甘蓝型油菜角果长度性状的遗传及QTL定位
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
油菜是我国最重要的油料作物,是食用植物油和优质蛋白的重要来源。据统计,我国菜籽油消费量约占食用植物油消费量的35%,菜籽饼粕消费量约占植物饼粕消费量的25%。油菜角果既是重要的储存器官,又是重要的光合器官,它具有“库”和“源”的双重作用。一些研究表明,通过培育长角果品种可以提高油菜产量潜力。由于油菜的角果长度性状是由多基因控制的数量性状,表现为连续变异,受环境的影响较大,不能依照质量性状的处理方法将单个基因的效应区分开。近年来,数量遗传学和现代生物技术的发展为作物遗产育种赋予了新的活力,借助DNA分子标记和QTL定位,能够将复杂的数量性状剖分为若干离散的孟德尔因子所决定的组分,进而确定其在染色体上的位置及其与其它基因的关系。
     本研究以甘蓝型油菜长角果材料229836和短角果材料23P146-3为试验材料,杂交得到F_1,F_2世代,对角果长度性状进行了遗传研究;应用微卫星(SSR)分子标记构建遗传连锁图,以F_2为分析群体,对角果长、果身长、果喙长等性状进行了初步的QTL定位。其主要结果如下:
     1、方差分析表明,长角果亲本229836和短角果亲本23P146-3在角果长、果身长、果喙长性状上均存在极显著差异。
     2、正反交F_1在角果长、果身长、果喙长三个性状上表现均十分接近,在统计上没有显著差异,表明在本组合中,角果长、果身长、果喙长3个性状受核基因控制,不存在母性遗传。
     3、估算角果长、果身长、果喙长性状的广义遗传力,分别为84.07%,81.67%和85.46%。
     4、在F_2群体中,角果长、果身长、果喙长这三个性状,均呈连续正态分布,显示均为多基因控制的数量性状。
     5、采用SSR标记分析F_2群体186个单株的基因型,利用JionMap 3.0软件,得到一张包含19个连锁群,233个标记位点的甘蓝型油菜遗传图谱。图谱总长度为1440.4cM,平均间距为6.2cM。不同连锁群上标记数介于2-38之间,连锁群长度变动在12.3 cM-181.5 cM之间。
     6、用WinQTLCart2.5复合区间作图法对角果长、果身长、果喙长3个性状进行扫描,共有12个QTL。分别定位在19个连锁群中的4个连锁群上,这些QTL的遗传效应值介于5.51%-19.74%。控制角果长和果身长的均为5个,果喙长的为2个。QTL的总效应分别可解释相应性状变异的16.08%-50.05%。
The rapeseed is the most important oil-bearing crop, as well as an important origin of edible vegetable oil and high quality protein. Statistics data showed that the rapeseed oil consumption occupied 35% of edible vegetable oil consumption. The rapeseed cake rice dregs consumption took hold of approximately 25% of the plant cake rice dregs consumption. The rapeseed pod no is not only an important storage organ, also is the important photosynthesis organ, it has the dual function of "the storehouse" and "the source". The cultivation of long-pod variety may enhance the output potential. The pod length is controlled by quantitative trait loci of multi-genes. It is a continuous variation, and influenced larger by the environment, therefore the single gene effect can not be separated by the quality character. Currently, genetic crop breeding has been developed with the development of quantity genetics and modern biological technology. Accompanied by the aid of the DNA markers and the QTL localization, the complex quantity character can be divided into certain separate Mendel factor. Subsequently, the pod length controlled genes are allocated onto specific chromosome region and the distances with other genes are easy to be determined.
     The hybrid obtains generation F_1 and F_2 were used from a cross between long-pod 229836 and short-pot 23P146-3. A linkage map of the pod length was conducted by micro satellite markers (SSRs). Taking the F_2 population as analysis content, the full pod length, pod body length and the pot beak length were carried on the preliminary QTL localization. The results were the followings:
     1. The variance analysis indicated that, the long-pod parent 229836 and the short-pod parent 23P146-3 showed significant differences in the full pod length, the body length and pod beak length;
     2. The back cross population F_1 didn't display obvious differences in the full pod length, pod body length and pod beak length, and they showed great similarities instead. This result indicated that these characters were controlled by nuclear genes, and were not affected by maternal DNA;
     3. The Estimation of heritability of pod length, pod body length and pod beak length were 84.07%, 81.67% and 85.46%;
     4. The three traits in F_2 population had a continuous normal distribution, indicating the pod length, pod body length and pod beak length were quantitative in nature and controlled by polygenes;
     5. SSR markers were used to analyze 186 single plants genotype in F_2 population. A linkage map was produced by JionMap 3.0 software, including 19 linkage groups and a genetic map with 233 loci. The full map length was 1440.4cM, with an average of 6.2cM. The number of locus ranged between 2-38, and the length of linkage groups varied from 12.3 cM to 181.5 cM;
     6. The three traits were computed by the WinQTLCart2.5, and in total 12 QTLs were detected. These 12 QTLs were allocated in 4 linkage groups among the 19 linkage groups. The genetic effect value of 12 QTLs was situated between 5.51%-19.74%, in which 5 controlled the pod body length and 2 controlled the pod beak length. The QTL total effect separately may explain the corresponding character variation 16.08%-50.05%.
引文
1.白玉.DNA分子标记技术及其应用.安徽农业科学,2007,35:422-424
    2.董一洪,朱耕如.春油菜角粒发育的特性.作物杂志,1996,3:32-36
    3.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2000,5-53
    4.傅廷栋.油菜品种改良的现状与展望.华中农业大学学报,2004,34:1-6.
    5.傅廷栋,杨光圣.中国油菜生产的现状与展望.中国油脂,2003,1:11-13
    6.官春云.油菜转基因育种研究进展,中国工程科学,2002,4:34-39.
    7.韩继祥.甘蓝型油菜含油量的遗传研究.中国油料,1990,2:1-6.
    8.黄永铭.秦油2号产量结构分析.湖北农业科学,1991,10:22-23
    9.金梦阳.甘蓝型油菜遗传图谱的构建及农艺性状的QTL定位.重庆:西南大学,2006
    10.冷锁虎,唐瑶,李秋兰,左青松,杨萍.油菜的源库关系研究Ⅰ.角果大小对油菜后期源库的调节,中国油料作物学报2005,27:10-16
    11.冷锁虎,朱耕如,邓秀兰.油菜籽粒—干物质来源的研究.作物学报,1992,18:250-256
    12.冷锁虎,朱耕如.油菜花角期叶片对产量的影响.中国油料,1989,3:25-29
    13.李加纳,邱厥,唐章林.甘蓝型油菜主要农艺性状的遗传模型和基因效应分析.遗传学报,1992,19:162-165
    14.李渊.甘蓝型油菜遗传连锁图的构建及种皮颜色QTL初步定位.[硕士学位论文].武汉:华中农业大学图书馆,2007
    15.刘定富.甘蓝型油菜特长角突变休的发现和鉴定.农学院学报,1994,4:1-4
    16.刘后利.甘蓝型油菜品种经济性状的相关分析.刘后利科学论文集,傅廷栋主编.北京:北京农业大学出版社,1994
    17.刘后利.油菜的遗传和育种.上海:上海科学技术出版社,1985,159-161
    18.龙艳.人工合成特长角甘蓝型油菜产量相关性状的遗传分析和基因定位.[硕士学位论文],2003:4-31
    19.陆光远,杨光圣,傅廷栋.甘蓝型油菜分子标记连锁图谱的构建及显性细胞核雄性不育基因的图谱定位.遗传学报,2004,31:1309-1315
    20.陆光远,杨光圣,傅廷栋.一个简便的适合于分析油菜中SSR位点的检测体系.中国油料作物学报,2003,25:79-81
    21.梅得圣.中国油菜高产育种研究进展.湖北农业科学,2003,4:35-39
    22.梅德圣,王汉中,李云昌.与甘蓝型油菜重要性状连锁的分子标记及相关基因的图谱定位研究进展.中国油料作物学报,2002,24:80-83
    23.牛应泽.利用人工合成甘蓝型油菜创建油菜新种质.中国油料作物学报,2003,5:11-15
    24.牛应泽.人工合成甘蓝型油菜特长角变异系选育初报.四川农业大学学报,2002,20:212-215
    25.牛应泽.人工合成甘蓝型油菜特长角果变异系的选育.植物遗传资源学报,2005,6:151-155
    26.戚存扣,盖钧锰,傅寿仲等.甘蓝型油菜千粒重性状遗传体系分析.作物学报,2004,30:1274-1277
    27.阮成江,何祯祥,钦佩.中国植物遗传连锁图谱构建研究进展.西北植物学报,2002,22:1526-1536
    28.沈熙,刘军,曹峻,黄继武.油菜覆膜厢作高产高效栽培技术的研究与应用.湖北农业科学,2007,4:541-543
    29.万平等,李大钧,SSR标记与植物遗传育种研究.安徽农业大学学报,1998,25:92-95
    30.王艳惠,牛应泽,人工合成甘蓝型油菜特长角性状的遗传分析.遗传,2006,28:1273-1279
    31.危文亮.甘蓝型油菜长角果变异体的遗传研究,遗传,2000,22:93-95
    32.魏惠军,杜胜利,马德华.分子标记和种类及其发展.生物技术通报,1999,15:21-26
    33.吴江生,石淑稳,周永明,刘后利.甘蓝型双低油菜品种华双3号的选育和研究阴.华中农业大学学报,1999,18:2-4
    34.杨春玲,侯军红,关立,王阔,宋志均,韩勇,祈国宾.分子标记技术及其在标记辅助选择中的最新应用.山西农业科学,2006,4:62-70
    35.杨福华.杂交油菜秦油2号植株产量构成因素分析及其栽培技术,贵州农业科学,1990,4:24-26
    36.姚金保.优质油菜产量构成因素的相关和通径分析.江苏农业科学,1993,5:22-24
    37.余凤群,金明源,肖才升等.甘蓝型油菜DH群体几个数量性状的遗传分析.中国农业科学,1998,31:44-48.
    38.张德水,陈受宜.DNA分子标记、基因组作图及其在植物遗传育种上的应用.生物技术通报,1998,1:15-22
    39.张国平.作物栽培学.浙江大学出版社,2001,153-178.
    40.张洁夫,傅寿仲,陈玉卿,戚存扣。油菜株型结构及其理想型研究.中国油料作物学报,1998,20:36-41
    41.张书芬.甘蓝型双低油菜数量性状的遗传力及基因效应.中国油料,1996,18:1-3
    42.赵淑清,武维华.DNA分子标记和基因定位.生物技术通报,2000,16:1-3
    43.朱耕如,邓秀兰.油菜结角层的结构.江苏农业学报,1987,3:16-22
    44.A K,Gupta V,Mukhopadhyay A,et al.A high-density linkage map in Brassica juncea(Indian mustard) using AFLP and RFLP markers.Theor.Appl.Genet.,2003,106:607-614
    45.Ajisaka H,Kuginuki Y,Shiratori M,Ishiguro K,Enomoto S,Hirai M,Mapping of loci affecting the cultural efficiency of microspore culture of Brassica napus L-syn.campestris L-using DNA polymorphism.Breeding Science,1999,49: 187-192
    46. Axelsson T, Bowman C M, Sharp A G, Lydiate D J, Lagercrantz U. Amphidiploid Brassica juncea contains conserved progenitor genomed. Genome, 1999, 43: 679-688
    47. Beverdorf W D, et al. Transfer of cytoplasmically inherited triazine resistance frombird's rape to cultivated oilseed rape (Brassica campestris and B. napus) J.Gytology, 1980, 22: 167-172
    48. Botstein B, White R L, Skolnick M, Davis R W. Construction of a genetic linkage map using restriction fragment length polymorphisms. Am J Hum Genet, 1980, 32: 314-331
    49. Butruille V, Raymond P Guries et al. Linkage Anaiysis of Molecular Markers and Quantitative Trait Loci in Populations of Inbred Backcross Lines of Brassica napus L. Genetics, 1999, 153: 949-964
    50. Camargo L E A, Osborn T C. Mapping loci controlling flowering time inoleracea. Theor. Appl. Genet., 1996, 92: 610-616
    51. Charmet G. Power and accuracy of QTL detection: simulation studies of one-QTL models. Agronomic 2000, 20: 309-323
    52. Chay P and Thurling N. Identification of genes controlling pod length in spring rapeseed, Brassica napus L., and their utilization foryield improvement. Plant Breeding,1989, 103: 54-62
    53. Chen B Y, Heneen W K, Josson R. Resyntesis of Brassica napus L. through interspecific hybridization between B. alboglabra Bailey and B. campestris L. with special emphasis on seed colour. Plant Breeding, 1988,101: 52-59
    54. Chen Y B, Liu H L. Dynamics of seedcoat pigments in developmental stages in Brassica napus L.. Chinese Oil, 1994, 16: 13-16
    55. Cheung W Y, Friesen L, Rakow G F. A RFLP-based linkage map of mustard. Theor Appl Genet, 1997, 94: 841-851
    56. Cheung W Y, Gugel R K, Landry B. Identification of RFLP markers linked to the white rust resistance gene (Acr) in mustard. Genome, 1998, 41: 626-628
    57. Cheung W Y, Landry B S, Raney P. Molecular mapping of seed quality traits in Brassica juncea (L.) Czern And Cross. Acta Hort, 1998a, 459: 139-147
    58. Cho Y G, Ishii T, Temnykh S. Diversity of microsatellites derived from genomic libraries and GenBank sequences in rice(Oryza sativa L). Theor Appl Genet, 2000, 100: 713-722
    59. Doyle J J, Doyle J L. A rapid DNA isolation procedure for small quantities offresh leaf tissue. Phytochemistry Bulletin, 1987,19: 11-15
    60. Ferreira M E, Williams P H, Osborn T C. RFLP mapping of Brassica napus using doubled haploidlines RFLP mapping of Brassica using doubled haploid lines. Theor. Appl. Genet., 1994, 89: 615-621
    61. Ferriol M, Pico M B, Nuez F. Genetic diversity of some accessions of cucurbita maxima from Spain using RAPD and SBAP markers. Genetic Resources and Crop Evolution, 2003, 50: 227-238
    62. Hu J G, Miller J, Xu S, et al. Trap (target region amplification polymorphism) technique and its application to crop genomics, In: Plant and Animal Genomes XII Conference, San Diego,.2004, 3: 10-14
    63. K.H. Cui, S.B. Peng, Y.Z. Xing, S.B. YuC.G Xu, Q. Zhang. Theor Appl Genet , 2003, 106: 649-658
    64. Kole, C; Kole, P; Vogelzang,R,etal. Genetic linkage map of a Brassica raps recombinant inbred population. J-hered. Cary, Oxford University Press. 1997, 88: 553-557
    65. Kurata N, Nagamura Y, Yamamoto K, Harushima Y, Sue N, Wu J, Antoni B A, Shomura A, Shimizu T, Lin S Y, Inoue T, Fukuta A, Shimano T, Kuboki Y, Toyama T, Miyamoto Y, Kirihara T, Hayasaka K, Miyao A, Monna L. 300 kilobase interval genetic map of rice including 883 expressed sequences. Nature Genet, 1994, 8: 365-376
    66. Lagercrantz U, Lydiate D J. Comparative genome mapping in Brassica. Genetics 1994, 144. 1903-1910
    67. Lander E S, Botstein D. Mapping mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989, 121: 185-199
    68. Lander E S, Green P, Abrahamson J, Barlow A, Daly M J, Lincoln S E, Newburg I. MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics, 1987, 1: 174-181
    69. Leister D, Ballvora A, Salamini F, et al. A PCR-based approach for isolation pathogen resistance genes from potato with potential for wide application in plants. Nature Geneitics 1996, 14: 421-429
    70. Liu X P, TU J X, Liu Z W, Chen B Y, FU T D. Construction of a molecular marker linkage map and its use for QTL analysis of erucic acid content in Brassica napus L. Acta Agrortomica Sinina, 2005, 31: 275-282
    71. Mahmood T, Ekuere U, Yeh F, et al. RFLP linkage analysis and mapping genes controlling the fariy acid profile of Brassica juncea using reciprocal DH populations. Theor. Appl. Genet., 2003,107(2): 283-290
    72. Mohapatra T, Sharma A, Upadhyay A, et al RFLP mapping in Indian mustard (Brassica juncea). Eucarpia Cruciferae Newsletter, 1995, 17: 22-23
    73. Plieske J, Struss D. Microsatellite markers for genome analysis in Brassica. I. development in Brassica napus and abundance in Brassica ceae species. Theor. Appl. Genet., 2001,I02(5): 689-694
    74. Rajcan I, Kasha K J, Kott L S, et al. Detection of molecular associated with linolenic and erucic acid levels in spring rapeseed {Brassica napus L.). Euphytica, 1999, 105(3): 173-181
    75. Rodolphe F, Lefort M. A mufti-marker model for detecting chromosomal segments displaying QTL activity. Genetics, 1993, 134: 1277-1288
    76. Saghai-Maroof M A, Zhang Q, Neale D B, et al. Associations between nuclear loci and chloroplast DNA genotypes in wild barley. Genetics, 1992, 131: 225-231
    77. Shoemaker R C, Olson T C. Molecular linkage map of soybean (Glycine max L.Merr.) In Brien S J ed. Genetic maps: Locus rnap of complex genomes. Cold Spring Harbor Laboratory Press, 1993: 131-138.
    78. Song K M, Suzuki J Y, Slocum M K, et al, A linkage map of Brassica raga (syn. campestris) based on restriction fragment length polymorphisms. Theor. Appl. Genet., 1991, 82: 296-304
    79. Song K, Lu P, Tang K, Osborn T C. Rapid genome change in synthetic polyploids of Brassica and its implications for polyploidy evolution.Proc. Natl. Acad. Sci., 1995,92: 719-723
    80. Song K, Slocum M K, Osborn T C. Molecular analysis of genesvariation in Brassica raps (syn. campestris). Theor. Appl. Genet., 1995, 90: 1-10
    81. Stam p, Van Ooijen J W. Join Map(tm) version 3.0: Software for the calculation of genetic.linkage map. CPRO-DLO, Wagemingen, The Netherlands, 1995, 4: 1-5
    82. Stam P. Construction of integrated genetic linkage maps bycomputer package. JoinMap, Plant J,1993, 3: 739-744
    83. Taamino q Tinger S. Simple sequence repeats for gennplasm analysis and mapping in maize.Genome, 1996,39: 277-287
    84. Taamino q Tinger S. Simple sequence repeats for gennplasm analysis and mapping in maize. Genome, 1996, 39: 277-287
    85. Truco M J, Quiros C F. Structure Brassica nigra. Theor.and organization of the B genome based on a linkage map in Genet. Genome, 1994, 89: 590-598
    86. Uzunova M I, Ecke W. Abundance, polymorphism oilseed rape(Brassica napus L.). Plant Breeding, 1999, 118: 323-326
    87. Uzunova M, Ecke W, W eissleder K et al. Mapping the genome of rapeseed(Brassica napus L.). I.Construction of an RFLP linkage map and localization of QTLs for seed glocosinolate content. TACK , 1995,90 : 194-201
    88. Walsh J A, Sharpe A q Jenner C E, et al. Characterization of resistance to turnip mosaic virus in oilseed rape(Brassica napus) and genetic mapping of TuRBOL. Theor Appl Genet, 1999,99: 1149-1154
    89. Xiao J, Li J, Yuan L, et al. Genetic diversity and its relationship to hybrid performance and heterosis in rice as revealed PCR-based markers. Tyreor Appl Genet, 1996, 92: 637-643.
    90. Xu F S, Wang Y H, Meng J. Mapping boron efficiency genes in Brassic napus using RFLP and AFLP markers. Plant breeding, 2001, 120: 319-324
    91. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994, 136: 1457-1468
    92. Zhao J, Meng J. Detection of loci controlling seed gulcosinolate content and their association with Sclerotinia resistance in Brassica napus. Plant Breeding, 2003, 122: 19-23
    93. Zhikang Li.Genetic dissection of the source-sink relationship affecting fecundity and yield in rice (Oryza sativa L.) Molecular Breeding , 1998, 4: 419-426
    94. Zhuang J Y, Lin H X, Lu J, et al. Analysis of QTL x environment interaction for yield components and plant height in rice. Theor Appl Genet, 1997, 95 : 799-808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700