人工合成甘蓝型油菜特长角性状的遗传及分子生物学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人工合成甘蓝型油菜是创建甘蓝型油菜新种质,获得更多重要农艺经济性状的遗传资源,利用人工合成种作为桥梁将一些近缘物种的有利性状导入甘蓝型油菜,可拓宽油菜的遗传基础并对其农艺及经济性状进行改良。四川农业大学油菜研究中心通过人工合成甘蓝型油菜创造出了一群遗传变异丰富新材料,并从中选育出了一些优良的特异材料,如特长角、高千粒重、多分枝以及大角大粒等优良农艺性状的材料。本研究对人工合成甘蓝型油菜获得的特长角油菜材料H218的角果长度进行了遗传分析,探讨油菜角果长度的遗传变异规律,进一步丰富油菜的理论基础,改良现有油菜的角果长度服务于生产,并从分子生物学方面,采用基因组原位杂交、DNA甲基化等技术分析了特长角形成的可能因素。其主要研究结果如下:
     1、在特长角“H218”的F2群体中,全果长、果身长、果喙长均呈连续正态分布,显示为多基因控制的数量性状,全果长最少受5对基因控制,果身长最少受6对基因控制,果喙长最少受2对基因控制。特长角H218的全果长、果身长的广义遗传力较高而狭义遗传力相对较低,且狭义遗传力均大于广义和狭义遗传力之差,表明基因的加性效应远比非加性效应对表型变异的贡献更大。果喙长的广义遗传力、狭义遗传力均较低,表明他们能够遗传的部分所占比例较低。对F2群体进行相关分析表明,全果长与果身长、果喙长、每果粒数之间,果身长与果喙长、每果粒数之间均呈极显著正相关,表明选择长角果性状可间接增加角果的有效长度和每果粒数。
     2、对H218特长角系进行三重测交分析,全果长、果身长和果喙长三性状的I、I1、I2的χ2值均达到显著,表明三性状存在显著的上位性效应。全果长、果身长和果喙长三性状的和式、差式、和差式三种方差家系间均达极显著水平,并且三性状的i型互作、j和l型互作也达极显著水平,说明这三性状是由这三种基因效应共同作用的结果,其遗传均符合加性-显性-上位性模型,三性状的i型互作的显‘著性均大于j型和l型互作的显著性,表明长角果性状通过不断的自交是可以固定的,但也不能忽视j型和l型互作的变异。
     3、采用世代均数法对特长角H218进行遗传模型检验和基因效应分析的结果,全果长、果身长、果喙长三性状不符合简单的加性-显性遗传模型,符合加性-显性-上位性模型,这与三重测交的结果一致。全果长、果身长和果喙长三性状均为[d]+[j]>[h]+[l],表明角果长度性状在F1代难以出现超亲杂种优势。全果长、果身长的[d]>[i]+[j]+[l],基因加性效应远比上位性效应对表型变异的贡献更大,但上位性效应不可忽视,果喙长的[d]+[h]>[i]+[j]+[l],基因的加性、显性效应远比上位性效应对表型变异的贡献更大,表明角果长度性状通过不断的自交进行轮回选择,可以积累较多的有利基因。
     4、用主基因+多基因模型分析特长角系H218的遗传特性表明,全果长、果身长均以C模型为最适遗传模型,即受加性-显性-上位性多基因系统控制,未检测到主基因效应,表明全果长、果身长可通过轮回选择集中增效基因或通过聚合回交转移这些多基因。B1、F2的多基因遗传率相对较高,B2的多基因遗传率低,遗传参数因遗传背景不同而异。果喙长的遗传模型、遗传参数因遗传背景不同而异。
     5、对特长角H218进行基因效应对总遗传变异的贡献分析表明,全果长、果身长、果喙长三性状的加性效应平方和大于显性效应平方和,角果长度性状的加性遗传变异占世代间总变异的80%以上,加性效应是世代间遗传变异的主导因素,显性效应、上位性效应对总遗传变异的贡献率也起一定的作用。表明角果长度性状通过轮回选择是可在一个自交系中积累较多的有利基因,但也不能忽视显性效应与上位性效应的作用。
     6、用540对SSR引物对特长角H218和普通长度角果中油821的基因组DNA进行筛选,结果有115对引物可以在两亲本间扩增出差异带谱,用有差异的115对引物在F2的长、短角果基因池之间筛选出3对有差异的引物,即A05、J35、N05,表明这3对SSR引物与角果长度性状存在连锁。经软件分析,A05、J35、N05三标记间无连锁关系,采用单标记分析法进行了t检验,A05、N05两标记可能与控制角果长的QTL存在连锁关系,而J35与控制角果长的QTL不存在连锁关系。
     6、对特长角系及其后代的DNA甲基化进行(MSAP法)分析结果表明,长角果的总甲基化率低于普通长度角果品系的总甲基化率,长角果的全甲基化率低于普通长度角果品系的全甲基化率,长角果的半甲基化率低于普通长度角果品系的半甲基化率,即长角果的甲基化水平低于普通角果。特长角果的去甲基化和次甲基化程度高于普通角果,普通角果的全、半甲基化和过或超甲基化程度高于长角果。相对较低的甲基化水平以及去甲基化程度的提高有可能是特长角果形成的原因之一。
     7、采用GISH分析方法对特长角变异系及其后代的染色体差异进行分析结果表明,以白菜型油菜基因组作探针,用不同来源的甘蓝型油菜作封阻DNA,特长角H218都表现出了其与白菜型油菜的同源性高于普通角果与白菜型油菜的同源性,即H218的特长角性状可能与所用白菜型油菜提供的新特异基因有关;用白花芥蓝基因组作探针,用不同来源的甘蓝型油菜DNA作封阻,特长角H218都表现出了其与白花芥蓝的同源性高于普通角果与白花芥蓝的同源性,这表明H218的特长角表现可能又与白花芥蓝的特异基因导入有关。综合分析认为,人工合成系H218的特长角表现,还可能与白花芥蓝特异基因与白菜型油菜特异基因的互作有关。
Artificially resynthesized Brassica napus lines are the genetic resources of creating new germplasm, as well as obtaining more significant agronomic and economic characteristics of Brassica napus L.. With the help of resynthesis technologies, we can transform some beneficial traits of relative species into Brassica napus L., accordingly, the hereditary basis of rapeseed can be expanded, and the agronomic and economic characteristics of rapeseed can be modificated. A population of new rapeseed materials which are rich in genetic variation has been created by resynthesis technologies in Rapeseed Research Center of Sichuan Agricultural University. A lot of excellent metamaterials were selected from the population, such as specially-long pod Variant Line, high 1 000-grain weight line, multiple-branch line, and big pod, big seed line. In this study, in order to study the formation reasons of long-pod rapeseed, quantitative genetic analysis of specially-long pod resynthesized Brassica napus line H218 was investigated by the methods of molecular biology technologies such as GISH(Genomic in Situ Hybridization) and DNA methylation. The main results of the research are as the follows:
     1. The broad-sense heritability of whole-fruit length and fruit length are relatively higher than narrow-sense heritability in specially-long pod Brassica napus line H218, and narrow-sense heritability are significantly higher than the difference between broad-sense heritability and narrow-sense heritability, indicating that the contribution of additive effects to phenotype is much higher than non-additive effects. The broad-sense heritability and narrow-sense heritability of the length of beak are both lower, indicating that the ratio of heredity is lower. The whole-fruit length is controlled by at least five genes, the fruit length is controlled by at least six genes, the length of beak is controlled by at least two genes. In F2 population, the whole-fruit length, fruit length and the beak length are normal distribution, demonstrate that they are quantitative genetic traits controlled by multiple genes. The correlation analysis on F2 population indicated that they are significant positive between whole-fruit length and fruit length, beak length, the grains on each pod, fruit length and beak length, the grains on each pod. It means that select whole-fruit length can improve fruit length indirectly, selecting long pod trait can improve the grains on each pod indirectly.
     2. Genetic effects were analysed and genetic models were tested by the method of generation means analysis, the results showed that the whole-fruit length, the fruit length and beak length are not conform to simple additive-dominant-epistasis genetic model, but conform to [d]+[i]>[h]+[l], which suggests that the three traits are mainly behaved as additive effects, and it is hard for them to behave heterobeltiosis in F2 generation. The result of [d]+[h]>[i]+[j]+[l] suggests that the additive effects, dominant effects contribute more to phenotype variance than epistasis effects. The additive effects [d] of the three traits, the interaction effects between additive effects and additive effects [i] are showed as significant and positive, which proved that the genes of all the three traits are joint probability distribution. As far as the three traits are concerned, the sum of squares of additive effects are higher than that of the dominant effects, in different hybridized combination, the contribution of gene effects to total genetic variance are similarly, additive genetic variance contribute more than 80% to total variance, and additive is the main factor to genetic variance between generations. Dominant effects, epistasis effects also contribute to total genetic variance.
     3. TTC analysis was carried out on specially-long pod Brassica napus line H218, when it comes to the three traits, theχ2 value of I, I1,I2 were significant, which proved that there exist significant epistasis effects. Between the families, the sum, the difference, the sum and difference of the three traits showed as extremely significant differences, and the interaction models of i, j,l are all extremely significant differences, which suggest that three different of genes cooperate to each other, and result in three different traits, it also conform to additive-dominant-epistasis genetic model.
     4. Analysis especially-long pod Brassica napus line H218 with the model of main gene-multiple genes, C model is the best for whole-fruit length and fruit length, it also means that they are controlled by additive-dominant-epistasis multiple genes, no main gene effects was founded, it suggest that collect enhancin gene by recurrent selection, or transform these multiple genes by convergent backcross method can effect the whole-fruit length and fruit length. Heritability of multiple genes in B1, F2 population are relatively higher than B2 population, and genetic parameters are different based on hereditary background difference. The genetic model and genetic parameters of beak length are different based on different hereditary background.
     5.540 pairs of SSR primers are screened between especially-long pod H218 and Zhongyou 821,115 pairs of which showed difference, make use of the 115 pairs to screen between long pod gene pool and short pod gene pool in F2 population,3 pairs of primers showed difference, that is A05、J35、N05,which suggest that the three pairs of primers linked with pod length trait. Through software analysis, there are no linkage relationship among the three markers, t test was carried out by single marker analysis, and the result suggest that it is possible that markers A05 and N05 linked with QTL of length controlled, but not for J35.
     6. The total methylation ratio of long pod is lower than normal pod, the methylation ratio of long pod is lower than normal pod, the half methylation ratio of long pod is lower than normal pod, that is to say, the methylation ratio of long pod is lower than that of normal pod. Demethylation and submethylation level of especially-long pod rapeseed are higher than normal pod length rapeseed, total methylation, half methylation, super methylation level of normal pod length are higher than that of especially-long pod.
     7. Use genome DNA of B campestris L. as probe, chromosome of different Brassica napus L. as blocking DNA, especially-long pod rapeseed H218 performed higher homology with Brassica campestris L. than normal pod, which means the eapecially-long pod may has something to do with the transformation of special genes from Brassica campestris L.. Use genome DNA of Brassica oleracea var.alboglabra as probe, chromosome of different Brassica napus L. as blocking DNA, especially-long pod H218 performed higher homology with Brassica oleracea var.alboglabra than normal pod, which means the eapecially-long pod trait may has something to do with the transformation of special genes from Brassica oleracea var.alboglabra. In resynthesized Brassica napus line H218, special genes from Brassica campestris L. and Brassica oleracea var.alboglabra interact with each other, then formed especially-long pod, and can inherit stably to the next generation.
引文
[1]UN.Genomea nalysisin Brassica with special reference to the experimental formation of B.napus and pecuilar mode of fertilization.Ja pan J Bot,1935,7: 389-452.
    [2]官春云.油菜染色体的数目、形态和行为[J].中国油料,1983(1):8.
    [3]Robbtlen,G.:Beitrage Zur Analyse des Brassia Genomes. Chromosoma [J] 1980 (11):205.
    [4]牛应泽.人工合成甘蓝型油菜的遗传多样性研究[D].[四川农业大学博士论文].
    [5]张晓伟,高睦枪,原玉香等.人工合成甘蓝型油菜研究[J].河南农业科学,2001,2:7-10.
    [6]Shiga T and Baba S. Cytoplasmic male sterility in oil seed rape(Brassic napes L.)and its utilization to breeding.Jap J Breeding.1973,23(4):187-197.
    [7]蔡以欣、杨树青.芸苔属植物的新种合成及其细胞遗传学研究Ⅶ欧洲油菜x广东小油菜F2群体性状与染色体数目的相关研究.遗传学报,1979,6(1):64.
    [8]汪良中,刘玉贞.甘蓝型油菜的人工合成(Ⅰ).西南农业学报,1992,5(3):12-17
    [9]牛应泽,汪良中,刘玉贞.甘蓝型油菜Bro cms新雄性不育系的选育.西南农业学报,1999,12(3):35-39.
    [10]Becker H C,Engqvist G M.The potential of resynthesis rapeseed for hybrid breeding.Proc.9th Int.Rapeseed Congress,4-7 July,1995, Ca mbridge, UK,113-115.
    [11]Wen YC,Zhang SF,Wang JP,Ren LJ,Li GY,Zhang XW.,Preliminary studies on synthetic B.napus by interspecific hybridization between B.oleracea and Chinese cabbage(B.campestris).JournalofHuazhong Agricultural university,1999,18(6): 515-519.
    [12]刘后利.实用油菜栽培学.上海,科学技术出版社,1987.
    [13]刘后利.甘蓝型油菜品种经济性状的相关分析.刘后利科学论文集,傅廷栋主编.北京:北京农业大学出版社,1994.
    [14]中国科学院农业丰产研究从书编辑委员会.油菜若干生理问题.北京,科学出版社,1960.
    [15]北条良夫,加藤真次郎,小林宏信.日本作物学会纪事.1966,(41),420-425.
    [16]稻永忍.日本作物学会纪事.1973,(4),260-264,265-271.
    [17]Rood SB, Major DJ and Charnetski WA, Seasonal changes in 14co2 assimilation and 14c translocation in oilseed rape, Field Crops Res, 1984,8,341-348.
    [18]李纯,陈江华,商五一.甘蓝型油菜角果及种子发育过程的研究.1988,(2):23-25.
    [19]冷锁虎,朱耕如.油菜花角期叶片对产量的影响.中国油料,1989,(3):25-29.
    [20]冷锁虎,朱耕如,邓秀兰.油菜籽粒干物质来源的研究.作物学报,1992,18(4):250-256.
    [21]浦惠明,戚存扣,傅寿仲.油菜角果的生长特性及其源库效应.1993,(3):22-250.
    [22]Mendham N.J.:The effects of delayed sowing and weather on growth development and yield of winter oilseed rape (Brasica napus), J. Agric. Sci. Camb.1981,96,389-416.
    [23]Mendham N.J.:The contribution of seed survival to yield in new Australian cultivate of oilseed rape (Brassica napus),J. Agric.Sci.Camb.1984, 103,303-316.
    [24]丁秀琦.白菜型春油菜角果和种子性状研究.中国油料,1996,18(4):28-30.
    [25]张书芬.甘蓝型双低油菜数量性状的遗传力及基因效应.中国油料,1996,18(3):1-3.
    [26]余凤群,金明源,肖才升等.甘蓝型油菜DH群体几个数量性状的遗传分析.中国农业科学,1998,31(3):44-48.
    [27]刘定富.甘蓝型油菜特长角突变体的发现和鉴定.农学院学报,1994,4(2):1-4.
    [28]Chay P and Thurling N.Identification of genes controlling pod length in spring rapeseed, Brassica napus L.,and their utilization for yield improvement (J).Plant Breeding.1989,103:54-62.
    [29]牛应泽.人工合成甘蓝型油菜特长角变异系选育初报.四川农业大学学报,2002,20(3):212-215.
    [30]牛应泽.利用人工合成甘蓝型油菜创建油菜新种质.中国油料作物学报,2003,25(4):11-15.
    [31]牛应泽.人工合成甘蓝型油菜特长角变异系的选育.植物遗传资源学报,2005,6(2):151-155.
    [32]危文亮.甘蓝型油菜长角果变异体的遗传研究.遗传,2000,22(2):93-95.
    [33]Mather K. Biometrical Genetics.London:Methuen&Co.Ltd.1949.
    [34]明道绪.利用各世代的小区平均数估计遗传参数的加权最小二乘法.遗传学报,1991,18(5):437-445.
    [35]明道绪.利用各世代小区平均数的加权利最小二乘法在玉米数量性状遗传分析上的应用.遗传学报,1991,18(6):513-519.
    [36]Comstock R C and H F Robinson. The component of quantitative variance in populations. Biometrics,1948,4:254-266.
    [37]Comstock R C,H F Robinson and P H Harvey. A breeding procedure designed to make maximum use of both general and specific combing ability.Agron J, 1949,41:360-367.
    [38]Comstock R C and H F Robinson.Estimation of average dominance of genes heterosis.Ames IA:Iowa State Univ press,1952,494-516.
    [39]Kempthorne O. The correlation between relatives in a random mating population.Proc R Soc London B,1954,143:103-113.
    [40]Kempthorne O. The theoretical values of correlation between relatives in a random mating populations.Genetics,1955,40:153-167.
    [41]Kempthorne O. An Introduction to Genetics Statistics.New York:John Wiley & sons.1957.
    [42]Cockerham C C. Anextension of the concept of partitioning hereditary variance for analysis of covance among relatives when epistasis is present. Genetics, 1954,39:859-882.
    [43]Cockerham C C. Analysis of quantitative gene action. Brookhaven symp Biol, 1956,1956,9:53-58.
    [44]Cockerham C C. Estimation of genetic variances. In:W D Hanson & H F Robinson(eds.) Genetics Statistics and Plant Breeding,NASNRC Publ,1963, 982:53-94.
    [45]高之仁.数量遗传学.四川农业出版社,1986。
    [46]莫惠栋.三重测验杂交的遗传分析.江苏农学院学报,1987,8(2):59-64。
    [47]Elston R C and J Stewart. The analysis of quantitative traits for simple genetic models from parental, FI and backcross data.Genetics,1973,73:695-711.
    [48]Elston R C. The genetic analysis of quantitative trait differences between two homozygous lines.Genetics,1984,108:733-744.
    [49]Morton N E and C J Maclean. Analysis of family resemblance.Ⅲ.Complex segregation of quantitative trait.Am J Hum Genet,1974,26:489-503.
    [50]Elikind Yand A Cahaner. A mixed model for the efects of single gene, polygenes and theirinteraction on quantitative traits.]. The model and experimen-tal design. Theor Appl Genet,1986,72:377-383.
    [51]Elikind Yand A Cahaner. A mixed model for the efects of single gene,polygene and their interaction on quantitative traits.2.The efects of the major gene and polygene on tomato fruit softness.Heredity,1990,64:205-213.
    [52]朱军.遗传模型分析方法.北京:中国农业出版社,1997:151-162.
    [53]莫惠栋.质量—数量性状的遗传分析-世代平均数和遗传方差.作物学报,1993,19(3):193-200.
    [54]Loisel P, B Gofned, H Monod and G M De Oca, Detecting a major gene in an F2 population.Biometrics,1994,32:695-688.
    [55]姜长鉴,莫惠栋.质量—数量性状的遗传分析N.极大似然法的应用.作物学报,1995,21(6):641-648.
    [56]王建康.数量性状主基因—多基因混合遗传模型的鉴别和遗传参数估计的研究.[南京农业大学博士学位论文],1996.
    [57]章元明,盖钧镒.利用P1、F1、P2、F2或F2:3家系的联合分离分析.西南农业大学学报,2000,22(1):6-9.
    [58]章元明,盖钧镒.利用DH或RIL群体鉴定QTL体系并估计其遗传效应.遗传学报,2000,27(7):634-640.
    [59]章元明,盖钧镒.数量性状分离分析中分布参数估计的IECM算法.作物学报,2000,26(6):699-706.
    [60]章元明,盖钧镒,王健康.利用回交B1和B2及F2群体鉴定数量性状两对主基因+多基因混合遗传模型.生物数学学报,2001,15(3):358-366.
    [61]霍仕平,宴庆九,许明陆等.玉米主要株型数量性状的基因效应分析.玉米科学,2001,9(1):12-15.
    [62]许明辉,王孟宁,龙文虹.烟草主要数量性状的遗传效应分析.遗传,2000,22(6):395-397.
    [63]高仕杰.高梁穗结构性状的基因效应分析.中国农业科学,1992,25(2):41-46.
    [64]郭平仲,赵文彬,张金栋等.世代平均值分析的多元回归程序.作物学报,1985,11(4):217-225.
    [65]王瑞,李加纳等.甘蓝型黄籽油菜品质性状的遗传分析.西南农业大学学报,2004,26(5):532-534.
    [66]Slocum M K. Analyzing the genomic structure of Brassica species using RFLP analysis.In:Helentjaris T, Burr B.(eds). Development and application of molecular markers to problems in plant genetics. Cold Spring Harbor Lab. Prsee N Y,1989.
    [67]Landry B S, Hubert N,CreteR Chang M S,et al.A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome,1992,35:409-420.
    [68]Camargo L E A, Savides L, Jung G et al. Location of the self-incompatibility locus in an RFLP and RAPD map of Brassica oleracea. J Hered,1997,88:57-59.
    [69]Kianian S F, Quiros C F. Generation of a Brassica oleracea composite RFLP map: linkage arrangements among various populations and evolutionary implications. Theor Appl G enet,1992,84:544-554.
    [70]Hu J, Sadowski J, Osborn T C, et al.Lingkage group alignment from four inde-pendent Brassica oleracea RFLP maps.Genomes,1998,41:226-235.
    [71]Landry B S, Hubert N. A genetic map for Brassica napus based on restriction fragment length polymorphisms detected with expressed DNA sequences, Genome,1991,34:543-552.
    [72]Landry B S, HubertN, Crete R Chang M S, et al.A genetic map of Brassica oleracea based on RFLP markers detected with expressed DNA sequences and mapping of resistance genes to race 2 of Plasmodiophora brassicae (Woronin). Genome,1992,35:409-420.
    [73]涂金星,郑用琏,傅廷栋.甘蓝型油菜核不育基因的RAPD标记.华中农业大学学报,1997,16(2):112-117.
    [74]Delourme R, Bouchereau A, Hubert N, et al. Identification of RAPD markers linked to fertility restorer gene for the Oguera radish cytoplasmic male sterility of rapeseed (Brassica napus L.).Theor Appl Genet,1994,88:741-748.
    [75]Delourme, R.Foisset N, Horvais R et al..Characterisation of the radish introgression carrying the Rfo restorer gene for the Ogu-INRA cytoplasmic male sterility in rapeseed (Brassica napus L.). Theor Appl Genet 1998,97:129-134.
    [76]Jean M, Brown G G, Landry B S. Genetic mapping of nuclear fertility restorer genes for the'Polima' cytoplasmic male sterility in canola (Brassican apusL.) using DNA markers.Theor Appl Genet,1997,95:321-328.
    [77]Jean M, Brown G G, Landry B S. Ta rgeted mapping approaches to identify DNA markers linked to the Rfpl restorer gene for the "Polima" CMS of canola (Brassica napes L.). Theor Appl G enet,1998,97:431-438.
    [78]Murayama S, Habuchi T, Yamagishi H, et al. Identification of a sequence- tagged site (STS) marker linked to a restorer gene for Ogura crytoplasmic male sterility in radish (Raphanus sativus L.) by non-radioactive AFLP analysis. Euphytica,2003, 129(1):61-68.
    [79]Camargo L E A, Savides L, Jung G, et al. Location of the self-incompatibility locus in an RFLP and RAPD map of Brassica oleracea. J Heerd,1997,88:57-59.
    [80]沈金雄.甘蓝型油菜杂种优势及其遗传分析.[博士学位论文].武汉:华中农业大学,2003.
    [81]Hansen M, Hallden C, Nilsson N 0, et al. Marker-assisted selection of restored male-fertile Brassica napus plants using a set of dominant RAPD markers. Mol Breed,1997,3:449-456.
    [82]Tanhuanpaa P, Vilkki J. Marker-assisted selections for oleic acid content in spring turnip rape. Plant breed,1999,118:543-550.
    [83]Bartkowiak-Broda I, Poplawska W. Characteristic of double low winter rapeseed lines with introduced restorer gene for CMS Ogura. Proc 10th Int Rapeseed Cong(Canberra, Australia),1999,172.
    [84]Negi M S, D evic M Delseny M, et al. Identification of AFLP fragments linked to seed coat colour in Brassica juncea and conversion to a SCAR marker for rapid seleetion. Theor Appl Genet 2002,101:146-152.
    [85]Barret P, Delourme R, Foisset N, et al. Development of a SCAR(sequencec haracterised amplifie region) marker for molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus L. Theor Appl Genet,1998,97:828-833.
    [86]刘忠松,官春云,陈社员.油菜芥甘种间杂交育种程序研究和种质创新.华中农业大学学报,2004,34(s):84-89.
    [87]Varshney A, Mohapatra T, Sh arma R P. Development and validation of CAPS and AFLP markers for white rust resistiance gene in Brassica juncea. Theor Appl Genet,2004,109:153-159.
    [88]梅德圣,李云昌,胡琼等.甘蓝型油菜中油杂8号种子纯度的SSR鉴定.中国农业科学,第22卷第5期2006年5月:49-52.
    [89]雷天刚,张学昆,陆合等.甘蓝型油菜黄籽品种SSR指纹图谱的构建.西南农业大学学报(自然科学版),2005,27(3):361-364.
    [90]唐容,吴有祥,田筑萍等.利用SSR标记对甘蓝型黄籽油菜贵油519杂种纯度鉴定.贵州农业科学,2007,35(3):10-11.
    [91]沈金雄,傅廷栋,杨光圣.甘蓝型油菜SSR、ISSR标记的遗传多样性及其与杂种表现的关系.中国农业科学,2004,37(4):477-483.
    [92]刘平武杨光圣.甘蓝型油菜人工合成种遗传多样性分析.作物学报,2004年12月:1266-1273.
    [93]沈金雄,陆光远,傅廷栋等.甘蓝型油菜自交不亲和系杂种纯度鉴定.中国油料作物学报,2004年12月:12-15.
    [94]雷天刚,张学昆,李加纳等.甘蓝型黄籽油菜SSR标记遗传多样性.中国油料作物学报,2005年3月:41-45.
    [95]Mailer R T, Searth R, Fristensky B. Discrimination among cultivars of rapeseed (Brassica napus (?).) using DNA polymorphism amplified from arbitrary primers [J]. Theor Apple Genet,1994,87:697-704.
    [96]Hotchkiss RD. The quantitative separation of purines,py rimidines and nucleosides by paper chromatography.J BiolChem,1948,175:315.
    [97]Hall RE.The Modified Nucleosides in Nucleic Acids. Columbia University Press,New York,USA,1971.
    [98]Razin A, Cedar Howard, et al. DNA methylation—Biochemistry and Biolo-gical Significance (Springer series in molecular biology). Springer-Verlag New York Inc., New York, U SA,1985.
    [99]王关林,方宏均.植物基因工程原理与技术.北京:科学出版社,1998.
    [100]特怀曼RM著,陈淳,徐沁等译.高级分子生物学要义.北京:科学出版社,2001:85-94.
    [101]吴乃虎.基因工程原理.北京,科学出版社,第二版,2001。
    [102]Gruenbaum Y, Naveh-many T.,et al. Sequenee specifity of methylation in higher Plant DNA.Nature,1981,292:860-862.
    [103]Bezdek M, Koukalova B, Kuhrova V Vyskot B.Differential sensitivity of CG and CCG DNA sequenees to ethionine induced hypomethylation of the Nicotiana tabacum genome.FEBS Lett,1992,300:268-270.
    [104]Fulnecek J, Matyasek R, Kovarik A,Bezdek M.Mapping of 52 methyleytosine residues in Nicotiana tabacum 5s rRNA genes by genomic sequencing. Mol Gen Genet,1998,259:133-141.
    [105]Meyer P,Niedenhof I,Ten Lohuis M.Evidence for cytosine methylation of non-symmetrical sequences in transgenic petunia hybrida. EMBO J,1994,13: 2084-2088.
    [106]Vanyushin BF,Kirnos MD.DNA methylation in plants. Gene,1988,74:117-121.
    [107]Kakutani T,Kyoko M,Richard EJ,et al.Meioitcally and mitoitcally stable inheritance of DNA hypomethylaiton induced by ddml mutaiton of Arabidopsis thaliana.Genetics,1999,151:831-838.
    [108]Gruenbaum Y,Naveh-Many T,CedarH H,et al.Sequence specificity of methylation in higher plant DNA. Natuer,1981,292(27):860-862.
    [109]Leutwiler LS, Hough-Evans BR, Meyerowitz EM. The DNA of Arabidopsis thaliana.Mol Gener Genet,1984,194:15-23.
    [110]Kovarik A,Matyasek R,Leitch A,et al.Vairability in CpNpG methylation in higher plant genomes.Gene,1997,204:25-33.
    [111]Finnegan EJ,Genger RK,Peacock W J,et al.DNA methylaiton in plants. Ann Rev Plant Physiol Plant Mol Biol,1998b,49:223-247.
    [112]Xiong LZ,Xu CG,Maroof MAS.Paterns of cytosine methylation in an elite rice hybrid and its pa ental lines,detected by a methylation-sensitive amplification polymorphism technique.Mol Gener Genet,1999,261:439-446.
    [113]Montero LM,Filipski J, GilP, et al.The distribution of 5-methylcytosine in the nuclear genome of plants.Nucl Acids Res,1992,20(12):3207-3210.
    [114]孙乃恩,孙东旭,朱德煦.分子遗传学.南京:南京大学出版社,1999,152。
    [115]Matzke M A,Mette M F,Mazke AJM.Transgene silencing by the host Genome defense:implifcation for the evolution of epigenetic control mechanisms in plants and vertebrates.Plant Mol Biol,2000,43:401-415.
    [116]Kakutani T,Jeddeloh J A, Flowera S K,et al.Developmental abnormalities and epimutations associated with DNA hypomethylation mutations.Proc Natl Acad Sci USA,1996,93:12406-12411.
    [117]Finnegan E J,Peacock W J, Dennis E.DNA methylation, akey regulation of plant development and other processes.Curr Opion Genet Develop,2000,10: 217-223.
    [118]Ronemus M J,Galbiati M, Ticknor C, et al. Demethylation induced developmental plieotropy in Arabidopsis.Science,1996,273(2):654-657.
    [119]King G J. Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine. J Hort Sci,1995,70(2):333-342.
    [120]Sano H,Kamadal, Youssefian S,et al.A single treatment of rice seedling with 5-azacytidine induces heritable dwarfism and underntethylation of genomic DNA. Mol Goner Genet,1990,220:441-447.
    [121]Finnegan E J,Genger R K,Peacock W J et al.DNA methylation in plants. Ann Rev Plant Physiol Plant Mol Biol,1998,49:223-247.
    [122]Burn J E,Bagnall D J, Metzger J D et al.DNA methylation, vernalization, and the initiation of flowering.Proc Natl Acad Sci USA,1993,90:287-291(a).
    [123]Burn JE, Smyth DR,Peacock WJ et al.Gene conferring late flowering in Arabidopsis thaliana.Genet,1993,9:147-155(b).
    [124]Sheldon C C,Burn J E,Perez P P,et al.The FLF MADS box gene:a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell,1999,11:445-458.
    [125]Fu X,Kohli A,Twyman R M,et al.Alternative silencing effect involve distinct types of non-spreading cytosine methylation at a three-gene, single-copy transgenic locus in rice.Mol Gener Genet,2000,263:106-118.
    [126]Shan G H, Jose L M J, Antonio G J. Mitotic stability of infection-induced resistance to plum pox potyvirus with transgene silencing and DNA methylation.Mol Plant Microb Interactions,1999,12 (2):103-111.
    [127]Louise JA, Thomas C L,Andrew M.De novo methylation and co-suppression induced by a cytoplasmically replicating plant RNA virus. Euro Mol Biol organl J,1998,17(21):6385-6393.
    [128]Bocharst A, Hodal L, Palmgren G, et al. DNA methylation is involved in maintenance of an unusual expression patern of an introduced gene.Plant Physio, 1992,99:409-414.
    [129]Wassenegger M, Pelissier T. A model for RNA-mediated gene silencing in higher plants. Plant Mol Biol,1998,37:349-362.
    [130]Matzke M A,Mette M F,Mazke AJM.Transgene silencing by the host Genome defense:implification for the evolution of epigenetic control mechanisms in plants and vertebrates.Plant Mol Biol,2000,43:401-415.
    [131]Van H H, Ingelbrecht 1, Van M M, et al. Post-transcriptional of a neomycin phosphotransferase 11 transgene correlates with the accumulation of "unproductive RNAs and with increased cytosine methylat ion of 3'Flanking regions. Plant J,1997,12:379-392.
    [132]Wassenegger M.RNA-directed DNA methylation.Plant Mol Biol,2000,43: 203-220.
    [133]Kass S U, Pruss D, Wolffe AP. How does DNA methylation repress transcription? Trends Genet,1997,13:444-449.
    [134]Meyer P.Transcriptional transgene silencing and chromatin components. Plant Mol Biol,2000,43:221-234.
    [135]Gruenbaum Y,Naveh-Many T, Cedar H,et al.Sequences pecificity of methylation in higher plant DNA. Nature,1981,292(27):860-862.
    [136]Pradhen S, Urwin NAR Jenkins G I, et al. Effect of CWN methylation on expression of plant genes Biochem J,1999,341:473-476.
    [137]Messegure R, Ganal M W,Steffens J C,et al.Characterization of the level, target sites and inheritance of cytosine methylation in tomato nuclear DNA.Plant Mol Biol,1991,16:753-770.
    [138]Sano H,Kamada 1, Youssefian S,et al.A single treatment of rice seedling with 5-azacytidine induces heritable dwarfism and underntethylation of genomic DNA. Mol Gener Genet,1990,220:441-447.
    [139]King G J. Morphological development in Brassica oleracea is modulated by in vivo treatment with 5-azacytidine. J Hort Sci,1995,70(2):333-342.
    [140]Richard I S, Brettell, Dennis E S. Reactivation of a silent Ac following tissue culture is associated with heritable alteration in its methylation patenr.Mol Gener Genet,1991,229:365-372.
    [141]Tariq M,Paszkowski J.DNA and histone methylation in plants[J].Trends Genet, 2005,21:36.
    [142]Rangwala S H,Richards E J.The value-added genome:building and maintaining genomic cytosine methylation landscapes[J].Curr Opin Genet Dev,2004,14: 686-691.
    [143]Chan S W.Henderson I R,Jacobsen S E.Gardening the genome:DNA methylation in Arabidopsis thaliana[J].Nat Rev Genet,2005,6:351-360.
    [144]Robertson K D,Wolffe A P.DNA methylation in health an disease [J]. Nat. Rev. Gene,2000,1:11-19.
    [145]Kalisz KS, Michael D.Purugganan Epialleles via DNA methylation: consequences for plant evolution [J]. Trends in Ecology and Evolution,2004-6, 6(19).
    [146]Rapp R A,Wendel J F.Epigenetics and plant evolution[J].New Phytol,2005, 168:81-91.
    [147]Gall J G,Pardue M L.Formation and detection of RNA-DNA hybrid molecules cytological preparations.Proc Natl Acad Sct,1969, USA,63:378-383.
    [148]John H A,ML Birnstiel,K W jones,1969,223(9):582-587.
    [149]Hcmacgregor.Chromosome research look forward to 2001[J]. ChromosomeRes. 1993,1:5-7.
    [150]奇文清,李愁学.植物染色体原位杂交技术的发展与应用闭[J].1996,14(3):269-278.
    [151]Rudkin Gt,Stollar Bd.High resolution detection of DNA-RNA hybrids in situ by indirect immun of lurescence[J].Nature,1977,265:472-473.
    [152]Langer-safer,Pr Levine M,Ward DC.Immunological method for mapping genes in Drosophila chromosome [J].Proc Natl Acad Sci USA.1982,79:4381-4385.
    [153]Lichter P,Tang Cjc.High-resolution mapping of human chromosome 11 by in situ hybridization with cosmid clones[J].Science.1990(247):64-69.
    [154]王玲,宁顺斌等.荧光原位杂交技术的发展与应用[J].植物学报,2000,42(11):1101-1107.
    [155]Ning S B.Song Y C,Wang L.,et al.Maizes tressre lated genes hacl and old were locatized on 1OL and 4L,respectively[J].Chromosome Res,2000,8:273.
    [156]Song Y C, Gustafson J P。The physical location of fourteen RFLP markers in rice(Oryzasativa)[J].Theor App I Genet,1995,90:113-119.
    [157]Pinkel DT,Gray J W. Cytogenetic analysis using quantitative,high sensitivity fluorescence hybridization.Proc Natl Acad Sci USA,1986,83:2934-2938.
    [158]Le H T, Armstrong K C, Miki B. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a porbed[J]Plant Molecular Biology Reporter,1989,7:150-158.
    [159]Fahleson J., Dixelius J. Characterization of somatic hybrids between Brassica napus and Eruca stativa using species specific repetitive sequence and genomic in situ hybridization[J].Plant Sci,1997,123:133-142.
    [160]钟少斌,张德玉,李浩兵等.小麦一簇毛麦杂种染色体的DNA原位杂交技术研究[J].江苏农学院学报,1994,15(3):6-8.
    [161]周荣华,贾继增,董玉深.用基因组原位杂交技术检测小麦-新麦草杂交后代[J].中国科学(C辑),1997,12:543-549.
    [162]LandegentJ E,Jansen in de Wal N,Dirks RW,Baao F.,et al.Use of w hole cosmid cloned genomic sequences for chromosomal localization by non-radioactive in situ hybridization[J]. Hum Genet,1987,77(4):366-370.
    [163]Schwarzacher T.,Harrison GC,Jia JS,et al. Genomic in situ hybridization to identify alien chromosomes and chromosomes segments in wheat [J].Theoretical and Applied Genetics,1992,84:778-786.
    [164]Heslop-Harrison,Schwarzacher,Letch A R.,et al.A method of identifying DNA sequence in chromosomes of plants.European Patent Application, Number: 8828130,1988, December 2.
    [165]Le H., Armstrong K., Miki B. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe[J].Plant Mol Biol Rep,1989,7:150-158.
    [166]Schwaizacher T., Anamthanat-Jonsson, Harrison G H, et al. Genomic in situ hybridization identify alien chromosomes and chromosome segments in wheat[J]. Theor.Appl Genet,1992,84:778-786.
    [167]Schwarzacher T.,Leitch A R,et al.In situ loclization of paerntal genomes in a wide hybrid[J]. Annals of Botany,1989,64:315-324.
    [168]King I P, Purdoe K A, Orford Se, et al. Detection of homoeologous chiasmatofmation in Triticum durumxThinopyrum bessarabi-cum hybrids using genomic in situ hybridization[J].Heredity,1993,71:369-372.
    [169]King I P, Reader S M, Purdoe K A, et al. Study of the effect of a homoeologous pairing promoter on chromosome pairing in wheat-rye hybrids using genomic in situ hybirdization[J]. Heredity,1994,72:318-321.
    [170]Elena Benavente, Begona FernAandez-Calvin Orellana, Juan Orellana. Relationship between the levels of wheat-rye metaphase I chromosomal pairing and recombination revealed by GISH [J].Chromosoma,1996,105:92-96.
    [171]马增艳,马有志,辛志勇等.应用基因组原位杂交技术鉴定抗黄矮病小麦新种质[J].中国农业科学,1998,31(3):1-4.
    [172]颜辉煌,程祝宽,朱立煌等.栽培稻、药用野生稻杂种Fl及回交后代的基因组原位杂交鉴定[J].遗传学报,1999,26(2):157-162.
    [173]宁顺斌,金危危,宋运淳等.基因组原位杂交比较玉米和水稻基因组同源性[J].科学通报,2001,45(22):2431-2434.
    [174]刘文轩,陈佩度,刘大钧.利用荧光原位杂交技术检测导入普通小麦的大赖草染色质[J].遗传学报,1999,26(5):546-551.
    [175]马有志,富田因则.应用分子原位杂交技术解析小麦、天兰冰草部分双二倍体一远中2号的染色体构成[J].遗传学报,1997,24(4):344-349.
    [176]王春英,王坤波,王文奎等.棉花gDNA体细胞染色体FISH技术[J].棉花学报,1999,11(2):79-83.
    [177]Brandham P E., Bennett M D.The development and use of genomic in situ hybridization(GISH)as a new tool in plant biosystematics[J].Royal Botanic Gardens,1995,167-183.
    [178]朱旺升,徐晶,华玉伟等.埃塞俄比亚芥与诸葛菜属间杂种的基因组原位杂交分析.西北植物学报,2005,25(4):662-667.
    [179]石丁溧,傅体华,任正隆.抗条锈病小麦中间偃麦草二体异附加系的选育和 鉴定.西南农业学报,2008,21(5):1308-1312。
    [180]Snowdon R.J.,Kohler W.,and Kohler A.,Genomic in situ hybridization in Brassica amphidiploids and interspecific hybrids.Theor Appl Genet.1997,95: 1320-1324.
    [181]李宗芸,栗茂腾.基因组原位杂交辨别芸薹属异源四倍体AA、BB、CC基因组研究.中国油料作物学报,2002,24(1):10-14.
    [182]谢莉,曾艳华,韩永华.栽培高梁、甜高梁和拟高梁比较基因组原位杂交分析.氨基酸和生物资源,2008,30(3):70-73.
    [183]荣廷昭.田间试验与统计分析.成都,四川大学出版社,2001.
    [184]冯宗云.遗传学.成都:四川科学技术出版社,1996.
    [185]Kearsey. M. J and J. L. Jinks. A. general method deteeting additive dominanee and epistatie variations for metricical traits. Ithoory. Heredity 1968,23:403-409.
    [186]高之仁.数量遗传学.成都,四川大学出版社,1986.
    [187]莫惠栋.三重测验杂交的遗传分析.江苏农学院学报,1987,8(2):59-64。
    [188]Pooni. H. S.; J. L. Jinks and G. S. Pooni. A general method for detection and estimation of additive, dominance and epistatic variation for metrical traits. V1 Triple test analysis for normal families and theirself. Heredity 1981,44:277-192.
    [189]荣廷昭.玉米群体改良与自交系和杂交种选育相结合的方法研究.四川农业大学学报,1988(2):147-152.
    [190]盖钧镒,章元明,王建康.植物数量性状遗传体系.北京,科学出版社,2003.
    [191]郭平仲,赵文彬,张金栋等.世代平均值分析的多元回归程序.作物学报,1985,11(4):217-225.
    [192]陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位[J].遗传学报,2004,31(11):1309-1315.
    [193]LIU Lie-zhao, MENG Jin-ling, LIN Na, et al. QTL Mapping of Seed Coat Color For Yellow Seeded Brassica napus[J]. Acta Genetica Sinica,2006,33(2):181-187.
    [194]Michelmore R W et al.Identification of markers linked to disease resistance genes by bulked segregant analysis:a rapid method to detect markers in specific genomic regions by using segregating population. Proc, Natl.Acad. Sci.USA. 1991,88:9828-9832.
    [195]翟虎渠.应用数量遗传.2001年12月第1版,北京:中国农业出版,213-271.
    [196]Tariq M,Paszkowski J.DNA and histone methylation in plants[J].Trends Genet, 2005,21:36.
    [197]Rangwala S H,Richards E J.The value-added genome:building and maintaining genomic cytosine methylation landscapes[J].Curr Opin Genet Dev,2004,14:686-691.
    [198]Chan SW,Henderson IR,Jacobsen SE.Gardening the genome:DNA methylation in Arabidopsis thaliana[J].Nat Rev Genet,2005,6:351-360.
    [199]Robertson KD,Wolffe AP.DNA methylation in health an disease [J]. Nat. Rev. Gene,2000,1:11-19.
    [200]Kalisz KS,Michael D.Purugganan Epialleles via DNA methylation:consequen-ces for plant evolution[J].Trends in Ecology and Evolution,2004-6,6(19).
    [201]Rapp R A,Wendel J F.Epigenetics and plant evolution[J].New Phytol,2005, 168:81-91.
    [202]Xiong LZ,Xu CG,Saghai Maroof MA, Zhang Q.Patterns of cytosine methyla-tion in an elite rice hybrid and its parental lines detected by a methylation-sensitive amplification polymorphism technique.Mol Gen Genet,1999,261:439-446.
    [203]彭海,张红宇等.双胚苗水稻SARⅡ-628的自然同源三倍化和DNA甲基化.中国水稻科学(Chinese J Rice Sci),2006,20(5):469-474.
    [204]齐兴.油菜杂种优势形成过程中基因组DNA甲基化模式研究.[中国农业科学院硕士学位论文],20060601.
    [205]杨金兰,柳李旺等.镉胁迫下萝卜基因组DNA甲基化敏感扩增多态性分析.植物生理与分子生物学学报,2007,33(3):219-226.
    [206]顾爱侠,赵玉靖,郄丽娟等.二倍体大白菜与四倍体结球甘蓝杂种的获得及其SSR鉴定与GISH分析[J].植物遗传资源学报,2008,9(2):144-150.
    [207]符书兰.含抗白粉病基因的黑麦染色体小片段向小麦的转移.[四川农业大 学硕士学位论文].四川,雅安,四川农业大学,2006年.
    [208]魏文辉,张苏锋,李均等.白芥×甘蓝F1代及BC1代单体异附加系的GISH分析[J].科学通报,2006,51(21):2490-2494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700