拟南芥悬浮细胞生物学及其遗传转化模式
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从拟南芥悬浮细胞及其愈伤组织生物学特性研究入手,以期制备适合农杆菌高效转化的受体材料,并制定科学、合理、有效的转化方案;利用所构成的多个质粒载体,进行拟南芥悬浮细胞基因转化,以检验多种转化方案的可行性,并优化转化条件;检测转化细胞报告基因的瞬时表达和稳定表达,以期建立有效的转化模式,并获得可利用的转化材料。本论文所做的主要工作如下:
     1、拟南芥悬浮细胞及其愈伤组织生长特性与培养条件
     试验研究了拟南芥悬浮细胞及其愈伤组织的生长特性及其继代培养条件,旨在摸索维持拟南芥悬浮细胞正常稳定生长的培养技术,并为拟南芥悬浮细胞进一步的遗传操作提供良好的受体材料和科学依据。结果表明,在每个7d一次的继代周期中,拟南芥悬浮细胞的生长表现明显的S型生长曲线。正常培养条件下,继代后2-4 d出现快速生长时期,此后生长量迅速下降,但接种量不同,其继代后悬浮细胞生物量及快速增长发生时期不同。维持7d继代周期的理想接种量为起始悬浮液按10ml/50ml稀释。接种量小,生长迟缓,甚至不能增殖。培养基中不同激素及不同蔗糖含量均会对其生长产生极明显的影响,在B5+0.2mg/L NAA条件下反复继代后的细胞,再加入外源NAA时,反而会抑制其生长。蔗糖含量以30g/L最好;蔗糖含量低,悬浮生物量及细胞活性明显下降。
     拟南芥愈伤组织生长也呈现一定的规律性,正常条件下,需经历约各10d的诱导时期、快速生长时期和生长停滞及老化时期。愈伤组织诱导及其生长对外界条件也特别敏感,一定的表面湿度及较低的培养温度是必须的。
     2、拟南芥悬浮细胞及其愈伤组织对抗生素的反应
     试验研究了拟南芥悬浮及其愈伤组织对潮霉素、卡那霉素、头孢霉素等3种抗生素的反应,为拟南芥悬浮细胞转化子抗生素选择浓度和选择方案的制定提供依据。结果表明:潮霉素对拟南芥悬浮细胞生长、愈伤组织诱导及其生长均有极明显的抑制作用,但作用效果和特性均有所不同。拟南芥悬浮细胞继代培养阶段、愈伤组织诱导阶段和愈伤组织增殖阶段的临界致死浓度分别为25,2.5,1.5mg/L,液体与固体培养条件下差异极大。当采用潮霉素抗性标记筛选转化子时,应当分别采用相应阶段的临界致死浓度作为转化子选择浓度。与此同时,潮霉素需要一定处理时间才能充分表现其抑制细胞生长或杀死细胞的效果,一般液体培养条件下3d以后、固体培养条件下5d以后效果趋于稳定,但不同的处理浓度有较大差异,建议选择时间在液体培养条件下不少于3d,在固体培养条件下不少于5d。否则,假阳性率会很高,从而大大加重后续转化子检测的工作量。
     卡那霉素与潮霉素有类似的影响,在愈伤组织诱导阶段,适宜的选择浓度为50mg/L,根据潮霉素作用特性推测,其在液体培养阶段和愈伤组织生长阶段的适宜选择浓度分别在100mg/L、25mg/L左右。后续的转化试验中,若利用卡那霉素选择,我们将采用这一选择浓度。
     试验中意外发现头孢霉素能促进绿色悬浮细胞的获得,并具有逆转悬浮细胞
Transformation of Arabidopsis thaliana suspension cells was performed. Different protocols and parameters affecting the transformation procedure were tested, and an optimized protocol was determined. Transformants was selected with antibiotic resistant gene screening and checked with histochemical GUS and PCR assay. Prior to transformation experiments, some relational biology characteristics of Arabidopsis thaliana suspension cells and Agrobacteria haboring certein plasmid were observed. The main works and results are shown as follows.
    Subculture Conditions and Growth Characteristics of Arabidopsis Suspension Culture
    The experiments of Arabidopsis thaliana suspension culture were performed. Some subculture conditions were determined, and the growth characteristics of suspension culture was observed. The typical S-like growth curve in a subculture cycle was obtained. In normal condition, a logarithmic phase of growth of suspension biomass was occurred in 2-4 days after subculture. Than the growth of biomass slowed down quickly. However, its growth and time of logarithmic phase were changed with inoculation amount. 10ml/50ml of diluting ratio is advisable to subculture. The growth was slowed down even halted with 10ml/50ml of diluting ratio. Different hormones in media affected growth of suspension cells, but the result was unexpected. The biomass of suspension cells subcultured in B5 medium without any hormones was higher than with 0.1mg/L of BAP and 0.2mg/L NAA (as normal medium). Concentration of sucrose greatly affects growth of suspension cells. Changing it from normal 30g/L to 10,20,40 g/L, more or less inhibition of growth and viability were observed.
    The pattern of callus growth was observed. In general, each a 10 d of period is presented in callus induction phase, logarithmic growth phase and growth-stopped phase. Incubation temperature and humidity had a remarkable impact on both inducement and growth of callus. A certain surface humidity on plate and lower incubation temperature were indispensable.
引文
[1] 闫新浦.转基因植物.北京:科学出版社,2003
    [2] 张献龙,唐克轩.植物生物技术.北京:科学出版社,2003
    [3] 王关林,方宏筠.植物基因工程.北京:科学出版社,2002
    [4] Zambryske P.Ti plasmid vector for the introduction of DNA into plant cells without alteration of their normal regulation capacity[J].EMBO,1983,(2):2143-2150
    [5] 曹仪植.植物分子生物学.北京:高等教育出版社,2002
    [6] Dale P J.转基因植物在农业中的田间释放[J].生物技术通报,1995,(1):4-6.
    [7] Kareiva, Peter. Transgenic plants on trail [J]. Nature ,1993,363 (17) : 580-581.
    [8] 王芳琴,方宜钧.转基因植物发展现状[J].农业生物技术通讯,1998,(4):4-6
    [9] 雷茂良,程金根.全球转基因植物发展现状[J].生物技术通报,1998,(6):30-31
    [10] Parsons T J., Sinkar V P. And Stettler R F, et al. Transformation of Poplar by Agrobacterium tumefaciens [J]. Biotechnology, 1986, 4 (6): 533-536
    [11] 苏晓华,张冰玉,黄烈健等.转基因林木研究进展[J].林业科学研究,2003,16(1):95-103
    [12] 刘谦、朱鑫泉.转基因植物的生物安全性.北京:科学出版社,45~53
    [13] 方荣祥.双抗转基因烟草纯合系的选育及田间试验[J].中国科学(B辑),1993,(5):481-488
    [14] James C. Global Status of Commercialized Biotech/GM Crops: 2005. http://www.isaaa.org/kc/CBTNews/press_release/briefs34/ESummary/Executive%20Summar y%20(English).pdf,2006.
    [15] 贾士荣,郭三堆,安道昌.转基因棉花.科学出版社,2001
    [16] James C.全球转基因作物商品化情况[J].生物技术通报,2000,(1):45-46.
    [17] 翁延年,张树庸.国内外生物技术发展情况简介[J].生物工程进展,1998,18(5):5-10.
    [18] Veluthambi K., Gupta A.K. and Sharma A. The current status of plant transformation technologies[J]. Current Science. 2003, 84 (3) : 368-380
    [19] Chan M T, chang H H, Ho S L, et al. Agrobacterium-mediated production of transgenic rice plants expressing glucuronidase gene[J]. Plant Mol Biol, 1993,(22):491~506
    [20] Bundock, P., den Dulk-Ras, A., Beijersbergen, A. and Hooykaas[J]. P. J. J., EMBO J., 1995, (14): 3206-3214
    [21] Stanton B., Gelvin. Agrobacterium-Mediated Plant Transformation: the Biology behind the "Gene-Jockeying" Tool [J]. MICROBIOLOGY AND MOLECULAR BIOLOGY REVIEWS, 2003, 67 (1): 16-37
    [22] de Groot, M. J. A., Bundock, P., Hooykaas, P. J. J. and Beijersbergen, A. G. M[J]. Nature Biotechnol., 1998, (16): 839-842
    [23] Kunik, T., Tzfira, T., Kapulnik, Y., Gafni, Y., Dingwall, C. and Citovsky, V[J]. Proc. Natl. Acad. Sci. USA, 2001, (98): 1871-1876
    [24] 李卫,郭光沁,郑国.根癌农杆菌介导遗传转化研究的若干新进展[J].科学通报,2000,45(8):798~807
    [25] Horsch RB., Fry J. and Hoffman N L., et al. A simple and general method for transferring gone into plants[J]. Science, 1985, (227): 1229-1231
    [26] Bechtold N, Ellis J et al. In Planta Agrobacterium-mcdiated gone transfer by infiltration of adult Arabidopsis thaliana plants[J]. C. R. Acad. Sci. 1993, (316): 1194-1199
    [28] Antonelli NM., and Stadle J. Genomic DNA can be used action methods for highly efficient transformation of maize protoplasts[J]. Theor. Appl. Genet., 1990, (80):395-399
    [29] 朱祯,李向辉,孙勇如等.转基因水稻植株再生及外源a-干扰素cDNA的表达[J].中国科学(B辑),1992,(2):149-155
    [30] 王瓞,林其谁.阳离子脂质体介导基因转染的最优化条件[J].生命的化学,1997,17(1):32~34
    [31] 华志华,黄大年.转基因植物中外源基因的遗传学行为[J].植物学报,1999,41(1):1-5
    [32] Sanford J. C. et al. Particulate[J]. Sci. Technol. 1987, (5): 27-37
    [33] Klein TM., Wolf ED., and Wu R., et al. High-velocity microprojectilefor delivering nucleic acid into living cells[J]. Nature, 1987, (327): 70-73
    [34] Christou P. Strategies for variety-independent genetic transformation of important cereals, legumes and woody species utilizing particle bombardment[J]. Euphytica, 1995,(85): 13-27
    [35] 许新萍,卫剑文.基因枪转化籼稻的影响因素[J].中山大学学报 自然科学版,1998,37(1):88-92
    [36] 刘金元,时香玉,陈晓等.利用基因枪技术转化小麦.玉米的研究[J].山东农业科学,1999,(2):5~8
    [37] 董云洲,段胜军,赵连元等.用基因枪转化花粉获得转基因谷子和玉米.中国农业科学,1999,32
    [38] Toriyama K. Transgenic rices plants after direct gene transfer into protoplasts[J]. Biotechnology, 1988, (6): 1072-1074
    [39] 马伯军,袁妙葆.一种简便的遗传转化技术在大麦中的应用[J].广西植物,1998,18(1):51-53
    [40] 周光宇,陈善葆,黄骏骐.农业分子育种研究进展[J].北京:中国农业科技出版社,1993
    [41] 张宝红,丰小嵘.转基因抗虫棉现状、问题和对策[J].作物学报.1998,24(2):248-256
    [42] 王光清,王蕴珠等.青菜花粉管通道法导入外源DNA的研究初报.1996,23(2):127-131
    [43] 周奕华,韩历玲.利用激光微束穿刺法将 GUS基因导入百脉根并获得转基因植株的研究[J].激光生物学报,1998,(7):157
    [44] 李恩义.多聚阳离子基因导入法.上海农业科技,1999,18,10
    [45] 贾士荣,曹冬孙.转基因植物[J].植物学通报,1992,(9):3-15
    [46] 王关林,方宏筠.植物基因工程原理与技术.北京:科学出版社,1998
    [47] Gelvin SB. Agrobacterium and plant genes involved in T-DNA transfer and integration[J]. Annu. Rev Plant Physiol Plant MolBiol, 2000,51 : 223~256
    [48] Paul J J, et al[J]. Plant Molecular Biology, 1992, (19): 15-38.
    [49] Zambryski P A., Depicker A., and Kruger K, et al. Tumor introduction by Agrobacterium Tumefaciens: Analysis of the Boundaries of T-DNA[J] .Mol Appl Genet ,1982 , (1) :361-3701
    [50] 陶均,李玲.农杆菌转化的分子生物学[J].植物生理学通讯,2002,38(6):639-644
    [51] Tzfira T. andCitovsky V. From host recognition to T-DNA integration: The function of bacterial and plant genes in the Agrobacterium-plant cell interaction[J]. Mol Plant Pathol 2000. (1): 201-212
    [52] Zhan YaGuang, Zeng FanSuo, Xin Ying. Progress on Molecular Mechanism of T-DNA Transport and Integration[J]. Acta Genetica S inica, 2005, 32 (6) : 655-665
    [53] Ballas, N., and V. Citovsky. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium VirD2 protein. Proc. Natl. Acad. Sci. USA 1997,94:10723-10728
    [54] Baron, C., N. Domke, M. Beinhofer, and S. Hapfelmeier. Elevated temperature differentially affects virulence, VirB protein accumlation, and T-pilus formation in different Agrobacteriura tumefaciens and Agrobacterium vitis strains. J. Bacteriol. 2001, 183:6852-6861
    [55] Chert, C.-Y., L. Wang, and S. C. Winans. Characterization of the supervirulentvirG gene of the Agrobacterium tumefaciens plasmid pTiBo542. Mol. Gen. Genet. 1991,230:302-309
    [56] Groot M J A , Bundock P, Hooykaas P J J , et al. Agrobacterium tumefaciens-mediated transformation of filamentous fungi. Nat Bio techno., 1998, 916): 839—842.
    [57] 李立等.根癌农杆菌介导遗传转化研究的若干新进展[J].科学通报,2000,45(8):799—800.
    [58] Bevan, M., Nucleic Acids Res., 1984, 12, 8711-8721.
    [59] Hood, E. E., Helmer, G. L., Fraley, R. T. and Chilton, M. D., J. Bacteriol., 1986, 168, 1291-1301.
    [60] Hood, E. E., Gelvin, S. B., Melchers, L. S. and Hoekema, A., Transgenic Res., 1993, 2, 208-218.
    [61] Rashid, H., Yokoi, S., Toriyama, K. and Hinata, K., Plant Cell Rep., 1996, 15, 727-730.
    [62] Cheng, M. et al., Plant Physiol., 1997, 115, 971-980.
    [63] Tingay, S., Mc Elroy, D., Kalla, R., Fieg, S., Wang, M., Thornton, S. and Brettel, R., Plant J., 1997, 11, 1369-1376.
    [64] Torisky, R. S., Kovacs, L., Avdiushko, A., Newman, J. D., Hunt, A. G. and Collins, G. B., Plant Cell Rep., 1997, 17, 102-108.
    [65] Hiei, Y., Ohta, S., Komari, T. and Kumashiro, T[J]. Plant J.,1994, 6,271-282.
    [66] Ye, X., Al-Babili, S., Kloti, A., Zhang, J., Lucca, P., Beyer, P. and Potrykus, I. Science, 2000, 287, 303-305.
    [67] Mirkovitch J, Mirault M E, Laemmli U K, 1984. Organizantion of the higher-order chromarin loop : a specific DNA attachment sites on nuclear seafford[J]. Cell, 939) : 223~23
    [68] Allen, G. C., G. E. Hall, L. C. Childs, A. K. Weissinger, S. Spiker, and W. F.Thompson. 1993. Scaffold attachment regions increase reporter gene expression in stably transformed plant cells. Plant Cell 5:603-613
    [69] Allen, G. C., G. E. Hall, S. Michalowski, W. Newman, S. Spiker, A. K. Weissinger, and W. F. Thompson. 1996. High-level transgene expression in plant cells: effects of a strong scaffold attachment region from tobacco. Plant Cell 8:899-913.
    [70] Allen, G. C., S. Spiker, and W. F. Thompson. Use of matrix attachment regions (MARs) to minimize transgene silencing. Plant Mol. Biol. 2000,43:361-376
    [71] Allen, G. C., Hall, G., Michalowski, S., Newman, W., Spiker, S.,Weissinger, A. K. and Thompson, W. F., Plant Cell, 1996, 8, 899-913
    [72] Endo S, Sugita K, Sakal M, Tanaka H, Ebinuma H. Single-step transformation for generating marker-free transgenic rice using the ipt-type MAT vector system [J].Plant J, 2002, 30(1):115-122
    [73] Ebinuma H, Sugita K, Matsunaga E, Yamakado M. Selection of marker-free transgenic plants using the isopentenyl transferase gene[J]. Proc Natl Acad Sci USA, 1997, 94 (6):2117-2121
    [74] Gelvin SB. Agrobacterium and plant genes involved in T-DNA transfer and integration[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000(,51):223~256
    [75] Hiei Y. komari T, Kubo T, Transformation of rice e mediated by Agrobacterium tumefaciens[J]. Plant Mol Biol.1997, (35): 205~218
    [76] Nam J ,Matthysse AG, Gelvin SB. Differences in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiency in T2DNA integration. Plant Cell ,1997,9:317~333
    [77] Gelvin SB. Agrobacterium and plant genes involved in T-DNA transfer and integration[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000,(51):223~256
    [78] 李卫,董文,周菲等.参与在农杆菌介导的遗传转化过程中的植物因子研究进展.中国生物工程杂志,2003,23(12):62-67
    [79] 赵文锋,杨清,陈敏.影响T-DNA转移的寄主植物细胞因子,植物生理学通讯,2004,8(4):521-5264
    [80] Tzfira T, Citovsky V. From host recognition to T-DNAintegeration: the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Mol Plant Pathol, 2000,1:201~212
    [81] Gelvin SB. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu Rev Plant Physiol Plant Mol Biol, 2000,51:223~256
    [82] Paulsson M, Wadstrom T. Vitronectin and type-Ⅰ collagen binding by Staphylococcus aureus and coagulase-negative streptococci[J]. FEMS Microbiol Immunol, 1990,(65): 55~62
    [83] Wagner VT, Matthysse AG. Involvement of vitronectin-like protein in attachment of Agrobacterium tumefaciens to carrot suspension culture cells[J]. J Bacteriol, 1992,(174):5999~6003
    [84] Swart S, Logman TJJ, Smit G et al. Purification and partial characterization of a glycoprotein from pea(Pisum sativwm) with receptor activity for rhicadhesin an attachment protein of Rhizobiaceae[J]. Plant Mol Biol, 1994, (24): 171~183
    [85] Nam J, Mysore KS, Zheng C et al. Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium[J]. Mol Gen Genet, 1999,(261):429~438
    [86] Stachel SE, Messens E, Van Montagu M et al. Identification of the signal molecules produced by wounded plant cell that activate T-DNA transfer in Agrobacterium tumefaciens[J]. Nature, 1986,(318):624~629
    [87] Jin SG, Roitsch T, Ankenbauer RG et al. The Vir A protein of Agrobacterium tumefaciens is autophosphorylated and is essential for Vir gene regulation[J]. J Bacteriol, 1990,(172):525~530
    [88] Cangelosi GA, Ankenbauer RG, Nester EW. Sugars induce the Agrobacterium virulence genes through a periplasmic binding protein and a transmembrane signal protein[J]. Proc Natl Acad Sci USA, 1990,(87):6708~6712
    [89] Zhang J, Boone L, Kocz R et al. At the maize/Agrobacterium interface: natural factors limiting host transformation[J]. Chem Biol, 2000,(7): 611~621
    [90] Howard EA, Citovsky V. The emerging structure of the Agrobacterium T-DNA transfer complex[J]. Bioessays, 1990,(12): 103~108
    [91] Citovsky V, Warnick D, Zambryski P. Nuclear import of Agrobacterium Vir D2 and Vir E2 proteins in maize and tobacco[J].Proc Natl Acad Sci USA, 1994,(91):3210~3214
    [92] Zupan J, Citovsky V, Zambryski P. Agrobacterium Vir E2 protein mediates muclear uptake of ssDNA in plant cells[J]. Proc Natl Acad Sci USA, 1996,(3):2392~2397
    [93] Ballas N, Citovsky V. Nuclear localization signal binding protein from Arabidopsis mediates nuclear import of Agrobacterium[J].Proc Natl Acad Sci USA, 1997,(94): 10723~10728
    [94] Zhu Y, Nam J, Humara JM et al. Identification of Arabidopsis rat mutants[J]. Plant Physiol, 2003,(132):494~505
    [95] Tzifira T, Citovsky V. VIP1, an Arabidopsis protein that interacts with Agrobacterium Vir E2, is involved in Vir E2 nuclear import and Agrobacterium infectivity. EMBO J, 2001,(20);3596~3607
    [96] Ziemienowicz A, Tinland B, Bryant J et al. Plant enzymes but not Agrobacterium Vir D2 mediate T-DNA ligation in vitro[J]. Mol Cell Biol,2000,(20): 6317~6322
    [97] Bravo-Angel AM, Gloeckler V, Hohn B et al. Bacterial conjugation protein MobA mediates integration of complex DNA structures into plant cell[J]. J Bacteriol, 1999, (181): 5758~5765
    [98] Villemont E, Dubois F, Sangwan RS et al. Role of the host cell cycle in the Agrobacterium mediated genetic transformation of petunia: evidence of an S-phase control mechanism for T-DNA transfer[J]. Planta, 1997,(201):160~172
    [99] Gelvin SB. Agrobacterium and plant genes involved in T-DNA transfer and integration[J]. Annu Rev Plant Physiol Plant Mol Biol, 2000,(51):223~256
    [100] Nam J, Matthysse AG, Gelvin SB. Difference in susceptibility of Arabidopsis ecotypes to crown gall disease may result from a deficiecncy in T-DNA integration[J]. Plant Cell, 1997,(9): 317~333
    [101] Nam J, Mysore KS, Zheng C et al. Identification of T-DNA tagged Arabidopsis mutants that are resistant to transformation by Agrobacterium[J]. Mol Gen Genet, 1999,(261):429~438
    [102] Yi H, Mysore KS, Gelvin SB et al. Expression of the Arabidopsis histone H2A-1 gene correlates with susceptibility to Agrobacterium transformation[J]. Plant J, 2002, (32):285~298
    [103] Grevelding C, Fantes V, Kemper E et al. Single-copy T-DNA insertion in Arabidopsis are the predominant form of integration in root-derived transgenics whereas multiple insertions are formed in leaf discs[J]. Plant Mol Biol, 1993,(23): 847~860
    [104] Aldemita, R. R. and Hodges, T. K., Planta, 1996, 199, 612-617.
    [105] Sarma, K. S., Sunilkumar, G., Balamani, V. and Veluthambi, K., Plant Mol. Biol. Rep., 1995, 13,377-382.
    [106] Sunilkumar, G., Vijayachandra, K. and Veluthambi, K., Plant Sci., 1999, 141, 51-58.
    [107] 吴乃虎.基冈工程原理(上、下册).第2版,科学出版社,1998
    [108] Ebinuma H ,Sugita K, Yamakado M. Selection of Marker - free Transgenic Plants Using the lsopentenyl Transferase Gene [J]. Proc Natl Acad Sci USA, 1997 ,(94) :2117-2121
    [109] Haldrup A ,Petersen SG,Okkels FT. Positive Selection :A Plant Selection Principle Based on Xylose lsomerase, an Enzyme Used in the Food Industry[J]. Plant Cell Rep, 1998 ,(18):76-81
    [110] Joersbo M,Donaldson I ,Kreiberg J ,et al. Analysis of Mannose Selection Used for Transformation of Sugar Beet [J]. Mol Breed ,1998 ,(4):111-117
    [111] Reiner. Genes for Ribitoland D-arabitol Catabolism in Escherichia Coli :Their Loci in C Strains and Absence in K-12 and B Strains[J] .Bacteriol, 1975 ,(123) :530-536
    [112] La Fayette P R ,Parrott WA. A Non-antibiotic Marker for a Mplication of Plant Transformation Vectors in E. coli [J]. Plant Cell Rep. 2001 ,(20) :338-342
    [113] Gough KC, Hawes WS, Kilpatrick J ,et al. Cyanobacterial GR6 Glutamate - 1 - semialde a Minotransferase : a Novel Enzyme-based selectable marker for plant transformation[J]. Plant Cell Rep ,2001 ,(20) :296-300
    [114] Ebinuma H,, Sugita K., and Matsunaga E., et al. Selection of marker-free transgenic plants using the isopentenyl transferase gene[J]. Proc. Natl. Acad. Sci. USA, 1997, (94): 2117-2121
    [115] Endo S., Kasahara T. and Sugita K., et al. The isopentenyl transferase gene is effective as a selectable marker gene for plant transformation in tobacco (Nicotiana tabaccum C. V. Petite Havana SRI) [J]. Plant Cell. Rep., 2001, (20): 60-66
    [116] Okkels F T., Ward J., and Joersbo M. Synthesis of cytokinin glucuronides for the selection of transgenic plant cells[J]. Phytochem., 1997,(46): 801-804
    [117] Yutaka Sato, Masanori Tamaoki, Taka Murakami, et al. Abnormal cell divisions in leaf primordia caused by the expression of the rice homeobox gene osHl lead to altered morphology of leaves in transgenic tobacco[J] . Molecular Genetics and Genomics , 1996,251 (1) :13-22.
    [118] Pedersen C , Zimny J , Becker D , et al . Localization of introduced genes on the chromosomes of transgenic barley , wheat and triticale by fluorescence in situ hybridization[J]. Theoretical and Applied Genetics, 1997,94(6-7) :749- 757.
    [119] GiovnnaM, Paolo P, AnnaM V, et al. Estimating the number of integrations in transformed p lants by quantitative real - time PCR[J]. BioMed Central Biotechnology, 2002, 2 (1): 20
    [120] Prins M, Goldach R. RNA-mediated virus resistance in transgenic plants[J]. Arch Virology, 1996 ,(141) :2259-2276.
    [121] Stam M,Mol J N M,Kooter J M. The silence of genes in transgenetic plants[J]. Annals of Botany, 1997,79(1) :3-12.
    [122] Ratcliff F G,MacFarlane S A ,Baulcombe D C. Gene silencing without DNA:RNA2mediated cross2protection between viruses[J]. Plant Cell, 1999, (11): 1207-1215.
    [123] Waterhouse PM, Smith N A ,WangMB. Virus resistance and gene silencing: killing the messenger[J]. Trends Plant Sci ,1998 ,(4) : 452-457.
    [124] Inge lbrecht I L ,Irvine J E ,Mirlov T E. Posttranscriptional gene silencing in transgenic sugarcane :dissecting of homology-dependent virus resistance in a monocot that has a complex polyploid genome[J]. Plant Physiol,1998 ,(119) :1187-1188.
    [125] Pinto YM,Kok R A ,Baulcombe D C. Resistance to rice yellow mottke virus(RYMV) in cultivated African rice varieties containing RYMV transgenes[J]. Nat Biotechnol, 1998 ,(17) :702-707.
    [126] Heut H ,Mabendra S ,Wang J et al. Near immunity to rice tungro spherical virus achieved in rice by a replicase-mediated resistance strategy[J]. Phytopathol,1998 ,(89) :1022-1027.
    [127] Banlcombe D C. Gene silencing :RNA makes RNA no protein[J].Current Biology , 1998 ,(9):599-601.
    [128] Voinnet O ,Vain P ,Angel S et al. Systemic spread of sequence2specific transgene RNA degradation in plants is initiated by localized introduction of ectopic promoterless DNA[J]. Cell, 1998 ,(95) :177-187.
    [129] Voinnet O ,Lederer C ,Baulcombe D C. A viral movement protein prevents spread of the gene silencing signal in Nicotiana benthamiana[J]. Cell, 2000, (103): 157-167.
    [130] Spencer TM, Gordon-Kamm WJ, Daines R J, Dalnes R J, Start W G, Lemaux P G. Bialaphos selection of stable transformants from maize cell culture[J]. Theor Appl Genet, 1990, (79) : 625-631
    [131] 朱莉,张春义,范云天.转基因植物中外源基因沉默机制的研究进展[J].生物化学与生物物理进展,1999,26(2):102-104
    [132] Yader J, Goldsbrough A P. Transformation systems for generation maker-free transgenic plants[J]. Bio/Technol, 1994, (12) :263-267
    [133] Chistor P , Swain W F. Cotransformation frequencies of foregion gene in soybean cell cultures[J]. Theor Appl Genet, 1990 ,(79) : 337-347
    [134] Schocher R J, Shillito R D, Saul M W, Paszkowski J, Dotrykus I. Co-transformetion of unlinked foreign genes into plants by direct gene transfer[J]. Bio Technology, 1986, (4) : 1093- 1096
    [135] Cooley J, Ford T, Christou P. Molecular and genetic characterization of elite transgenic rice plants produced by electic-discharge particle acceleration[J]. Thero Appl Genet , 1995 ,(90):97-100
    [136] Morel, J. B., Mourrain, P., Beclin, C. and Vaucberet, H., Curr.Biol., 2000, 10, 1591-1594.
    [137] Fagard, M. and Vaucheret, H., Plant Mol. Biol., 2000, 43,285-293.
    [138] Bode J, Kohwi Y, Dikinson L, Jeh T, Klehr D, Mielle C, Kohwi-Shi G T. Biological signficance of unwinding capability of nuclear matrix-associated DNA[J]. Science , 1992 ,(255): 195-197
    [139] Mlynaroval, Loonen A, Heldens J, Jansen R C, Keizer P, Stre Kema WJ, Nap J P. Reduced position effect in mature transgenic plants conferred by the chicken lysozyme matrix-assiociated region[J]. Plant Cell, 1994 ,(6) : 417-426
    [140] 苏金,Targolli J,吴乃虎,吴瑞.在转基因植株中实现外源基因最佳表达的途径[J].生物工程进展,1999,19(4):3-6
    [141] Han K H, Stauss S H. Matrix attachment regions(MARs) enhance transformation frequency and transgene expression in polar[J].Transgenic Res, 1997 ,(6): 415~420
    [142] Spiker S, Thompson W F. Nuclear matrix attachment regions and transgene expression in plants[J]. Plant Physiol, 1996,(110): 15-21
    [143] Lichtensten M, Kein G G, Cendar H. Bcell specific demethlation :anovel role for the introni c k chain enhance sequence[J]. Cell, 1994 ,(6) : 913-923
    [144] Albert H, Dale E C, Lee E, Oll D W. Site-specific integration of DNA into wiidtype and mutant lox sites placed in the plant genome[J]. Plant J, 1995,7 (4) : 649-659
    [145] Vergunst A C, Hooykass P J. Cre/lox - mediated sitespecific integration of Agrobacterium T-DNA in Arabidopsis thaliana by transient expression of cre[J]. Plant Mol Biol, 1998, (38): 393-406
    [146] Finnegan J, McElroy D. Transgene inactivation[J], plant fight back. Bio Technology, 1994, (12) : 883~888
    [147] Matzke M A., Wette M F., and Matzke A J M. Transgenic silencing bye the host genome defense: implications for the evolution of epigenetic control mechanisms in plants and vertebrates[J]. Plant Mol. Biol., 2000, (43): 401~415
    [148] Anandalakshmi R ,Pruss GJ ,Ge X et al. A viral suppressor ofgene silencing in plants. Proc Natl Acad Sci USA, 1998, (95): 13079~13084.
    I149] Ding S W. RNA Silencing. Curr Opin Biotechnol,2000, 1l :152~156.
    [150] Jan F J ,Fagoaga C ,Pang S Z et al. A single chimeric transgene derived from two distinct virus confers multi-virus resistance in transgenic plants through homology-dependent gene silencing[J]. J Gen Virology ,2000 ,(81) :2102~2109
    [151] Mikkelsen T R. The risk of crop transgene spread[J]. Nature, 1996,380(7) :31
    [152] 程志强,陈旭君等.转基因植物中抗性基因的安全性评价[J].生命科学,2002,14(1):14~16
    [153] 王中华,夏英武.转基因植物中报告基因GUS的表达及其安全性评价[J].生命科学,2000,12(5):207-209
    [154] Joersbo M,Donaldson I ,Kreiberg J ,et al. Analysis of Mannose Selection Used for Transformation of Sugar Beet [J]. Mol Breed ,1998 ,(4) :111-117
    [155] La Fayette P R, Parrott WA. A Non-antibiotic Marker for a Mplication of Plant Transformation Vectors in E. coli [J]. Plant Cell Rep. 2001, (20):338-342
    [156] Ebinuma H ,Sugita K, Matsunaga E ,et al. Selection of Marker-free Transgenic Plants Using the Oncogenes (IPT ,ROLA ,B ,C)of Agrobacterium as Selectable Markers[J] .Molecular Biology of Woody Plants. (2000):24-26
    [157] Dale E C, Ow D W. Gene Transfer with Subsequent Removal of the Selection Gene from the Host Genome [J]. Proc Natl Acad Sci USA, 1991,23,10558-10562
    [158] 吕慧涓,龚祖埙.转基因植物中标记基因的剔除[J].植物生理与分子生物学报,2004,30(2):121-126
    [159] Komad T, Hiei Y, Saito Y, Mural N, Kumashiro T. Vectors carrying two separate T-DNAs for co-transformation of higher plants mediated by Agrobacterium tumefaciens and segregation of transformants free from selection markers[J]. Plant J.1996, (10): 165-174
    [160] Lu HJ, Zhou XR, Gong ZX, Upadhyaya NM. Generation of selectable marker-free transgenie rice using double fight-border (DRB) binary vectors[J]. Aust J Plant Physiol, 2001, (28): 241-248
    [161] Zuo J, Niu QW, Moller SG, Chua NH. Chemical-regulated, site-specific DNA excision in transgenic plants[J]. Biotechnol, 2001, 19(2):157-161
    [162] Corneille S, Lutz K, Svab Z, Maliga P. Efficient elimination of selectable marker genes from the plastid genome by the CRE-lox site-specific recombination system[J]. Plant J, 2001, 27(2):171-178
    [163] 贾士荣.转基因植物的环境及食品安全性[J].生物工程进展,1997,17(6):37-42.
    [164] Jorgenson R. Spontaneous hybridization between oilseed rape and weed Brassica campestris : a risk of growing genetically engineered modified oilseed rape[J]. American Journal of Botany ,1995 ,(81) :1620 - 1626.
    [165] 莽克强.转基因植物的生物安全性的商榷[J].生物工程进展,1996,16(4):2-6.
    [166] Donegan K K. Effects of transgenic plants on soil and plant microorganisms[J]. Recent Res. Dev. Microbiol, 1999 ,(3) :415 - 424.
    [167] WHO. Health Aspects of Marker Genes in Genetically Modified Plants[R]. 1993.1-32
    [168] Zambryski P A ,Depicker A , Kruger K, et al . Tumor introduction by Agrobacterium Tumefaciens : Analysis of the Boundaries of T-DNA[J] .Mol Appl Genet ,1982 , (1) :361-370
    [169] 李书国.转基因食品及其安全性研究进展[J].食品工业,2001,(2):20-23.
    [170] Koskella J. Microbial utilization of free and clay - bound insecticidal toxins fromBacillus thuringiensis and their retention of insecticidal activity after incubation with microbes[J]. Applied and Environmental Microbiology, 1997, 63(9) :3561 - 3568.
    [171] Ptrykus I. Gene transfer to plants assessment of published approaches and results[J] . Annual review of plant physiology and plant molecular biology, 1991, (12):205 - 225.
    [172] Calgene, Inc. Request for advisory opinion - kan gene: safety and use inthe production of genetically engineered plants [Z] .FDA Docket Number 1990,90A - 0416
    [173] Fuchs R L. Safety Assessment of the Neomycin Phosphotransferase H (NPTH) protein[J]. Bio Technology, 1993 ,(11) :1543 - 1547
    [174] 曹植仪.拟南芥.北京:高等教育出版社,2004:□-□,45-66
    [175] Meyerowitz E M, and Pruit R E, Arabidopsis thaliana and plant molecular genetics[J]. Science. 1985, (229):1214-1218
    [176] 初立业,邵宏波,曲德业.拟南芥的核基因组研究,生命科学,1994,6(4):16-18
    [177] 中国科学院植物研究所.中国高等植物图鉴(第二册).北京:科学出版社,1972
    [178] 王绍明,李学禹。中国拟南芥属植物种质资源及其地理分布[J].石河子大学学报(自然科学版),2001,5(2):102-108
    [179] David W. Meinke. Arabidopsis thaliana: A Model plant for Genome Analysis[J]. Science,1998,282 (5389): 662-682.
    [180] 孟金陵.拟南芥及其分子生物学研究.[J]遗传,1995,17(增刊):41-45
    [181] Meinke D W,Cherry J M,Dean C, et al. A rabidopsis thaliana :A model plant for genome analysis[J]. Science, 1998,282:662~682.
    [182] 陈璋.拟南芥:植物分子生物学研究的模式物种.植物学通报,1994,11(1):6~11
    [183] 樊妙姬.拟南芥的分子遗传学研究概况[J].遗传,1992,14(3):40~42
    [184] 黄娟,李家洋.拟南芥基因组研究进展.微生物学通报,2001,28,(3):99~101
    [185] Meyerowitz E M, and Pruit R E, Arabidopsis thaliana and plant molecular genetics[J]. Science. 1985, (229):1214-1218
    [186] Pruitt R E, and Meyerowitz E M, Characterization of the genome of Arabidopsis thaliana [J].Mol. Biol., 1986, (187): 169-183
    [187] Gibeaut D.M., Hulett J., and Cramer G.R. et al. Maximal biomass of Arabidopsis thaliana using a simple, low-maitenance hydroponic method and favorable environmental conditions[J]. Plant Physiol. 1997, (115):317-319
    [188] Weigel D and Glazebrook J. Arabidopsis-A Laboratory Manual. New York: Gold Spring Harbor Laboratory, 2002
    [189] 陈敏,白书农.拟南芥培养经验点滴.植物生理学通讯,1995,31:436~438
    [190] 韩玉珍,李睿,孟繁静.拟南芥开花的光周期调节.植物生理学通讯,1998,34:401~406
    [191] 李俊华,张艳春,徐云远等.拟南芥室内培养技术.植物学通报,2004,21(2):201~204
    [192] 厉秀茹.拟南芥胚愈伤组织诱导和植株再生.植物生理学通讯,1998,34(2):122
    [193] Andrew F. Bent. Arabidopsis in planta transformation. Use, mechanisms and prospects for transformation of other species[J]. Plant Physiology, 2000, 10 (124): 1540-1547
    [194] Hai Huang, Hong Ma. An improved procedure for transformation Arabidopsis thaliana (Landsberg erecta) root explant [J]. Plant Molecular Biology Reporter, 1992, 10 (4): 372-383
    [195] 黄欣,周一兵,尤瑞鳞.拟南芥菜离体培养中愈伤组织的诱导和植株再生的初步研究[J].西北植物学报,1994,14(2):91-96
    [196] Glab N, Labidi B, and Qin LX.et al. Olomoucine, an inhibitor of the cdc2/cdk2 kinases activity, blocks plant cells at the G1 to S and G2 to M cell cycle transitions. FEBS Letters, 1994, (353) :207-211.
    [197] 巩振辉,Milner J J,何玉科.拟南芥基因转移新方法—真空渗入法的研究,西北植物学报[J]1996.16(3):277-283
    [198] Clough S.J., and Bent A. Floral dip: A simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana[J]. 1998, Plant J. (16): 735-743
    [199] 徐芳,熊爱生,彭日荷等.植物遗传转化的新方法:Floral Dip.中国蔬菜,2005(3):29-31
    [200] Richard C, Granier C, and Inzé D et al. Analysis of cell division parameters and cell cycle gene expression during the cultivation of Arabidopsis thaliana cell suspensions[J].Journal of Experimental Botany, 2001, 52(361): 1625-1633
    [201] Forreiter C, kirschner M, and Nover L. Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo[J]. The Plant Cell, 1997, (9) :2171-2181
    [202] 陆晓春,薛庆中.插入诱变在拟南芥基因克隆中的应用.中国生物工程杂志,2002,22(4):66-69
    [203] Walbot, V. Strategies for mutagenesis and gene cloning using transposon tagging and TDNA insertional mutagenesis[J]. Annu. Rev. Plant Physiol. Plant Mol. Biol., 1992, (43): 49-82
    [204] Bancroft I. Developmtnt of an efficient two-element transposon tagging system in Arabidopsis thaliana[J].Mol.Gen.Genet., 1992, (233):449~461.167
    [205] Krysan P.J., Young J.C., and Sussman M.R. T-DNA as an insertional mutagen in Arabidopsis[J]. Plant Cell. 1999, (11): 2283-2290
    [206] Weigel D and Glazebrook J. Arabidopsis-A Laboratory Manual. New York: Gold Spring Harbor Laboratory, 2002
    [207] Encina CL, Constantin M and Botella J. An Easy and Reliable Method for Establishment and Maintenance of Leaf and Root Cell Cultures of Arabidopsis thaliana[J].Plant Molecular Biology Reporter, 2001, (19) : 245-248
    [208] Baskin J M, and Baskin C C. Ecological life cycle and physiological ecology of seed germination of Arabidopsis thaliana[J].Can. J. Bot. 50:353-363
    [209] Ikeda-Iwai M, Satoh S, and Kamada H. Establishment of a reproducible tissue culture system or the induction of Arabidopsis somatico embryos[J].Journal of Experimental Botany, 2002, 53:1575-1580
    [210] Ford K G. Plant regeneration from Arabidopsis thaliana protoplasts[J].Plant Cell Rep. 1990,8, 534-537
    [211] Martinez-Zapater J M and Salinas J. Methods in Molecular Biology: Arabidopsis Protocols. Totowa: Humana Press, 1998:27-34
    [212] Gleddie S. Plant regeneration from cell suspension cultures of Arabidopsis thaliana Heynh[J].Plant Cell Rep 1989, (8) : 1-5
    [213] Forreiter C, kirschner M, and Nover L. Stable transformation of an Arabidopsis cell suspension culture with firefly luciferase providing a cellular system for analysis of chaperone activity in vivo[J].The Plant Cell, 1997,9:2171-2181
    [213] Gibeaut D M, Hulett J, and Seemann J R. Maximal biomass of Arabidopsis thaliana using a simple, low-maintenance hydroponic method and favorable environmental conditions[J].Plant Physiol, 1997, (115): 317-319
    [214] King P J. Induction and maintenance of cell suspension cultures. In: Vasil I K. Cell Culture and Somatic Cell Genetics of Plants[J]. New York: Academic Press, 1984:130-138.
    [215] Martinez-Zapater J M and Salinas J. Methods in Molecular Biology: Arabidopsis Protocols[J]. Totowa: Humana Press, 1998:27-34
    [216] Richard C, Granier C, and Inzé D et al. Analysis of cell division parameters and cell cycle gene expression during the cultivation of Arabidopsis thaliana cell suspensions[J].Journal of Experimental Botany, 2001, 52(361): 1625-1633
    [217] Ven den Elzen PJM, Townsend J, Lee KY, et al. A chimaeric hygromycin resistance gene as a selectable marker in plant cells[J]. Plant Mol Biol, 1985,5:299-302
    [218] Blochlinger K and Diggelmann H. Hygromycin B phosphotransferase as a selectable marker for DNA transfer experiments with higher eukaryotic cells [J]. Mol Cel Biol, 1984, 4: 2929-2931
    [219] 奚亚军,范学科,侯文胜,等.小麦遗传转化中潮霉素适宜筛选浓度的研究[J].西北农林科技大学学报(自然科学版),2003,1
    [220] 周玲艳,姜大刚,吴豪,等.潮霉素和PPT对水稻愈伤组织筛选效果的比较[J].仲恺农业技术学院学报,2003,2
    [221] 王节之,郝晓芬,郑向阳,等.谷子潮霉素抗性浓度的筛选与研究[J].华北农学报,1999,4
    [222] 岳建雄,张慧军,张炼辉.以对潮霉素抗性为筛选标记的棉花遗传转化[J].棉花学报,2002,4
    [223] 梁海曼,周菊华,试管苗玻璃化现象的生理生化和机理探讨,武汉植物学研究[J],1994,3(8):281-288
    [224] 高疆生,张卫芳,段黄金等,克服香石竹试管苗玻璃化研究[J],北方园艺,2001,(3):34-36
    [225] Tsong-Ann Yu, Shyi-Dong Yeh, and Jiu-Sherng Yang. Effects of carbenicillin and cefotaxime on callus growth and somatic embryogenesis from adventitious roots of papaya[J]. Bot. Bull. Acad. Sin. 2001, (42): 281-286
    [226] 曾建军,孙敏,肖璇等,4种抗生素对菘监外植体生长的影响[J],西南师范大学学报(自然科学版),2003,28(6):987-990]
    [227] 王萍,王罡,吴颖,抗生素对大豆未成熟子叶愈伤形成和体细胞胚胎发生的影响[J],中国油料作物学报,2003,25(1)
    [228] 李广武,郊从义,唐兵.低温生物学,湖南科技出版社,1998
    [229] Karen G.F. Plant regeneration from Arabidopsis thaliana protoplasts[J]. Plant .Cell Rep. 1990, 8, 534-537
    [230] Ribeiro R.C.S., Jekkel Z., Mulligan B.J., et.al. Regeneration of fertile plants from cryopreserved cell suspensions of Arabidopsis thaliana (L.) Heynh. Plant Science. 1996, 115,115-121
    [231] Bachiri Y, Bajon C., Sauvanet A., Gazeau C., and Morisset C. Effect of osmotic stress on tolerance of air-drying and cryopreservation of Arabidopsis thaliana suspension: Protoplasma, 2000: 227-243
    [232] 胡明珏,王君晖,拟南芥悬浮细胞系的玻璃化法超低温保存,细胞生物学杂志,2004,26(1):81-84
    [233] 胡明珏,拟南芥悬浮细胞超低温保存及脱落酸在胁迫信号转导途径中的作用研究,浙江大学硕士学位论文,导师:王君辉,2006.6
    [234] Spiker S. and Thompson W.F. Nuclear matrix attachment regions and transgene expression in plants[J]. Plant Physiol., 1996, (100): 520-527
    [235] Veluthambi K., Gupta A. K. and Sharma A. The current status of plant transformation technologies[J]. CURRENT SCIENCE, 2003, 84 (3): 368-380
    [236] Bruce W., Folkerts O. and Garnat C., et al. Expression profiling of the maize flavonoid pathway genes controlled by estradiol-inducible transcription factors CRC and P[J]. Plant cell, 2000, (12): 65-80
    [237] Gallego M E., Sirand-Pugnet P. and White C.I. Positive-negative selection and T-DNA stability in Arabidopsis transformation. Plant Molecular Biology, 1999, 39:83-93
    [238] Frederick M A. Arabidopsis Genome: A milestaone in plant biology [J]. Plant Physical, 2000, 124:1451-1454

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700