0.41 and 0.47, respectively). The two highest yield hybrids ZS10×XY15 and 05R1×XY15 showed best general combing ability (GCA) and special combing ability (SCA), it is requisite to select parents with high GCA and combinations with high SCA to obtain high seed yield F1s.
     1.5 There was no significant correlations between genetic distance and F1 yield per plant, it is difficult to predict F1 heterosis by molecular markers.
     2 Genetic distance and genetic diversity in resynthesized Brassica napus
     2.1 With SSR and SRAP molecular markers, total 168 polymorphic bands were amplified in the 24 materials, among which 73 bands were obtained from 18 pair SSRs, with a mean of 4 bands per SSR marker, 95 bands were obtained from 19 pair SRAPs, with a mean of 5 bands per SRAP marker, the polymorphism in SRAP is better than in SSR.
     2.2 With UPGMA (Unweighted Pair Group Mathematics Average) clustering and PCA (Principal Component Analysis), the resynthesized Brassica napus and rapeseed cultivars were significantly divided into two groups, indicating that they had different genetic basis and the former had more genetic diversity.
     3 Endogenous hormones in hybrids and their relationship to seed yield
     3.1 Endogenous hormones changed dramatically in different stages and different stages, the trends of variation were similar in three F1 hybrids for GA and iPA, which reached their highest levels at flowering stage with a mean of 876.26 ng/g FW and 1084.04ng/g FW, respectively.
     3.2 Except for 1000 seed weight, the other yield traits showed positive relationship to iPA in all stages, and high heterosis of iPA among three F1 combinations were detected, indicating there might be important roles of iPA to yield traits. The high level of iPA in hybrids make it possible to produce more meristem and then more pods per plant, and got higher seed yield in hybrids finally.
     3.3 The materials showed significant differences for four endogenous hormones in buds at flowering stage, indicating genetic variation of hormones in this stage; GA and iPA contents reached their highest level in buds at flowering stage, implying that this stage was the main stage of synthesis and metabolism of hormones.
     4 Possible mechanisms resulted in the low seed per pod in the NRF1 hybrids
     4.1 The results of bud self-pollination and flower self-pollination indicated that there was obvious self-incompatibility in NRF1, which was significantly correlated to seed per pod. The NRF1 from R2 as resynthesized rapeseed parent showed best pods per bud, seed per bud and seed per pod, indicating inferior self-incompatibility in NRF1 when R2 as resynthesized rapeseed parent. The results were in accordance with the former study in the second chapter: four NR hybrids 05Rl×S72, 05RlxHY15, 05Rl×XY15 and 05R4×XY15 showed positive check heterosis in seed per pod, 05R1 and R2 here was the same material. The four combinations were the best ones of all 32 NRF1 in seed yield per plant.
     4.2 Meiosis of NRF1 hybrids was somewhat abnormal and might be responsible for the lower pollen fertility. However, no significant abnormality was found in first and second anaphases and neither in tetrad stage. No positive correlation was found between flower organ abnormality and pollen fertility. That meant the above two factors might be responsible for the lower seed per pod, but not the main factors.
引文
1. Ahmad R, Potter D, Southwick S M. Genotyping of peach and nectarine cultivars with SSR and SRAP molecular marker. Journal of American Society for Horticultural Science, 2004, 129 (2): 204~210.
    2. Alemayehu N, Becker H C. Genotypic diversity and patterns of variation in a germplasm material of Ethiopian mustard (Brassica carinata A. Braun). Genetic Resources and Crop Evolution, 2002, 49: 573~582.
    3. Ali M, Copland L O, Elias S G Kelly J D. Relationship between genetic distance and heterosis for yield and morpholoical traits in winter canola (Brassica napus L.). Theoretical and Applied Genetics, 1995, 91:118~121.
    4. Auger D L, Peters E M and Birchler J A. A Genetic Test of Bioactive Gibberellins as Regulators of Heterosis in Maize. Journal of Heredity, 2005:96(5):614~617.
    5. Babula D, Kaczmarek M, Barakat A, Delseny M, Quiros C F, Sadowski J. Chromosomal mapping of Brassica oleracea based on ESTs from Arabidopsis thaliana: Complexity of the comparative map. Mol Gen Genomics, 2003, 268: 656~665.
    6. Barret P, Delourme R, Renard M, Domergue F, Lessire R, Delseny M, Roscoe T J. A rapeseed gene is linked to the E1 locus associated with variation in the content of erucic acid. Theoretical and Applied Genetics, 1998, 96: 177~186.
    7. Bartkowiak-Broda I, Poplawska W. Characteristic of double low winter rapeseed lines with introduced restorer gene for CMS ogura. Proc 10th Int Rapeseed Cong (Canberra, Australia), 1999,172.
    8. Becker H C and Enqvist G M. The potential of resynthesized rapeseed for hybrid breeding. Proc. 9th Int. Rapeseed Congess, Cambridge, UK, 1995: 113~115.
    9. Becker H C, Engqvist G M, Karlsson B. Comparison of rapeseed cultivars and resynthesized lines based on allozyme and RFLP markers. Theoretical and Applied Genetics, 1995, 91:62~67.
    10. Benchimol L L, De Souza Jr C L, Garcia A F, et al. Genetic diversity in tropical maize inbred lines: heterotic group assignment and hybrid performance determined by RFLP markers. Plant Breeding, 2000, l19: 491~496.
    11. Beschorner M, Heberer V, Odenbach W. Analysis of self-incompatibility interactions in 30 resynthesized Brassica napus lines. II. Expression of S-locus glycoproteins (SLGs). Theoretical and Applied Genetics, 1999, 99:885~890.
    12. Birchler J A, Auger D L, Riddle N C. In search of a molecular basis of heterosis. Plant Cell, 2003,15:2236~2239.
    13. Brandle J E, Mc Vetty P B E. Geographical diversity, parental selection and heterosis in oilseed rape. Can J Plant Sci, 1990, 70: 935~940.
    14. Brandle J E, McVetty P B E. Effects of inbreeding and estimates of additive genetic variance within seven summer oilseed rape cultivars. Genome, 1988, 32: 115~119.
    15. Brondani C, Rangel P, Brondani R. QTL mapping and introgression of yield-related traits from Oryza glumaepatulato cultivated rice (Oryza sativa) using microsatellite markers. Theoretical and Applied Genetics, 2002, 104: 1192~1203.
    16. Bruce A B. The Mendelian theory of heredity and the augmentation of vigor. Science, 1910, 32: 627~628.
    17. Budak H, Shearman R C, Parmaksiz I, Dweikat I. Comparative analysis of seeded and vegetative biotype bufalograsses based on phylogenetic relationship using ISSRs,SSRs,RAPDs and SRAPs. Theoretical and Applied Genetics, 2004, 109: 280~288.
    18. Chen B Y, Heneen W K, Jonsson R. Independent inheritance of erucic acid content and flower colour in the C-genome of Brassica napus L. Plant Breeding, 1988b, 100: 147~149.
    19. Cheung W Y, Champagne G, Hubert N, Landry B S. Comparison of the genetic maps of Brassica napus and Brassica oleracea. Theoretical and Applied Genetics, 1997, 94:569~582.
    20. Cui L Y, et al. Widespread genome duplications throughout the history of flowering plants. Genome Research, 2006, 16: 738~749.
    21. Dice L R. Measures of the amount of ecological association between species. Ecology, 1945, 26: 297~302.
    22. Diers B W, McVetty P B E, Osborn T C. Relationship between heterosis and genetic distance based on restriction fragment length polymorphism markers in oilseed rape (Brassica napus L.). Crop Science, 1995, 36: 79~83.
    23. Dreyer F, Graichen K, Jung C. A major quantitative trait locus for resistance to Turnip Yellows Virus (TuYV, syn. beet western yellows virus, BWYV) in rapeseed. Plant Breeding, 2001, 120: 457~462.
    24. Ecke W, Uzunova M, Weissleder K. Mapping the genome of rapeseed (Brassica napus L.). 2. Localization of genes controlling erucic acid synthesis and seed oil content. Theoretical and Applied Genetics, 1995, 91: 972~977.
    25. Ekuere U, Parkin I, Bowman C, Marshall D, Lydiate D. Self-incompatibility in Brassica napus. Proc 9th Int Rapeseed Congr (Cambridge, UK), 1995, 1: 95~97.
    26. Engqvist G M, Becker H C. What can resynthesized Brassica napus offer to plant breeding? Sveriges Uts?desf?renings Tidskrift, 1994,104: 87~92.
    27. Eta-Ndu and Openshaw S J. Epistasis for grain yield in two F2 populations of maize. Crop Science, 1999, 39: 346~352.
    28. Ferriol M, PioóB, Nuez F. Genetic diversity of a germplasm collection of cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics, 2003, 107: 271~282.
    29. Frascaroli E, Cane M A, Landi P, Pea G, Gianfranceschi L, et al. Classical genetic and quantitative trait loci analyses of heterosis in a maize hybrid between two elite inbred lines. Genetics, 2007, 176: 625~644.
    30. Friedt W, Lühs W, Müller M, Ordon F. Utility of winter oilseed rape (Brassica napus L.) cultivars and new breeding lines for low-input cropping systems. German Journal of Agronomy, 2003, 2: 49~55.
    31. Gaeta R T, Pires JC, Federico I L, Leon E, Osborn T C. Genomic changes in resynthesized Brassica napus and their effect on gene expression and phenotype. The Plant Cell, 2007, 19:3403~3417.
    32. Gemmell D J, Brashaw J E, Hodgkin T, et al. Self-incompatibility in B. napus: Seed set on crossing 19 self-incompatible lines. Euphytica, 1989, 42: 71~77.
    33. Ghaderi A M, Adams W and Nassib A M. Relationship between genetic distance and heterosis for yield and morphological taits in dry bean and faba bean. Crop Science, 1984, 24: 37~42.
    34. Girke A, Becker H C, Engqist G. Resynthesized rapeseed as a new gene pool for hybrid breeding. Proceedings of the 10 International Rapeseed Congress. Canberra, Australia, 1999. BIO: 90.
    35. Girke A. Neue Genpools aus resynthetisiertem Raps für die Hybridzüchtung. Dissertation. FB Agrarwissenschaften. Georg-August-Universit?t G?ttingen. 2002.
    36. Godshalk E B, Lee M, Lamkey K R. Relationship of restriction fragment length polymorphisms to single cross hybrid performance of maize. Theoretical and Applied Genetics, 1990, 80: 273~280.
    37. Gomez-Campo C, Prakash S. Origin and Domestication. In: Gomez-Campo C. Biology of Brassica Coeno species. Amsterdam: Elsevier Science, 1999: 33~58.
    38. Goodnight C J. The genetics and exploitation of heterosis in crops: epistasis and heterosis. American Society of Agronomy, Madison, Wisconsin, USA. , 1999: 59~68.
    39. Grant I, Beversdorf W D. Heterosis and combining ability estimates in spring-planted oilseed rape (Brassica napus L.). Can J Genet Cytol, 1985, 27: 472~478.
    40. Hasan M, Seyis F, Badani A G, Pons-Kühnemann J, Friedt W, Lühs W and Snowdon R J. Analysis of genetic diversity in the Brassica napus L. gene pool using SSR markers. Genetic Resources and Crop Evolution, 2006, 53(4): 793~802.
    41. Hayman B. The analysis of variance of diallel tables. Biometrics, 1954a, 10: 235~244.
    42. Hayman B. The theory and analysis of diallel crosses. Genetics, 1954b, 39: 789~809.
    43. Heath D W, Elizabeth D E. Synthesis of low linolenic acid rapeseed (Brassica napus L.) through protoplast fusion. Euphytica, 1997, 93: 339~343.
    44. Heneen W K, Chen B Y, Cheng B F, Jonsson A, Simonsen V, Jorgensen R B. Characterization of the A and C genomes of Brassica campestris and B. alboglabra. Hereditas, 1995, 123: 251~267.
    45. Hinze L L, Lamkey K R. Absence of epistasis for grain yields in elite maize hybrids. Crop Science, 2003, 43: 46~56.
    46. Hodgkin T. Self-incompatibility reactions in a synthetic Brassica napus line. Cruciferae Newsletter, 1986,11: 77~78.
    47. Hoenecke M, Chyi Y S. Comparison of Brassica napus and B. rape genomes based on the restriction fragment length polymorphism mapping In: Rape seed in a Changing World, Proc 8th International Rape seed Cong. Saskatche wan, Canada, 1991, 4: 1102~1107.
    48. Howell P M, Sharpe A G, Lydiate D J. Homoeologous loci control the accumulation of seed glucosinolates in oilseed rape (Brassica napus). Genome, 2003, 46: 454~460.
    49. Hu L Y, Fu T D, Wu J S, Qiu D Y, Yang G Z. Changes in endogenous hormone content of Brassica napus during growth and development. Journal of Physiology and Molecular Biology, 2003, 29(3): 239~244.
    50. Hu X Y,Sullivan—Gilbert M,Gupta M,Thompson S A.Mapping of the loci controlling oleic and linolenic acid contents and development of fad2 and d3 allele—specific markers in canola (Brassica napus L.). Theoretical and Applied Genetics, 2006, l13: 497~507.
    51. Inomata N. A cytogenetic study of the progenies of hybrids between Brassica napus and Brassica oleracea, Brassica bourgeaui, Brassica cretica and Brassica montana. Plant Breeding, 2002, 121(2): 174~177.
    52. Inomata N. Embryo rescue techniques for wide hybridization. In: K. S. Labana, S. S. Banga, and S. K. Banga (eds), Breeding Oilseed Brassicas, 1993: 94~107.
    53. Inomata N. Hybrid progenies of the cross.B.campestris×B.oleracea.Ⅲ.Cytogenetical studies on F2, B1 and other hybrids. Japan J Genet, 1985, 60:359~371.
    54. Inomata N. Production of interspecific hybrids between B. campestris and B. oleracea by culture in vitro of excised ovaries. Japan J Breed, 1977, 27: 295~304.
    55. Jones D F. Dominance of linked factors as a means of accounting for heterosis. Genetics, 1917, 2: 466~479.
    56. J?nsson, R. Erucic acid heredity in rapeseed (Brassica napus L.and Brassica campestris L.). Hereditas, 1977, 86: 159~170.
    57. Karpechenko G D. Production of polyploid gametes in hybrids. Hereditas, 1927, 9: 349~368
    58. Kathleen P S, Brown J, Davis J B. Heterosis in spring canola hybrids grown in Northern Idaho. Crop Science, 1998, 38: 376~380.
    59. Kimber D S, McGregor D I. The species and their origin, cultivation and world production. In: D. Kimber and D. I. McGregor (eds), Brassica Oilseeds: Production and Utilization, CABI Publishing, Wallingford, UK, 1995: 1~9.
    60. Kr?ling K. Utilization of genetic variability of resynthesized rapeseed. Plant Breeding, 1987, 99: 209~217.
    61. Lagercrantz U, Putterill J, Coupland G, Lydiate D. Comparative mapping in Arabidopsis and Brassica,fine scale genome collinearity and congruence of genes controlling flowering time. Plant Journal, 1996, 9 (1): 13~20.
    62. Lagercrantz U, Lydiate D. Comparative genome mapping in Brassica. Genetics, 1996, 144: 1903~1910.
    63. Landry B S, Hubert N, Crete R, Chang M S, Lincoln S E, Etho T. A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome, 1992, 35: 409~420.
    64. Landry B S, Hubert N, Etoh T, Harada J J, Lincoln S E. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences. Genome, 1991, 34: 543~552.
    65. Lee M, Godshalk E B, Lamkey K R, Woodman W W. Association of restriction fragment length polymorphisms among maize in breeds with agronomic performance of their crosses. Crop Science, 1989, 29:1067~1071.
    66. Liang P, Pardee A B. Differential display of eukaryotic messenger RNA by means of the polymerase chain reaction.Science, 1992, 257: 967~971.
    67. Li G, Quiros C F. Sequence—related amplified polymorphism (SRAP). A new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001, 103: 455~461.
    68. Li M T, Liu J M, Wang Y T, Yu L J, Meng J L. Production of Partial New-typed Brassica Napus by Introgression of Genomic Components from B. rapa and B. carinata. Journal of Genetics and Genomics, 2007, 34(5): 460~468.
    69. Li M, Qian W, Li Z, Meng J. Construction of novel Brassica napus genotypes through chromosomal substitution and elimination using interploid species hybridization. Chromosome Research, 2004, 12(5): 417~426.
    70. Li M, Li Z, Qian W, Meng J. Production and cytogenetic studies of hybrids derived from crosses between Brassica trigenomic diploids and B. napus. Chromosome Research, 2004, 12: 417~426.
    71. Li Y C, Hu Q, Mei D S, Li Y D, Xu Y S, Tan Z M. Molecular assisted breeding and adaptability analysis of Zhongyouza 11 with super high oil content. Agricultural Sciences in China, 2007, 6(11): 1306~1314.
    72. Li Y C, Korol A B, Fathima T, Belles A, Nevo E. Microsatellites: genomic distribution, putative functions and mutational mechanism: a review. Molecular Ecology,2002,11:2453~2465.
    73. Li Z K, Luo L J, Mei H W, Wang D L, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield. Genetics, 2001, 158: 1737~1753.
    74. Li Z Q, Wang Z R. Relationship between heterosis and endogenous plant hormones in Liriodendron. Acta Bot Sinica 2002, 44:689-701.
    75. Lu C M, Kato M. Fertilization fitness and relation to chromosome number in interspecific progeny between Brassica napus and B. rapa: a comparative study using natural and resynthesized B. napus. Breeding Science, 2001, 51: 73~81.
    76. Lu C M, Shen F S, Hu K. Heterosis in interspecific hybrids between Brassica napus and B. rapa. SABRAO Journal of breeding and genetics, 2001,33(2): 73~85.
    77. Lu C M, Zhang B, Kakihara F, Kato M. Introgression of genes into cultivated Brassica napus through resynthesis of B. napus via ovule culture and the accompanying change in fatty acid composition. Plant Breeding, 2001, 120: 405~410.
    78. Lu H, Romero-Severson J, Bernardo R. Genetic basis of heterosis explored by simple sequence repeat markers in a random-mated maize population. Theoretical and Applied Genetics, 2003, 107: 494~502.
    79. Lühs W, Seyis F, Snowdon R, Baetzel R, Friedt W. Genetic improvement of Brassica napus by wide hybridization, GCIRC Bull, 2002, 18: 227~234.
    80. Lühs W, Friedt W. Breeding high—erucic acid rapeseed by means of Brassica napus resynthesis. Proc 9th Int Rapeseed Congr(Cambridge,UK), 1995,18: 449~451.
    81. Luo L J, Li Z K, Mei H W, Shu Q Y, Tabien R, Zhong D B, Ying C S, Stansel J W, Khush G S, Paterson A H. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components. Genetics, 2001, 158: 1755~1771.
    82. Ma C, Kimura Y, Fujimoto H, Sakai T, Imamura J, Fu T. Genetic diversity of Chinese and Japanese rapeseed (Brassica napus L.) varieties detected by RAPD markers. Breeding Science, 2000, 50: 257~265.
    83. McVetty P B E. Review of performance and seed production of hybrid brassicas. Proceedings of the 9th International Rapeseed Congress, Cambridge, United Kingdom, 1995: 98~103.
    84. Mei H W, Li Z K, Shu Q Y, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two backcross populations, Theoretical and Applied Genetics, 2005, 110: 649~659.
    85. Mei H W, Luo L J, Ying C S, et al. Gene actions of QTLs affecting several agronomic traits resolved in a recombinant inbred rice population and two testcross populations. Theoretical and Applied Genetics, 2003, 107: 89~101.
    86. Melchinger A E, Lee M, Lamkey K R, et al. Genetic diversity for restriction fragment length polymorphisms and heterosis for two tiller sets of maize in breeds. Theoretical and Applied Genetics, 1990, 80: 488~496.
    87. Morinaga T, Fukushima E. Karyological studies on a spontaneous haploid mutant of Brassica napella. Cytologia, 1933, 4: 457~460.
    88. Morinaga T. Interspecific hybridization in Brassica. I. The cytology of F1 hybrids of B. napella and various other species with 10 chromosomes. Cytologia, 1929, 1: 16~27.
    89. Morinaga T. Interspecific hybridization in Brassica. IV. The cytology of F1 hybrids of B.juncea and B. nigra. Cytologia, 1934, 6: 62~67.
    90. Morinaga T. Preliminary note on interspecific hybridization in Brassica. Proc Imp Acad, 1928, 4: 620~622.
    91. Nei M,Li W.Mathematical model for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences USA, 1979,76: 5269~5273.
    92. Nickerson N H. Sustained treatment with gibberellic acid of five different kinds of maize. Ann Missouri Bot Garden, 1959, 46:19~37.
    93. Nishi S, Kawata J, Toda M. On the breeding of interspecific hybrids between two genomes, C and A of Brassica through the application of embryo culture techniques. Japan J Breed, 1959, 8: 215~222.
    94. Olsson G. Species crosses within the genus Brassica. II Artificial B. napus L. Hereditas, 1960, 46: 351~386.
    95. Osborn T C, Pires J C, Birchler J A, Auger D L, Chen Z J, Lee H S, Comai L, Madlung A, Doerge R W, Colot V, Martienssen R A. Understanding mechanisms of novel gene expression in polyploids. Trends Genet, 2003, 19: 141~147.
    96. Parkin I A P, Sharpe A G, Keith D J, Lydiate D J. Identification of the A and C genomes of amphidiploid Brassica napus (oilseed rape). Genome, 1995, 38: 1122~1133.
    97. Peakall R, Smouse P E. GENALEX 6: genetic analysis in excel, population software for teaching and research. Mol Ecol Notes, 2006, 6: 288~295.
    98. Pearce D W, Rood S B, Wu R. Phytohormones and shoot growth in a three-generation hybrid poplar family. Tree Physiol, 2004, 24:217~224.
    99. Pierre D B, Bruno S, Emile M, Andre M. Hormones and pod development in oilsed Rape (Brassiea napus). Plant Physiol, 1989, 90: 876~880.
    100. Pires J C, Zhao J, Schranz M E, Quijada P A, Lukens L N, Osborn T C. Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc, 2004, 82: 675~688.
    101. Qian W, Meng J, Li M, Frauen M, Sass O, Noack J, Jung C. Introgression of genomic components from Chinese Brassica rapa contributes to widening the genetic diversity in rapeseed (B.napus L.), with emphasis on the evolution of Chinese rapeseed. Theoretical and Applied Genetics, 2006, 113: 49~54.
    102. Radoev M, Becker H C, Ecke W. Genetic analysis of heterosis for yield and yield components in rapeseed (Brassica napus L.) by QTL mapping. Genetics, published on June 18, 2008 as 10.1534/108.089680
    103. Rahman M H.Production of yellow-seed Brassica napus through interspecific crosses. Plant Breeding, 2001, 120: 463~472.
    104. Riaz A, Li G, Quresh Z, Swati M S, et a1. Genetic diversity of oilseed Brassica napus inbred lines based on sequence—related amplified polymorphism and its relation to hybrid performance. Plant Breeding, 2001, 120: 411~415.
    105. R?bbelen G. Beitr?ge zur analysis des Brassica genomes. Chromosoma, 1960, 11: 205~212.
    106. Rohlf F J. NTSYS-pc numerical taxonomy and multivariate analysis system. Exeter Software, New York, USA: Exeter Software, 2001.
    107. Rood S B. Heterosis and the metabolism of gibberellin A20 in sorghum. Plant Growth Regulation, 1995, 16:271~278.
    108. Rood S B, Mandel R, Pharis R P. Endogenous gibberellius and shoot growth and development in Brassica napus. Plant Physiol, 1989, 89(1):269~273.
    109. Rood S B, Witbeck J E T, Major D J. Gibberellins and heterosis in sorghum. Crop Science, 1992, 32(3): 713~718.
    110. Rood S B, Blake T J, PharisR P. Gibberellins and heterosis in maize, II. Response to gibberellic acid and metabolism of [3H]gibberellin A20. Plant Physiol, 1983, 71:645~651.
    111. Rood S B, Buzzell R I, Major D J, Pharis RP. Gibberellins and heterosis in maize: quantitative relationships. Crop Science, 1990, 30:281~286.
    112. Rygulla1 W, Friedt W, Seyis F, Lühs W, Eynck C, Tiedemann A, Snowdon R J. Combination of resistance to Verticillium longisporum from zero erucic acid Brassica oleracea and oilseed Brassica rapa genotypes in resynthesized rapeseed (Brassica napus) lines. Plant Breeding, 2007, 126: 596~602.
    113. Seyis F, Friedt W, Lühs W. Yield of Brassica napus L. hybrids developed using resynthesized rapeseed material sown at different locations. Field Crops Research, 2006, 96: 176~180.
    114. Seyis F, Friedt W, Lühs W. Development of resynthesized rapeseed (Brassica napus L.) forms with low erucic acid content through in ovulum culture. Asian J Plant Science, 2005, 4: 6~10.
    115. Seyis F, Snowdon R J, Lühs W, Friedt W. Molecular characterization of novel resynthesized rapeseed (Brassica napus) lines and analysis of their genetic diversity in comparison with spring rapeseed cultivars. Plant Breeding, 2003, 122: 473~478.
    116. Shull G H. The composition of a field of maize. Am Breeders Assoc Rep, 1908, 4: 296~301.
    117. Singh S, Sawhney V K, Pearce D W. Temperature effects on endogenous indole-3-acetic acid levels in leaves and stamens of the normal and male sterile“stamenless-2”mutant of tomato (Lycopersiconesculentum Mill.). Plant, Cell and Environment, 1992, 15: 373~377.
    118. Sliva N F, Stone S L, Christie L N, et al. Expression of the S receptor kinae in self-compatible Brassica napus cv. Westar leads to the allele-specific rejection of self-incompatible Brassica napus pollen. Mol Genetics Genomics, 2001, 265:552.
    119. Slocum M K, Figdore S S, Kennard W C, Suzuki J Y, Osborn T C. Linkage arrangement of restriction fragment length polymorphism loci in Brassica oleracea. Theoretical and Applied Genetics, 1990, 80: 57~64.
    120. Smith O S, Smith J S C, Bowen S L, Tenborg R A, Wall S J. Similarities among a group of elite maize in breeds as measured by pedigree, F1 grain yield, grain yield heterosis, and RFLPs. Theoretical and Applied Genetics, 1990, 80: 833~840.
    121. Song K M, Tang K L, Osborn T C. Development of synthetic Brassica amphidiploids by reciprocal hybridization and comparison to natural amphidiploids. Theoretical and Applied Genetics, 1993, 86: 811~821.
    122. Song K M, Lu P, Tang K L, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci, 1995, 92: 7719~7723.
    123. Song K M, Suzuki J Y, Slocum M K, Williams P H, Osborn T C. A linkage map of Brassica rapa (syn. Campestris) based on restriction fragment length polymorphism loci. Theoretical and Applied Genetics, 1991, 82: 296~304.
    124. Song K M, Osborn T C, Willaims P H. Brassica taxonomy based on nuclear restriction fragment length polymorisms (RFLPs).I. Genome evolution of diploid and amphidiploid species.Theoretical and Applied Genetics, 1988, 75: 651~656.
    125. Sparrow P A C, Townsend T M, Morgan C L, Dale P J, Arthur A E, Irwin J A. Genetic analysis of in vitro shoot regeneration from cotyledonary petioles of Brassica oleracea. Theoretical and Applied Genetics, 2004, 108:1249~1255.
    126. Spena A, Estruch J J, Prinsen E, et al. Anther-specific expression of the rolB gene of Agrobacteriun rhizogenes increases IAA content in anthers and alters anther development and whole flower growth. Theoretical and Applied Genetics, 1992, 84: 520~527.
    127. Struss D, Oui ros C F, Pliieske J. Construction of Brassica B genome synteny groups based on chromosomes extracted from three diferent sources by phe notypic, isozyme and molecular marker. Theoretical and Applied Genetics, 1996, 93: 1026~1032.
    128. Stuber C W, Lincoln S E, Wolff D W, Helentjaris T, Lander E S. Identification of genetic factors contributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. Genetics, 1992, 132: 823~839.
    129. Stuber C W, Saghai M A, Rufenere G K. Molecular markers and grouping of parents in maize breeding programs. Crop Science, 1991, 31:718~723.
    130. Sun Q, Wu L, Ni Z, Meng F, Wang Z, Lin Z. Differential gene expression patterns in leaves between hybrids and their parental inbreds are correlated with heterosis in a wheat diallel cross. Plant Science, 2004, 166: 651~657.
    131. Suwabe K, Tsukazaki H, Iketani H, Hatakeyama K, Kondo M, Fujimura M, Nunome T, Fukuoka H, Hirai M, Matsumoto S. Simple sequence repeat-based comparative genomics between Brassica rapa and Arabidopsis thaliana: the genetic origin of clubroot resistance. Genetics, 2006, l73: 309~319.
    132. Takamin N. Uber die rubenden und die prasynaptischen Phasen der Reduktionstionsteilung. Bot Mag Tokyo, 1916, 30: 293-303.
    133. Takasaki T, Hatakeyama K, Suzuki G, et al. The S receptor kinase determines self-incompatibility in Brassica stigma. Nature, 2000, 403:913.
    134. Takeshita M, Kato M, Tokumasu S. Application of ovule culture to the production of intergeneric and interspecific hybrids in Brassica and Raphanus. Japan J Genet, 1980: 55, 373~387.
    135. Teklewold A and Becker H.C. Comparison of phenotypic and molecular distances to predict heterosis and F1 performance in Ethiopian mustard (Brassica carinata A. Braun). Theoretical and Applied Genetics, 2006, 112: 752~759.
    136. Truco M J, Hu J, Sadowski J, Quiros C F. Inter-and intra-genomic homology of Brassica genomes: implications for their origin and evolution. Theoretical and Applied Genetics, 1996, 93: 1225~1233.
    137. Tsaftaris A S, Polidoros A N. Studying the expression of genes in maize parental inbreds and their heterotic and nonheterotic hybrids. In Proc Eucarpia Maize and Sorghum Conference, Bergamo, Italy, 1993: 283~292.
    138. Tsunezuka H, Fujiwara M, Kawasaki T, Shimamoto K. Proteome analysis of programmed cell death and defense signaling using the rice lesion mimic mutant cdr2. Mo1 Plant-Mic Intrs, 2005, 18(1): 52~59.
    139. U N. Genome-analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilization. Japanese Journal of Botany, 1935, 7: 385~452.
    140. Varshney A, Mohapatra T, Sharma R P. Development and validation of CAPS and AFLP markers for white rust resistiance gene in Brassica juncea. Theoretical and Applied Genetics, 2004, 109: 153~159.
    141. Walsh J A, Sharpe A G, Jenner C E, Lydiate D J. Characterisation of resistance to turnip mosaic virus in oilseed rape (Brassica napus) and genetic mapping of TuRB01. Theoretical and Applied Genetics, 1999, 99: 1149~1154.
    142. Walter D, Adriana C, Abdelkrim A, et al. Dynamics of cytokinins in apical shoot meristems of a day-neutral tabacco during floral transition and flower formation. Plant Physiology, 1999, 119:111~121.
    143. Xiao J, Li J, Yuan L, McCouch S R, et al. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed by PCR-based markers. Theoretical and Applied Genetics, 1996, 92: 637-643.
    144. Xiao J, Li J, Yuan L, et al. Dominance is the major genetic basis in rice as revealed by QTL analysis molecular markers. Genetics, 1995, 140: 745~754.
    145. Xiong L Z , Xu C G, Sagai Maroof M A , et al. Patterns of cytosine methylation in an elite rice hybrid and its parental lines , detected by a methylation—sensive amplification polymorphism technique. Moe1 Gen1 Gent, 1999, 261: 439~446.
    146. Yang G S, Chen C B, Zhou G L, Geng C N, Ma, C Z, Tu J X, Fu T D. Genetic analysis of four self-incompatible lines in Brassica napus. Plant Breeding, 2001, 120: 57~61.
    147. Yu S B, Li J X, Xu C G, Tan Y F, Gao Y J, Li X H, Zhang Q F, Saghai Maroof M A. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc Natl Acad Sci, 1997, 94: 9226~9231.
    148. Yu X L, Cao J S, Dong D K. Measurement of some physiological and biochemical indexes of the antisense fragment of CYP86MF gene transgenic male sterile plantlets in Chinese Cabbage-Pak-Choi. Agriculture Science in China,2003, 2(11):1239~1245.
    149. Zhang G Q, Tang G X, Song W J, Zhou W J. Resynthesizing Brassica napus from interspecific hybridization between Brassica rapa and B. oleracea through ovary culture. Euphytica, 2004,140:181~187.
    150. Zhang G Q, Zhou W J. Genetic analyses of agronomic and seed quality traits of synthetic oilseed Brassica napus produced from interspecific hybridization of B. campestris and B. oleracea. Journal of Genetics. 2006, 85: 45~51.
    151. Zhang Q F, Gao Y J, Saghai Maroof M A, et al. Molecular divergence and hybrid performance in rice. Molecular Breeding, 1995, 1(2): 133~142.
    152. Zhang Q F,Gao Y J,Yang S H,Li Z B.A diallel analysis of heterosis in elite hybrid rice based on RFLPs and microsatellites, Theoretical and Applied Genetics,1994, 89: 185~192.
    153. Zhang Y, Ni Z F, Yao Y Y, Nie X L, Sun Q X. Gibberellins and heterosis of plant height in wheat (Triticum aestivum L.). BMC Genetics, 2007, 8:40 doi: 10.1186/1471-2156-8-40
    154. Zhao B H, Liu K, Zhang H X, Zhu Q S, Yang J C. Causes of Poor Grain Plumpness of Two-Line Hybrids and Their Relationships to the Contents of Hormones in the Rice Grain. Agricultural Sciences in China, 2007, 6(8): 930~940.
    155. Zhao Y G, Ofori A, Lu C M. Genetic diversity of European and Chinese oilseed Brassica rapa cultivars from different breeding periods. Agricultural sciences in China, 2009,8(8):931~938.
    156. Zhao Y L, Yu S X, Xing C Z, Fan S L, Song M Z, Ye W W. Differential gene expression between hybrids and their parents during the four crucial stages of cotton growth and development. Agricultural Sciences in China, 2009, 8(2):144~153.
    157.安贤惠,陈宝元,傅廷栋,刘后利.利用RAPD标记研究中国芥菜型油菜遗传多样性.华中农业大学学报,1999,18:524~527.
    158.陈伦林,邹小云,李书宇,邹晓芬,张建模,宋来强. SSR和SRAP标记揭示甘蓝型油菜遗传多样性的差异分析.分子植物育种,2008,6(3):511~516.
    159.陈树忠,殷家明,唐章林,等.甘蓝型油菜与羽衣甘蓝远源杂交初步研究.西南农业大学学报,2000,22(3):208~210.
    160.程宁辉,高燕萍,杨金水,等.玉米杂种一代与亲本基因差异的初步研究.科学通报,1996,41:451~454.
    161.程宁辉,杨金水,高燕萍,等.水稻杂种一代与亲本幼苗基因表达差异的分析.植物学报,1997,39:379~382.
    162.程昕昕,耿广汉,刘正.过氧化物酶杂合性与玉米Fl产量性状相关性分析.中国农学通报,2007,23(2):271~274.
    163.崔辉梅,曹家树,张明龙,姚祥坦,向殉,叶纨芝,余小林,卢钢.Ogura雄性不育甘蓝型油菜×白菜、芜菁杂种F1及其回交后代染色体减数分裂行为分析.中国农业科学,2004,37(9):1352~1357.
    164.杜德志,姚艳梅,胡琼,徐亮.新型特早熟春性甘蓝型油菜的遗传多样性及其杂种优势.中国油料作物学报,2009,31(2):114~121.
    165.范淑英,吴才君,曲雪艳,成广杰,王家辉,乐建刚,夏华英.从芸苔属作物同工酶和蛋白质表型差异探讨杂种优势机理.江西农业大学学报,2006,28(3):323~326.
    166.傅廷栋.油菜的品种改良.作物研究,2007,3:159~162.
    167.傅廷栋.杂交油菜的育种与利用.湖北科学技术出版社,2000.
    168.高夕全,张子学,夏凯,等.雄性不育辣椒中几种内源激素的含量变化.植物生理学通讯,2001,37(1):31~321.
    169.官春云,黄太平,李栒,陈社员.不同植物激素对油菜角果生长和结实的影响.中国油料作物学报,2004,26(1):5~7.
    170.管荣展,盖钧镒.甘蓝型油菜杂种优势及其与亲本配合力和亲本系数间的关系.中国油料作物学报,1998,20(4):11~15.
    171.韩继祥.我国甘蓝型油菜含油量的遗传研究.中国油料,1990,2:1~6.
    172.何余堂,陈宝元,傅廷栋,李殿荣,涂金星.白菜型油菜在中国的起源与进化.遗传学报,2003,30(11):1003~1012.
    173.胡宝成,陈凤祥.甘蓝型油菜细胞质雄性不育三交种和单交种的优势比较.中国油料,1996,18(3):4~6.
    174.胡建广,杨金水,陈金婷.作物杂种优势的遗传学基础.遗传,1999,21(2):47~50.
    175.胡胜武,于澄宇,赵惠贤,等.恢复系和保持系RAPD分子标记与甘蓝型油菜杂种优势关系的研究.西北农林科技大学学报(自然科学版),2003,31(6):66~70.
    176.黄团,孙洁,徐峰,殷家明,唐章林,李加纳.(芥蓝×羽衣甘蓝)×白菜型油菜人工合成甘蓝型油菜研究初报.中国农学通报,2008,24(2):134~138.
    177.黄永菊,赵合句,王玉叶.杂交油菜内源激素的变化特征与杂种优势关系初探.中国油料,1995,17(4):13~15.
    178.孔芳,蒋金金,吴磊,王幼平.利用原位杂交及CAPS标记分析芸薹属A、B和C基因组间的关系.作物学报,2008,34(7):1188~1192.
    179.雷海英,孙毅,阎敏,段永红.玉米抽穗期亲本及其杂交种间基因差异表达与杂种优势的关系.华北农学报,2007,22(2):29~33.
    180.李佳,沈斌章,韩继祥,等.一种有效提取油菜叶片总DNA的方法.华中农业大学学报,1994,13(5):521~523.
    181.李明爽,傅洪拓,龚永生,吴滟,李法君.杂种优势预测研究进展.中国农学通报,2008,24(1):117~122.
    182.李媛媛,沈金雄,王同华,傅廷栋,马朝芝.利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱.中国农业科学,2007,40(6):1118~1126.
    183.李云侠,Variath M T,吴建国,石春海.甘蓝型油菜不同发育时期角果重量的遗传分析.浙江大学学报(农业与生命科学版),2009,35(1):45~50.
    184.李兆伟,熊君,齐晓辉,王经源,陈鸿飞,张志兴,黄锦文,梁义元,林文雄.水稻灌浆期叶片蛋白质差异表达及其作用机理分析.作物学报,2009, 35(1): 132~139.
    185.栗茂腾,王芳,张椿雨,孟金陵.甘蓝型油菜亚基因组间杂种(ArAnCcCn)的细胞学和育性研究.作物学报,2006,32(3):351~357.
    186.栗茂腾,张椿雨,刘列钊,余龙江.芸薹属A,B和C基因组之间关系研究进展.遗传,2005,27(4):671~676.
    187.林宝刚,张明龙,张龙.甘蓝型油菜杂种优势和过氧化物酶的关系分析.华北农学报,2005,20(4):36~39.
    188.林碧英,方淑桂.结球甘蓝过氧化物酶和酯酶同工酶与杂交亲本配合力的关系.福建农林大学学报(自然科学版),2003,32 (1):66~69.
    189.林忠旭,张献龙,聂以春,贺道华,吴茂清.棉花SRAP遗传连锁图构建.科学通报,2003,48:1676~1679.
    190.刘后利.油菜遗传育种学.中国农业大学出版社,2000.
    191.刘平武,杨光圣.甘蓝型油菜人工合成种遗传多样性分析.作物学报,2004,30( 12): 1266~1273.
    192.刘齐元,刘飞虎,何宽信,朱肖文,李立新.烟草花蕾中内源激素含量与雄性不育性的关系初探.华北农学报,2006,21 ( 5 ) :79~82.
    193.刘文冰.浅析我国油菜生产的现状与发展.中国种业,2005,1:17.
    194.刘雪平,涂金星,陈宝元,傅廷栋.人工合成甘蓝型油菜中花色与芥酸含量的遗传连锁分析.遗传学报,2004,31(4):357~362.
    195.卢长明,肖玲,张斌,等.人工合成甘蓝型油菜的繁育特性与试管繁殖.中国油料作物学报,2003,25(4):5~10.
    196.卢庆善,孙毅,华泽田.农作物杂种优势.中国农业科技出版社,2002.
    197.陆光远,杨光圣,傅廷栋.应用于油菜研究的简便银染AFLP标记技术的构建.华中农业大学学报,2001,20:413~415.
    198.孟金陵,Lydiate D,Sharpe A,等.用RFLP标记分析甘蓝型油菜的遗传多样性.遗传学报,1996,23:293~306.
    199.明道绪,张征锋,刘永建.作物杂种优势遗传基础的研究进展.四川农业大学学报,2002,20(2):177~181.
    200.倪中福,孙其信,吴利民.普通小麦不同优势杂交种及其亲本之间基因表达差异比较研究.中国农业大学学报,2000,5(1):1~8.
    201.牛应泽,汪良中,刘玉贞,等.利用人工合成甘蓝型油菜创建油菜新种质.中国油料作物学报,2003,25(4):11~15.
    202.牛应泽,汪良中,刘玉贞,等.甘蓝型油菜Bro cms新质源雄性不育系的选育.西南农业学报,1999,12(3):35~39.
    203.牛应泽,汪良中,刘玉贞,郭世星,路阳.人工合成甘蓝型油菜特长果突变系选育初报.四川农业大学学报,2002,20(3):212~215.
    204.牛应泽.人工合成甘蓝型油菜的遗传多样性研究.[博士学位论文].雅安:四川农业大学,2003.
    205.钱秀珍.我国甘蓝型油菜品种(系)的系谱初析.中国油料,1985,(2):11~14.
    206.沈金雄,陆光远,傅廷栋,等.甘蓝型油菜遗传多样性及其与杂种表现的关系.作物学报,2002,28(5):622~627.
    207.沈金雄.甘蓝型油菜杂种优势及其遗传分析.[博士学位论文].武汉:华中农业大学,2003.
    208.税红霞,汤天泽,牛应泽.油菜内源激素与角果长度发育的关系.中国油料作物学报,2006,28 (3):309~314.
    209.税红霞,牛应泽,汤天泽.内源激素与油菜生长发育的研究进展.中国农学通报,2005,21(5):257~260.
    210.粟根义.人工合成甘蓝型油菜(Brassica napus L.)的方法及效果研究.[博士学位论文].武汉:华中农业大学,1998.
    211.孙逢吉.芸薹属之杂种优势.中华农学会报,1943,175:35~58.
    212.孙其信,倪中福,陈希勇,等.冬小麦部分基因杂合性与杂种优势表达.中国农业大学学报,1997,2(1):114~116.
    213.谭祖猛,李云昌,胡琼,等.通过分子标记估算遗传距离预测甘蓝型油菜的杂种优势.中国油料作物学报,2007,29(2):26~132.
    214.田长恩,张明永,段俊,等.油菜细胞质雄性不育系及其保持系不同发育阶段内源激素动态变化初探.中国农业科学,1998,31(1):20~25.
    215.王爱云,李栒,胡大有.胚胎挽救技术在油菜远缘杂交育种中的应用研究进展.种子,2005,24(9):41~45.
    216.王道杰,杨翠玲,黄飞,郭蔼光.单显性细胞核雄性不育油菜花蕾表达蛋白比较研究.西北植物学报,2008,28(6):1101~1105.
    217.王汉中.我国油菜油菜产需形势分析及产业发展对策.中国油料作物学报,2007, 29( 1): 101~105.
    218.王建林,何燕,栾运芳,大次卓嘎,张永青.中国芸薹属植物的起源、演化与散布.中国农学通报,2006,22(8):489~494.
    219.王俊霞,杨光圣,傅廷栋,等.甘蓝型油菜Pol CMS育性恢复基因的RAPD标记.作物学报,2000,26(5):575~578.
    220.王晓武,方智远,孙培田,等.一个用于甘蓝显性雄性不育基因辅助选择的SCAR标记.园艺学报, 2000, 27( 2): 143~144.
    221.王艳惠,牛应泽.人工合成甘蓝型油菜特长角性状的遗传分析.遗传,2006, 28(10): 1273~1279.
    222.王瑛.张胜.张润生.植物激素处理对春油菜结实特性的影响.华北农学报,2005, 20 (专辑): 50~53.
    223.文雁成,栗根义.对甘蓝与大白菜种间杂交合成甘蓝型油菜的初步研究.华中农业大学学报,1999,18(6):515~519.
    224.文雁成,王汉中,沈金雄,等.用SRAP标记分析中国甘蓝型油菜品种的遗传多样性和遗传基础.中国农业科学,2006,39(2):246~256.
    225.文雁成,张书芬,王建平,等.对甘蓝与大白菜种间杂交合成的甘蓝型油菜的研究.中国油料作物学报,1999,21(4):8~11.
    226.吴敏生,戴景瑞.AFLP标记与玉米杂种产量、产量杂种优势的预测.植物学报,2000,42(6):600~604.
    227.吴颂如,陈婉芬,周燮.酶联免疫法(ELISA )测定内源植物激素.植物生理学通讯,1988,5:53~57.
    228.萧浪涛,王若仲,丁君辉,严钦泉.内源激素与亚种间杂交稻籽粒灌浆的关系.湖南农业大学学报(自然科学版),2002,28(4):269~273.
    229.徐荣旗,刘俊芳.不同优势陆地棺杂种及其双亲幼芽内源激素含量的比较.作物学报,1997,23(3):380~382.
    230.许智宏,李家洋.中国植物激素研究:过去、现在和未来.植物学通报,2006,23(5): 433~442.
    231.轩淑欣,王彦华,李晓峰,赵建军,张成合,申书兴.芸薹属作物分子遗传连锁图谱应用研究进展.中国农业科学,2008,41(7):2055~2062.
    232.尹经章.油菜杂种优势利用的现状与展望(综述).新疆农业大学学报(增刊),2002, 25: 40~46.
    233.余青青,田露申,牛应泽,郭世星.人工合成甘蓝型油菜抗根肿病遗传研究初报.西南农业学报,2008,21(5):1313~1315.
    234.袁有喜,牛应泽,汪良中,刘玉贞.人工合成甘蓝型油菜的同工酶分析.四川农业大学学报,2000,18(2):153~156.
    235.张涛,韩磊,徐建第,等.杂交香稻亲本遗传距离与产量杂种优势的相关性研究.中国农业科学,2006,39(4):831~835.
    236.张洁夫,戚存扣,浦惠明,陈松,陈锋,高建芹,陈新军,顾慧,傅寿仲.甘蓝型油菜芥酸含量的遗传与QTL定位.江苏农业学报,2008,4(1):22~28.
    237.张启华,牛淑贞,吕金殿.油菜自交不亲和系杂种酯酶同工酶的研究初报.油料作物科技,1978,3:28~32.
    238.张书芬,傅廷栋,朱家成,王建平,文雁成,马朝芝.甘蓝型油菜芥酸含量的基因分析.中国农业科学,2008,41(10):3343~3349.
    239.张书芬,马朝芝,朱家成,王建平,文雁成,傅廷栋.甘蓝型油菜含油量的主基因+多基因遗传效应分析.遗传学报,2006,33(2):171~180.
    240.张书芬,傅廷栋,朱家成,等.甘蓝型油菜产量及其构成因素的QTL定位与分析.作物学报,2006,32(8):1135~1142.
    241.张维强.高粱杂种优势与同工酶.植物学报,1981,6:509~510.
    242.张晓伟,高睦枪,原玉香,等.人工合成甘蓝型油菜的研究.河南农业科学,2001(2): 7~10.
    243.张颖,牛应泽.人工合成甘蓝型大粒材料H484花粉生活力及减数分裂观察.四川农业大学学报,2003,21(4):289~291.
    244.赵坚义, Becker H C.同工酶分子标记研究中国和欧洲栽培油菜的遗传差异.作物学报,1998,24:213~220.
    245.周清元,殷家明,崔翠,林呐,谌利,唐章林,李加纳.白菜型油菜×羽衣甘蓝种间杂种的性状表现.西南农业大学学报,2006,28(1):1~3.
    246.庄勇,陈龙正,杨寅桂,娄群峰,陈劲枫.植物异源多倍体进化中基因表达的变化.植物学通报,2006,23(2):207~214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700