甘蓝型油菜含油量的遗传与QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是世界上非常重要的油料作物之一,也是我国食用植物油的主要来源。经过改革开放后几十年的努力,我国油菜种植面积不断扩大、单位面积产量不断增加,已成为国际上最大的油菜生产国。然而,目前我国油菜平均含油量却只有40%,比进口油菜籽的含油量低了三至五个百分点,与此同时,我国现在以及今后很长一段时间里对油料作物的需求很大,需要从国外进口大量油料作物才能满足缺口。因此提高我国油菜籽的含油量显得极为重要和迫切。本研究构建了甘蓝型油菜高含油量品系CG38(P1)与低含油量品系B25(P2)杂交的六个世代Pl、P2、Fl、B1、B2和F2,利用数量性状的主基因+多基因联合分离分析法对油菜含油量性状进行了遗传分析。另外以BCl为作图群体,综合利用了SSR、RAPD和SRAP三种分子标记构建了一张分子标记遗传图谱,同时利用QTL Icimapping v2.2完美区间分析法对含油量进行QTL定位。主要研究结果如下:
     1、经NIR Systems-5000型近红外分析仪对六个世代的含油量测定得知,高含油量亲本CG38的平均含油量为41.67%,低含油量亲本B25(P2)的平均含油量为30.02%,相差11.65%,双亲在含油量性状上表现为差异极显著。Fl的含油量平均为37.04%,介于双亲之间,同时高于中亲值35.85%,偏向高含油量亲本P1,说明高含油量对低含油量有部分显性;三个分离世代BI、B2、F2的含油量均呈现连续性分布,其中BI的含油量的平均值高于B2,说明控制油菜含油量的基因受加性效应的影响,各世代中都没有表现出超亲现象。
     2、利用植物数量性状主基因+多基因遗传模型多世代联合分析法对CG38×B25的六个世代含油量的分析表明,油菜含油量的最佳遗传模型为D-0模型,即含油量受1对加性-显性主基因+加性-显性-上位性多基因遗传控制,广义遗传率为62.55%-94.38%,平均为75.84%;而环境变异占表型变异的5.62%-37.45%,平均为24.16%;由此可见,油菜含油量同时受到了来自基因型和环境两方面的影响。该组合中,主基因遗传力为25.81%~67.26%,平均为46.04%;多基因遗传力为27.12%~44.77%,平均为29.79%,其中B1和F2的主基因遗传力较大,分别为45.06%和67.26%,多基因遗传力较小,分别为17.49%和27.12%,而B2以多基因遗传为主。表明含油量的遗传由主基因和多基因共同控制,受主基因遗传为主。
     3、以BC1群体的218个单株为作图群体,选用SSR、RAPD和SRAP三种分子标记构建了一张甘蓝型油菜分子标记遗传连锁图谱。图谱包含20个连锁群,136个标记位点,其中有67个SRAP标记位点,48个SSR标记位点和21个RAPD位点。图谱全长1725.00cM,标记间平均距离为15.97cM。
     4、利用QTL分析软件QTL Icimapping v2.2对甘蓝型油菜的含油量性状进行了QTL定位分析,共检测到了2个与含油量相关的QTL位点,其中qOC1位于连锁群LG10的SSRRa2-E03~EM15ME14标记区间,可解释含油量的表型变异的4.43%,加性效应为正值,表明其作用方向为增加含油量;qOC2位于连锁群LG15的EM5ME11b~EM12ME14标记区间,可解释含油量的表型变异的18.68%,加性效应为负值,表明其作用方向为减少含油量。
     5、综合以上分析结果可以看到,油菜含油量的遗传力较高,因此,在育种过程中,通过早期世代对高含油量性状进行选择是有效的。同时本实验中,含油量受主基因+多基因遗传控制,主基因遗传力平均为46.04%,加性效应为2.3120,表明高油亲本对含油量具有增效作用;B1、B2和F23个分离世代的含油量都高于低含油量亲本,而且B1的平均含油量38.61%明显高于B2的34.46%,说明高含油量育种应首先考虑利用高含油量主基因的效应。因此,在油菜高含油量育种中,我们应该选用高油量亲本,采用杂交或轮回选择等常规育种手段,同时结合QTL定位的方法找到与主基因相连锁的分子标记来提高增效基因频率来改良提高含油量性状。
Oilseed rape is one of the most important oil crops in the world. It's also a main source of edible oils in China. After several decades of hard work, rapeseed area in China has been significantly expanded, and the unit area yield markedly increased. China has been largest rapeseed producer in the word. However, rapeseed in our contry was lower in oil content than the imported. In our contry, the average oil content in rapeseed was about 40%, while the imported rapesed contains an oil content of up to 43%-45%. At the same time, with China's growing demand for vegetable oils, we need to import large quantities of oil seeds or vegetable oils to meet the gap for a long time. So, it is very important to increase the oil content in the rapeseed in our contry. In this study, the genetic models of oil content in rapeseed (Brassica napus L.) were analysized with six genetic populations (P1, P2, F1, B1, B2 and F2) of the cross CG38 (high oil content)×B25 (low oil content) by a mixed genetic model of major gene plus polygenes. In addition, using BC1 as amapping population, SSR、RAPD and SRAP were used to construct a molecular linkage map. Finally, we used QTL Icimapping v2.2 to identificate the QTL of oil content. The main results from the research were as follows:
     1. NIR Systems-5000 was used to test the six generations'oil content. The results showed that the average oil content of high oil content parent CG38 was 41.67%, and low oil content parent B25 was 30.02%, they have a difference of 11.65%, and showed significant difference in the traits of oil content. The oil content of F1 was 37.04% for average, it's higher than P2, lower than P1, and it's even higher that the midparent value 35.85%, skewed towards the high oil content parents P1. From that, we can see high oil content has some dominance effects with low oil content. Three separate generations of B1, B2, F2 showed a continuous distribution of the oil content, the mean of oil content in B1 was higher that that in B2.which indicated that the gene which controled the oil content have additive effects. In this research, none of the six generations showed the phenomenon of surplus.
     2. The genetic models of oil content in rapeseed (Brassica napus L.) were analysized with six genetic populations (P1, P2, F1,B1, B2 and F2)of the cross CG38XB25 by a mixed genetic model of major gene plus polygenes. The results showed that oil content in Brassica napus L. was controlled by one pair of additive-dominant major gene plus additive-dominant-epistatic polygenes (D-0). The genetic and environmental variances accounted for 75.84% and 24.16% of the phenotypic variance, respectively. It was indicated that both genetic and environmental factors played important roles in oil content in Brassica napus L. On an average, the inheritabilities of major gene and polygenes were 46.04% and 29.79%, respectively. It was demonstrated that oil content in Brassica napus L. was controled by both major gene and polygenes, and that the major gene played a greater role.
     3. In this study,218 plants from BC1 were used as a mapping population, and three kinds of molecular markers SSR、RAPD and SRAP were used to construct a genetic linkage map of Brassica napus L.. This genetic linkage map contained 20 linkage groups,136 marker loci including 67 SRAP,48 SSR and 21 RAPD loci. The total length of the genetic linkage map was 1725.00 cM, and the average distance between markers was 15.97cM.
     4. The QTL's of oil content in Brassica napus L. were analyzed by QTL Icimapping v2.2. In the experimental materials, we identified two QTLs associated with oil content. qOCl was located on linkage group LG10, and the marker interval was SSRRa2-E03~EM15ME14. qOCl could explain 4.43% of the phenotypic variation of oil content Brassica napus L.. And the positive additive effect indicated qOC1 could increase the oil content. qOC2 was located on linkage group LG15, and the marker interval was EM5ME11b~EM12ME14. qOC2 could explain 18.68% of the phenotypic variation of oil content Brassica napus L.. And the negative additive effect indicated qOC2 could reduce the oil content.
     5. Genetic analysis showed a high heritability of oil content in rapeseed, so, in the breeding process, the high oil content traits selection in early generation was effective. And in this study, oil content was controlled by the major gene plus polygenes, the heritability of the major gene was 46.04% by average, additive effect was 2.3120, indicated that the parent of high oil content have a synergistic effect on the oil content. The oil content of B1, B2 and F2 were higher than the low oil content parent, and the mean of oil content of Bl(38.61%)was higher than that of B2(34.46), so during the high oil content breeding, the use of the major gene effect should be first considered. Therefore, in high oil content breeding, we should choose high oil content parents, and take the conventional breeding methods of hybrid and recurrent selection, combined with the methods of QTL localization to increase the frequency of allele to improve oil content trait in oil rape.
引文
[1]涂金星,张冬晓,张毅,傅廷栋.我国油菜育种目标及品种审定问题的商榷[J].中国油料作物学报.2007,29(3):350-352
    [2]王贵春,阳光圣.油菜高含油量育种研究进展[J].农业科学,2007,35(18):5373-5375,5411
    [3]Wang H-Z (王汉中). Strategy for rapeseed genetic improvement in China in the coming fifteen years[J]. Chin J Oil Crop Sci,2004,26 (2):98-101 (in Chinese with English abstract)
    [4]Detlef Hauska, Carsten, Ludger Alpmann, Dieter Stelling, et al. B reeding progress towards high oil content in oilseed rape (Brassica napus L.)-essential innovations to meet current and future market needs[A]. Proceedings The 12th International Rapeseed Congress[C], Wu han, China. March, Science Press USA Inc.2007.159-162
    [5]湛利,唐章林等.甘蓝型油菜高油份育种初报[J].西南农业大学,2004,26(5):550-553
    [6]张冬青,张晓峰等.高含油量双低油菜新品种浙双72[J],中国油料作物学报,2002,24(3)63-64
    [7]Olsson G, C. Persson. Recurrent selection in white mustard (Sinapis alba, L.).in:Svalof 1886-1986 Research and Results in Plant Breeding.1986.53-56
    [8]傅寿肿,张洁夫,戚存扣,等.甘蓝型油菜高含油量种子选育研究[J].中国油料作物学报,2008,30(3)279-283
    [9]刘唐兴.油菜品质育种的目标与方法[J].现代农业科技,2007.8
    [10]刘后利.对油菜品质改良的看法[J].作物杂志,1992(3):6-7
    [11]傅寿仲,唐继宏,戚存扣.甘蓝型油菜(B. napus L.)黄、褐色种子主要性状的比较[J].江苏农业学报,1988,4(1):26-30
    [12]刘后利,王纫秋,高永同.甘蓝型黄子油菜高含油量育种初报[J].华中农学院学报,1981(1):13-20
    [13]谌利,李加纳,唐章林,等.甘蓝型黄籽杂交油菜新品种渝黄1号的选育[J].西南农业大学学报,2002,01
    [14]聂明建,王国槐.油菜分子标记与转基因育种研究进展[J].农业生物技术科学,2006,22(1)
    [15]王汉中,刘贵华.现代生物技术在油菜育种中的应用及前景[J].中国油料作物学报,2009,24(3)
    [16]刘志文,单连民,韩旭,等.现代生物技术在油菜遗传改良上的应用和进展[J].华中农业大学学报,2007,26(6):900-906
    [17]官春云.油菜转基因育种研究进展[J].中国工程科学,2002,4(8)
    [18]吴江生,石淑稳,周永明,等.甘蓝型油菜华双3号的选育研究[J].华中农业大学学报,1999(18):1-4
    [19]王汉中.特高含油量油菜培育成功[N].人民日报,海外版,2006,11
    [20]陈锦清,郎春秀,胡张华.反义PEP基因调控油菜籽粒蛋白质,油脂含量比率的研究[J].农业生物技术学报,1999,4:613-620
    [21]林树春,甘功勋.油菜含油量研究及高油分育种[J].种子,1997,1
    [22]王通强.油菜籽含油量的遗传及杂种优势[J].贵州农业科学,1992,6
    [23]Jian-Guo Wu, Chun-Hai Shi and Hai-Zhen Zhang, Partitioning genetic effects due to embryo, cytoplasm and maternal parentfor oil content in oilseed rape (Brassica napusL.)[J]. Genetics and Molecular Biology,29,3,533-538
    [24]Wang Xinfa; Liu Guihua;Wang Hanzhong et.al.Genetic analysis on oil content in rapeseed (Brassica napus L.)[J]. Euphytica,2010,173,17-24
    [25]Grami B, Baker R J, Stefansson B R. Gene action for protein and oil content in summer rape: Heritability number of effective factors and correlations[J]. Can J Plant Sci,1977,57:937-943
    [26]高永同.黄籽油菜的遗传和育种研究进展[J].中国油料,1984,(4):82-87
    [27]韩继祥.甘蓝型油菜含油量的遗传研究[J].中国油料,1990,(2):1-6
    [28]张洁夫,戚存扣,浦惠明,等.甘蓝型油菜含油量的遗传与QTL定位[J].作物学报,2007,33(9):1495-1501
    [29]付三雄,戚存扣.甘蓝型油菜含油量的主基因+多基因遗传分析[J].江苏农业学报,2009,25(4):731-73
    [30]Zhao J Y, Heiko C B, Zhang D Q. Oil content in a European×Chinese rape-seed population: QTL with additive and epistatic effects and theire genotype-environment interactions [J]. Crop Sci. 2005,45:51-59
    [31]Mahood T, Rabman M H, Stringam G R,et al. Identification of quantitative trait loci(QTL) foroiland protein contents and their relationships with other seed quality traits in Brassiea juncea[J]. theor Appl Genet.2006,113:1210-1220
    [32]闫世江.不同来源甘蓝型黄籽油菜品质性状的遗传分析[D],重庆:西南农业大学图书馆,2001
    [33]Delourme R, Falentin C, Huteau V, et al. Genetic control of oil content in oil-seed rape (Brassica napus L.) [J]. Theor Appl Genet.2006,113:1331-1345
    [34]Zhang Shu-Fen, Ma Chao-Zhi, ZhuJia-Cheng, et.al. Genetic Analysis of Oil Content in Brassica napus L. Using Mixed Model of Major Gene and Polygene [J]. Acta Genetica Sinica, 2006,33(2):171-180
    [35]沈惠聪,江宇.油菜籽含油量与气象因子的相关及预报模式[J].浙江农业大学学报,1989,7(3):253-259
    [36]沈惠聪,江宇.甘蓝型油菜种子主要脂肪酸气象生态效应及数学模型的研究[J].浙江农业大学学报,1990,16(1):69-76
    [37]刘典显.淮北油菜苗期气象条件与产量关系的统计学分析[J].中国油料,1982,(4):27-31
    [38]张子龙,李加纳,唐章林.环境条件对油菜品质的调控研究[J].中国农学通报,2006,22(2):124-129
    [39]付三雄,伍晓明,李成磊.不同地理位置对甘蓝型油菜含油量的效应研究[J].江苏农业学报,2009,25(2):247-25
    [40]赵合句,李培武,李光明.施肥水平对优质油菜种子生化品质影响的研究[J].作物学报,1991,17(4):256-259
    [41]张友贵,王兆木.从气候条件对油菜产量及品质的影响看新疆油菜的合理布局[J].新疆农业科学,1982,(6):11-13
    [42]李超,李波,曲存民,等.两种环境下甘蓝型油菜含油量差异的QTL分析[J].作物学报,2011,37(02):249-254
    [43]刘后利.油菜的遗传与育种[M].上海:上海科学技术出版社,1985:128-140
    [44]王艳惠,人工合成特长角甘蓝型油菜角果长度的基因效应分析[D].四川农业大学,2006
    [45]盖钧镒,王建康,章元明.植物数量性状遗传体系[M].科学出版社,2003
    [46]李余生,朱镇,张亚东,等.水稻稻曲病抗性的主基因+多基因混合遗传模型分析[J].作物学报,2008,34(10):172-173
    [47]高力,陈飞,周立人,陆维忠.小麦品种望水白的抗赤霉病性遗传分析[J].麦类作物学报,2005,25:5-9
    [48]陈四龙,李玉荣,程增书,等,花生含油量杂种优势表现及主基因+多基因遗传效应分析[J].中国农业科学,2009,42(9):3048-3057
    [49]周宝良,朱协飞,郭旺珍,张天真.异常棉渐渗的陆地棉高品质种质系纤维特性遗传[J].棉花学报,2006,18:60-62
    [50]郭志丽.棉花纤维品质及相关性状的遗传模型与QTL分析[D]中国农业大学,2003
    [51]戚存扣,益钧镒,章元明.甘蓝型油菜芥酸含量的组主基因+多基因遗传[J].遗传学报,2001,28(2):182-187
    [52]戚存扣,浦惠明,陈松,等.甘蓝型油菜芥酸含量的遗传与QTL定位[J].江苏农业学报,2008,24(1):22-28
    [53]索文龙,戚存扣.甘蓝型油菜油酸含量的主基因+多基因遗传分析[J].江苏农业学报,2007,23(5):396-400
    [54]杨盛强,刘忠松.分子标记及其在油菜育种中的应用进展[J].作物研究,2009,23(5)
    [55]萨如拉.分子标记技术在油菜育种中的应用探讨[J].西藏农业科学,2009,31(2)
    [56]钟兆飞,朱亚娜,蒋立希澎.分子标记在油菜遗传作图中的应用[J].浙江农业科学,2008,3
    [57]金梦阳,刘列钊,付福友,等.甘蓝型油菜SRAP、SSR、AFLP,和TRAP标记遗传图谱构建[J].分子植物育种,2006,4(4):520-526
    [58]孟金陵,S A. Bowman C,等.用RFLP标记分析甘蓝型油菜的多样性[J].遗传学报,1996,23(4):293-306
    [59]王俊霞.甘蓝型油菜pol/Cms育性恢复基因图谱定位及其抗菌核病恢复系的分子标记辅助选择[D].武汉:华中农业大学博士论文,2000
    [60]唐容,王通强.利用SSR对甘蓝型黄籽油菜遗传多样性的研究[J].贵州农业科学,2009,37(2):7-10
    [6l]王建林,旦巴.西藏野生油菜和栽培油菜遗传多样性的AFLP分析[J].中国油料作物学报,2008,30(1):10-16
    [62]杜德志,姚艳梅.新型特早熟春性甘蓝型油菜的遗传多样性及其杂种优势[J].中国油料作物学报,2009,31(2):114-121
    [63]刘平武,周国岭.双低甘蓝型油菜杂交种亲本指纹图谱构建和杂交种纯度鉴定[J].作物学报,2005,3l(5):640-646
    [64]张俊.高油玉米籽粒品质性状QTL定位及效应分析[B].中国农业大学,2006
    [65]苏志芳.小麦重要农艺性状QTL的定位[D].内蒙古农业大学,2008
    [66]张洁夫,戚存扣,栗根义,等.甘蓝型油菜遗传图谱构建与无花瓣性状的QTL定位[J].作物学报,2007,33(8):1246.1254
    [67]方宣钧,吴为人,唐纪良.作物DNA标记辅助育种[M].科学出版社,2000
    [68]Slocum M K. Alalyzing the genomic structure of Brassica species using RFLP analysis. In: Helentjaris T, Burr B.(eds).Development and application of molecular markers to problems in plant genetics.Cold Spring Harbor Lab.Prsee NY.1989.
    [69]Landry B S, Hubert N,Etoh T, et al. A genetic map for Brassica napus based on restriction fragment length polymorphism detected with expressed DNA sequences [J]. Genome,1991,34(4): 543-552
    [70]Pradhan AK, Gupta V, Mukhopadhyay A, et al. A high-density linkage map in Brassica juncea (Indian mustard) using AFLP and RFLP markers [J]. Theor Appl. Genet.2003,106:607-614
    [71]Lombar V, Dehmrme R, A consensus linkage map for rapeseed(Brassica napus L.):construction and integration of three individual maps from DH populations [J]. Theor Appl Genet,2001, 103:491-507
    [72]李缓缓,沈金雄.利用SRAP、SSR和AFLP标记构建甘蓝型油菜遗传连锁图谱[J].中国农业科学,2007,40(6):1118-1126
    [73]钟兆飞,朱亚娜,蒋立希.分子标记在油菜遗传作图中的应用[J].浙江农业科学.2008,3
    [74]Lander, E. S. and Botstein, D. Mapping Mendelian Factors Underlying Qantitative Traits Using RFLP Linkage Maps[J]. Genetics,1989,121:185-199
    [75]Zeng, Z. B. Precision Mapping of Qantitative Trait Loci[J]. Genetics,1994,136:1457-1468
    [76]Ecke W, Uzunova M, Weibleder K. Mapping the genome of repaseed (Brassica napus) Ⅱ: localization of genes controlling erucic acid synthesis and seed oil content[J]. Theor Appl Genet, 1995,91:972-977
    [77]Qiu D, Morgan C, Shi J,et.al. A comparative linkage map of oilseed rape and itsuse for QTL analysis of seed oil and erucic acid content[J]. Theor Appl Genet,2006,114:67-80
    [78]张洁夫,戚存扣,浦惠明,等.甘蓝型油菜主要脂肪酸组成的QTL定位[J].作物学报,2008,34(1):54-60
    [79]梅德圣,张垚,李云昌,等.油菜油分、蛋白质和硫苷含量相关性分析及QTL定位植物学报[J].2009,44(5):536-545
    [80]Cheung W Y, Landry B S, Raney P. Molecular mapping of seed quality traits in Brassica juncea(L.) Czern and Cross [J]. Acta Hort,1998a,459:139-147
    [81]Cheung W Y, Gugel R K, Landry B. Identification of RFLP markers linked to the white rust resistance gene (Acr) in Mustard[J]. Genome,1998b,41:626-628
    [82]邱丹.甘蓝型油菜DH作图群体的构建和重要农艺性状及品质性状的QTL分析[B].武汉:华中农业大学,2007
    [83]付福友.甘蓝型油菜遗传图谱的构建和品质相关性状QTL分析[B].重庆:西南大学图书馆,2007
    [84]USDA Foreign Agricultural Service Oilseeds:World Markets and Trade Mommy Circular[OL], http://www.fas.usda.gov/oilseeds/cireular/Current.asp.2010.5.11
    [85]国家粮食安全中长期规划纲要(2008-2020年)[OL]. http://www.agri.Gov.cn/xx b/t20081114-1172812. htm,2008.11.142010年6月
    [86]王汉中.我国油菜产业发展的历史回顾与展望[J],中国油料作物学报,2010,32(2):300-302
    [87]张垚.甘蓝型油菜遗传连锁图谱的构建及油脂含量等品质性状的QTL定位[D].中国农业科学院,2007
    [88]G. Li, C. F. Quiros. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction:its application to mapping and gene tagging in Brassica [J]. Theor Appl Genet,2001,103:455-461
    [89]Akaike H. On entropy maximum principle. In Krishnaiah P R (ed.) Applications of Statistics[J]. Amsterdam:Northholland Publishing Company,1997,27-24
    [90]Liu R-H, Meng J-L. Mapdraw:Microsoft excel marco for drawing genetic linkage map based on given genetic linkage data [J]. Hereditas,2003,25(3):317-321
    [9l]刘雪平,涂金星,刘志文,等.甘蓝型油菜遗传图谱的构建及芥酸含量的QTL分析[J].作物学报,2005,31:275-282
    [92]蔡长春.甘蓝型油菜开花时间和光周期敏感性的遗传分析和QTL定位[B].武汉:华中农业大学图书馆,2006
    [93]Hacket C A, Broadfoot L B. Effects of genotyping errors, missing values and segregation diction in molecular marker data on the construction of linkage maps[J]. Heredity,2003,90:33-38
    [94]金梦阳,刘列钊,付福友,等.甘蓝型油菜SRAP、SSR、AFLP和TRAP标记遗传图谱构建[J].分子植物育种,2006年,4(4):520-526
    [95]Zhao J, Becker H C, Zhang D, et.al. Oil content in a European × Chinese rapeseed population: QTL with additive and epistatic effects and their genotype-environment interactions[J]. Crop Sci,2005,45:51-59
    [96]Zhao J, Becker H C, Zhang D, Zhang Y, Ecke W. Conditional QTL mapping of oil content in rapeseed with respect to protein content and traits related to plant development and grain yield [J]. TheorAppl Genet,2006,113:33-38

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700