轻合金表面超疏水涂层的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超疏水表面具有自清洁、防污、疏水、抑制表面腐蚀和氧化等特性,在自清洁、减阻、生物医学材料等工农业生产、国防建设领域中有着广阔的应用前景。超疏水表面的制备一般采用在疏水性表面构建粗糙结构或在粗糙表面修饰低表面能物质两种方法,其中典型的有模板、自组装、化学气相沉积、电化学沉积、溶胶-凝胶等传统方法,这些方法大多需要特殊的加工设备或复杂的工艺过程,缺乏大规模制备的操作性,因此,有必要研究成本低廉、过程可控、尺寸可调、适用性好、适合大面积制备的超疏水表面的制备方法。
     本文在分析超疏水涂层制备技术发展现状的基础上,针对目前超疏水涂层制备过程中存在的问题,从理论分析和实验研究两方面着手,报道了三种简单、方便的超疏水涂层的制备技术,成功地在镁、铝两种轻合金基体上获得了超疏水涂层,用FE-SEM、CA、XPS、Polarization Curve等手段对涂层的性能进行了表征。本文主要工作如下:
     1.采用化学刻蚀与表面修饰相结合的方法在镁合金表面制备了超疏水涂层。结果表明,在镁合金表面形成了微/纳粗糙多孔结构;水滴与涂层上的接触角达到157.3±0.5°,滚动角小于10°;电化学测试结果表明,含有超疏水涂层试样的腐蚀电位正移,并且自腐蚀电流密度与未处理试样相比降低了3个数量级,说明超疏水涂层体系的存在能提高镁合金的耐腐蚀性能。讨论了不同刻蚀时间、不同刻蚀液浓度对表面接触角的影响,分析了镁合金表面疏水性的形成原因并确定了较优的工艺参数。
     2.采用化学刻蚀与表面修饰相结合的方法在铝合金表面制备了超疏水涂层。发现在铝合金表面上形成了由长方形的凸台和凹坑构成的深浅相间的微纳米结构,这些微纳米结构相互连通形成凹凸不平的“迷宫”结构;水滴在涂层上的接触角达到161.2±1.7°,滚动角小于8°;电化学测试结果表明,含有超疏水涂层试样的腐蚀电位正移,并且自腐蚀电流密度与未处理试样相比降低了4个数量级,说明超疏水涂层体系的存在能提高铝合金的耐腐蚀性能。采用L9(34)正交试验表设计考查了氢氟酸浓度、氢氟酸刻蚀时间、盐酸浓度、盐酸刻蚀时间等工艺参数对铝合金疏水性能的影响,分析了铝合金表面疏水性的形成原因并确定较优的工艺参数。
     3.采用阳极氧化、化学刻蚀与表面修饰相结合的方法在铝合金表面制备了超疏水涂层。结果表明,铝合金表面上形成了一层具有叶子状微纳米结构的膜。每个叶片之间存在大量的裂纹和微孔;水滴在涂层上的接触角达到167.7±1.2°,滚动角小于5°;电化学测试结果表明,含有超疏水涂层试样的腐蚀电位正移,并且自腐蚀电流密度与未处理试样相比降低了4个数量级,说明超疏水涂层体系的存在能提高铝合金的耐腐蚀性能。
Due to the advantages such as self-cleaning, antifriction, hydrophobic, resistance to pollution, inhibition of surface corrosion and oxidation, super-hydrophobic surfaces have a bright prospect in self-cleaning materials, drag reduction materials, industrial and agricultural fields, the building up of national defense and biomedical materials. There are two methods which produce traditional super-hydrophobic surfaces, such as the improvement of surface roughness of the hydrophobic surfaces and the modification of rough surface by low-surface-energy materials. Up to now, artificial super-hydrophobic surfaces have been fabricated by tailoring surface topography and using techniques such as template method, self-assembly techniques, chemical vapor deposition, electrochemical deposition, sol-gel, and others. However, either special equipment or complex process control is required in most cases which are lack of large-scale preparation operation. Therefore it is important and meaningful to make the fabrication of transparent superhydrophobic surface controllable, low-cost and applicable in large-scale.
     In this dissertation, we reported on three simple and convenient techniques for fabricatiing super-hydrophobic coating which was developed based on the combination of theoretical and experimental reasearch. Using these techniques, we have succeeded in the preparation of super-hydrophobic coating on the two light alloy substrates including magnesium alloy and aluminium alloy, FE-SEM、CA、XPS、Polarization Curve were used for coating characterizations, and the main results are as follow:
     1. A new technique combined chemical etching with surface modification was developed to produce super-hydrophobic coating on magnesium alloy. The results show that the magnesium alloy surface is rather rough and covered by a relatively uniform micro- and nano-porous structure. The coatings fabricated possess high water static CAs of 157.3±0.5°, small sliding angles of less than 10°. The electrochemical measurement show that the corrosion potential of the super-hydrophobic sample is slightly more positive than that of the untreated sample, and as compared to the corrosion current density of the untreated sample, that of the super-hydrophobic sample decreased by more than three orders of magnitude. These results indicate that the super-hydrophobic coating on magnesium alloy has better corrosion resistance. Besides, the effects of etchant, etching time on CA were researched. Furthemore, the formation mechanism of the magnesium alloy surface was investigated, and a better processing parameter was obtained.
     2. A simple technique combined chemical etching with surface modification was developed to produce super-hydrophobic coating on aluminium alloy. We find out that the aluminium alloy surface is configured in a labyrinthic structure with cuboid plateaus and caves of micro-and nano structure. The coatings fabricated possess high water static CAs of 161.2±1.7°, small sliding angles of less than 8°. The electrochemical measurement show that the corrosion potential of the super-hydrophobic sample is slightly more positive than that of the untreated sample, and as compared to the corrosion current density of the untreated sample, that of the super-hydrophobic sample decreased by more than four orders of magnitude. These results indicate that the super-hydrophobic coating on aluminium alloy has better corrosion resistance. The orthogonal design was taken for the optimization. The content of etching time and etching concentration were measured for fixing on the optimum conditions. Furthemore, the formation mechanism of the magnesium alloy surface was investigated, and a better processing parameter was obtained.
     3. A novel technique combined anodic oxidation、chemical etching with surface modification was developed to produce super-hydrophobic coating on aluminium alloy. The results show that the aluminium alloy surface is rather rough and covered by a regularly ordered leaf-like structure, and many cracks and venations were observed. The coatings fabricated possess high water static CAs of 167.7±1.2°, small sliding angles of less than 5°. The electrochemical measurement show that the corrosion potential of the super-hydrophobic sample is slightly more positive than that of the untreated sample, and as compared to the corrosion current density of the untreated sample, that of the super-hydrophobic sample decreased by more than four orders of magnitude. These results indicate that the super-hydrophobic coating on magnesium alloy has better corrosion resistance.
引文
[1] M. Tirrell, E. Kokkoli, M. Biesalski. The role of surface science in bioengineered materials[J]. Surf. Sci, 2002, 500: 61-83.
    [2] J. Rühe, V. Novotny, T. Clarke, G.B. Street. Ultrathin perfluoropolyether films: influences of anchoring and mobility of polymers on the tribological properties[J]. J. Tribol, 1996, 118: 663-668.
    [3] R.C. Advincula, W.J. Brittain, K.C. Caster, J. Rühe, PolymerBrushes[M]. (Wiley-VCH, Weinheim, 2004)
    [4] W. Barthlott, C. Neinhuis. Purity of the sacred lotus, or escape from contamination in biological surfaces[J]. Planta, 1997, 202: 1-8.
    [5] C. Neinhuis, W. Barthlott. Characterization and Distribution of Water-repellent, Self-cleaning Plant Surfaces[J]. Annals of Botany, 1997, 79: 667-677.
    [6]江雷.从自然到仿生的超疏水纳米界面材料[J].科技导报, 2005, 23: 4-81.
    [7] W.H. Jing, J. Wu, W.H, Xing, et al. Wetting kinetics measurement of plane ceramic membrane [J]. J Chem Eng of Chinese Univ, 2004, 18: 141-145.
    [8] Xu Jian, Wang Yu-jun, Luo Guang-sheng, et al. Effect of hydrophobic or hydrophilic performance of membranes on lipase immobilization[J]. J Chem Eng of Chinese Univ, 2006, 20: 395-400.
    [9] R. Blossey. Self-cleaning surfaces2virtual realities[J]. Nature Mater. 2003, 2: 301-306.
    [10] D.R. Strauss. Self-cleaning superhydrophobic surface[P]. US2006/0147631 A1.
    [11] K. Watanabe, Y. Udagawa. Drag reduction of Newtonian fluid in a circular pipe with a highly water-repellent wall[J]. Journbal of Fluid Mechanics, 1999, 381: 225-238.
    [12] R. Pit, H. Hervet, L. Léger. Direct experimental evidence of slip in hexadecane solid interfaces [J]. Physical Review Letters, 2000, 85: 980-983.
    [13] T. Kako, A. Nakajima, H. Irie, et al. Adhesion and sliding of wer snow on a super-hydrophobic surface with hydrophilic channels[J]. Mater. Sci, 2004, 39: 547-555.
    [14] M. Thieme, R. Frenzel, V. Hein, et al. Metal surfaces with ultrahydropobic properties: perspectives for corrosion protection and self-cleaning[J]. Corros. Sci.Eng, 2003, 6: 113-119.
    [15] R. Furstner, W. Barthlott, C. Neinhuis, P. Walzel. Wetting and self-cleaning properties of artificial superhydrophobic surfaces[J]. Langmuir, 2005, 21: 956-961.
    [16] A.R. Parker, C.R. Lawrence. Water capture by a desert beetle[J]. Nature, 2001, 414: 33-34.
    [17] Z.G. Guo, W.M. Liu. Biomimic from the surperhydrophobic plant leaves in nature: Binarystructure and unitary structure[J]. Plant Science, 2007, 172: 1103-1112.
    [18] T.L. Sun, L. Feng, L. Jiang, et al. Bioinspired Surfaces with Special Wettability[J]. Acc. Chem. Res, 2005, 38, 644-652.
    [19] X.F. Gao, L. Jiang. Water-repellent legs of water striders[J]. Nature, 2004, 432: 36.
    [20]顾惕人,马季铭.表面化学[M].北京:科学出版社, 2001.
    [21] P.G. de Gennes. Wetting: statics and dynamics. Res. Mod. Phys. 1985, 57: 927-963.
    [22]粟常红,陈庆民.仿荷叶表面研究进展[J].化学通报, 2008: 24-31.
    [23] R.N. Wenzel. Resistance of Solid Surfaces to Wetting by Water[J]. Ind Eng Chem, 1936, 28: 988-994.
    [24] A.B. Cassie, S. Baxter. Wettability of porous surfaces[J]. Trans Faraday Soc, 1944, 40: 546-551.
    [25] N.A. Patankar. On the Modeling of Hydrophobic Contact Angles on Rough Surfaces[J]. Langmuir, 2003, 19, 1249-1253.
    [26] R.E. Johnson Jr, R.H. Dettre. Contact angle hysteresis, Part I . Study of an idealized rough surface[J]. Adv. Chem. Ser. 1964, 43: 112-135.
    [27] D. Richard, C. Clanet, D. Quéré. Surface phenomena: Contact time of a bouncing drop[J]. Nature, 2002, 417: 811.
    [28] M. Miwa, A. Nakajima, A. Fujishima, K. Hashimoto, T. Watanabe. Effects of the surface roughness on sliding angles of water droplets on superhydrophobic surfaces[J]. Langmuir, 2000, 16: 5754-5760.
    [29] P. Aussilous, D. Quéré. Liquid marbles[J]. Nature, 2001, 411: 924-927.
    [30] W. Chen, A.Y. Fadeev, M.C. Hsieh, D. ?ner, et al. Ultrahydrophobic and Ultralyophobic Surfaces: Some Comments and Examples[J]. Langmuir, 1999, 15: 3395-3399.
    [31]田辉,杨泰生,陈玉清.疏水理论研究进展[J].山东陶瓷, 2008, 31: 8-13.
    [32] S.X. Lu, Y.L. Chen, W.G. Xu, W. Liu. Controlled growth of superhydrophobic films by sol–gel method on aluminum substrate[J]. Applied Surface Science. 2010, 256: 6072-6075.
    [33]黄剑锋.溶胶-凝胶原理与技术[M].北京:化学工业出版社, 2005.
    [34] A.V. Rao, S.S. Latthe, D.Y. Nadargi, H. Hirashima, et al. Preparation of MTMS based transparent superhydrophobic silica films by sol–gel method[J]. Journal of Colloid and Interface Science, 2009, 332: 484-490.
    [35] Y.H. Xiu, F. Xiao, D.W. Hess, C.P. Wong. Superhydrophobic optically transparent silica films formed with a eutectic liquid[J]. Thin solid films, 2009, 517: 1610-1615.
    [36] K. Tadanaga, N. Katata, T. Minami. Super-water-repellent Al2O3 coating films with high transpatency[J]. J. Am. Chem. Soc. 1997, 80: 1040-1042.
    [37] K. Yadanaga, N. Katata, T. Minami. Formation process of super-water-repellent Al2O3 coating films with high transpatency by sol-gel method[J]. J. Am. Ceram. Soc. 1997, 80: 3213-3216.
    [38] K. Tadanaga, N. Katata, T. Minami. Prepatation of super-water-repellent alumina coating film with high transparency on poly(ethylene terephthalate) by the sol-gel method[J]. Chem. Lett. 2000: 864-865.
    [39] K. Tadanaga, K. Kitamuro, A. Matsuda, T. Minami. Formation of superhydrophobic alumina coating films with transparency on polymer substrates by the sol-gel method[J]. J. Sol-Gel Sci. Techn. 2003, 26: 705-708.
    [40] J.T. Han, D.H. Lee, C.Y. Ryu, K. Cho. Fabrication of superhydrophobic surface from a supramolecular organosilane with quadruple hydrogen bonding[J]. J. Am. Chem. Soc. 2004, 126: 4796-4797.
    [41]胡小娟,刘岚,罗远芳,贾德民,程梁,胡盛哲.溶胶-凝胶法制备超疏水PMHS-SiO2涂膜[J].材料研究学报, 2010, 24: 266-272.
    [42] H.M. Shang, Y. Wang, S.J. Limer, et al. Optically transparent superhydrophobic silica based films[J]. Thin Solid Films, 2005, 472: 37-43.
    [43] G.X. Li, Y. Liu, B. Wang, et al. Preparation of transparent BN films with superhydrophobic surface[J]. Applied Surface Science, 2008, 254: 5299-5303.
    [44] J. Fresnais, J.P. Chapel, F. Poncin-Epaillard. Synthesis of transparent super-hydrophobic polyethylene surfaces[J]. Surface & Coatings technology, 2006, 200: 5296-5305.
    [45] Y. Zhang, E.T. Kang, K.G. Neoh, W. Huang, A.C.H. Huan, H. Zhang. Surface modification of polyimide films via plasma polymerization and deposition of allylpentafluorobenzene[J]. Polymer. 2002, 43: 7279-7288.
    [46] D. ?ner, T.J. McCarthy. Ultra-hydrophobic Surfaces. Effects of Topography Length Scales on Wettability[J]. Langmuir, 2000, 16: 7777-7782.
    [47] H. Wang, D. Dai, X.D. Wu. Fabrication of super-hydrophobic surfaces on aluminum[J]. Appl Surf Sci, 2008, 254: 5599-5601.
    [48] K. Teshima, H. Sugimura, Y. Inour, O. Takai, A. Takano. Wettablity of poly substrates modified by a two-step plasma process: ultra water repellent surface fabrication[J]. Chem. Vapor Depos., 2004, 10: 295-297.
    [49] M. Morra, E. Ocdhiello, F. Garbassi. Contact angle hysteresis in oxygen plasma treated poly[J]. Langmuir. 1989, 5: 873-876.
    [50] N. Vandencasteele, H. Fairbrother, F. Reniers. Selected effect of the ions and the neutrals in the plasma treatment of PTFE surfaces: an OES-AFM-contact angle and XPS study[J]. Plasma Process. Polym. 2005, 2: 493-500.
    [51] S.H. Kim, J.H. Kim, B.K. Kang, et al. Superhydrophobic CFx Coating via In-Line Atmospheric RF Plasma of He-CF4-H2[J]. Langmuir, 2005, 21: 12213-12217.
    [52] L.M. Lacroix, M. Lejeune, L. Ceriotti, et al. Tuneable rough surfaces: A new approach for elaboration of superhydrophobic films[J]. Surface Science, 2005, 592: 182-188.
    [53] D.O.H. Teare, C.G. Spanos, P. Ridley, E.J. Kinmond, V. Roucoules, J.P.S. Badyal. Pulsed plasma deposition of super-hydrophobic nanospheres[J]. Chem. Mater. 2002, 14: 4566-4571.
    [54] H.M. Shang, Y. Wang, K. Takahashi, et al. Nanostructured superhydrophobic surfaces[J]. Journal of materials science. 2005, 40: 3587-3591.
    [55]王丽芳,赵勇,江雷,王佛松.静电纺丝制备超疏水TiO2纳米纤维网膜[J].高等学校化学学报. 2009, 30: 731-734.
    [56] M.L. Ma, R.M. Hill, et al. Electrospun poly(styrene-block-dimethylsiloxane) block copolymer fibers exhibiting superhydrophobicity[J]. Langmuir, 2005, 21: 5549-5554.
    [57] M. Ma, Y. Mao, M. Gupta, K.K. Gleason, G.C. Rutledge. Superhydrophobic fabrics produced by electrospinning and chemical vapor deposition[J]. Macromolecules, 2005, 38: 9742-97481.
    [58] M. Kang, R. Jung, et al. Preparation of superhydrophobic polystyrene membranes by electrospinning[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, (313-314):411-414.
    [59] B. Ding, T. Ogawa, et al. Fabrication of a super-hydrophobic nanofibrous zinc oxide film surface by electrospinning[J]. Thin Solid Films, 2008, 516: 2495-2501.
    [60] T. Ogawa, B. Ding, et al. Super-hydrophobic surfaces of layer-by-layer structured film-coated electrospun nanofibrous membranes[J]. Nanotechnology, 2007, 18: 165607-165614.
    [61] L. Jiang, Y. Zhao, J. Zhai. A lotus-leaf-like superhydrophobic surface: A porous microsphere/nanofiber composite film prepared by electrohydrodynamics[J]. Angewandte Chemie-International Edition, 2004, 43: 4338-4341.
    [62]栗常红,肖怡,等.一种多尺度仿生超疏水表面制备[J].无机化学报, 2006, 22 : 785-788.
    [63] J. Zhang, J. Li, Y. Han. Superhydrophobic PTFE surfaces by extension[J]. Macromol. Rapid Commun, 2004, 25: 1105-1108.
    [64] F.E. Bartell, J.W. Shepard. Surface roughness as related to hysteresis of contact angle. I. The system paraffin-water-air[J]. J. Phys. Chem. 1953, 57: 211-215.
    [65] Y. Zhou, X. Song, M. Yu, et al. Super-hydrophobic surfaces prepared by plasma fluorination of lotus-leaf-like amorp-houscarbon film[J]. Surfaces Review and letters, 2006, 13: 117-122.
    [66] A. Chen, X. Peng, K. Koczkur, B. Miller. Super-hydrophobic tin oxide nanoflowers[J]. Chem. Commun. 2004: 1964-1965.
    [67] S. Veeramasuneni, J. Drelich, J.D. Miller, G. Yamauchi. Hydrophobicity of ion-platedcoatings[J]. Prog. Org. Coat, 1997, 31: 265-270.
    [68] J.D. Miller, S. Veeramasuneni, J. Drelich, M.R. Yalamanchili. Y. Yamauchi. Effect of roughness as determined by atomic force microscopy on the wetting properties of PTFE thin films[J]. Polym. Eng. Sci., 1996, 36: 1849-1853.
    [69] S. Tsoi, E. Fok, J.C. Sit, J.G.C. Veinot. Superhydrophobic, high surface area, 3-D SiO2 nanostructures through siloxane-based surface functionalization[J]. Langmuir, 2004, 20: 10771-10774.
    [70]田根林,余雁,王戈,程海涛,陆方.竹材表面超疏水改性的初步研究[J].北京林业大学学报. 2010, 32: 166-169.
    [71] X.Y. Ling, I.Y. Phang, G.J. Vancso, J. Huskens, D.N. Reinhoudt. Stable and transparent superhydrophobic nanoparticle films[J]. Langmuir, 2009, 25: 3260-3263.
    [72] Y. Wu, N. Saito, A. Naef, et al. Water droplets interaction with super-hydrophobic surfaces[J]. Surface Science, 2006, 600: 3710-3714.
    [73] H.J. Li, X.B. Wang, Y.L. Song, et al. Super-amphiphobic aligned carbon nanotube films[J]. Angew. Chem. Int. Ed. 2001, 40: 1743-1746.
    [74] L. Jiang, H. Liu, L. Feng, et al. Reversible Wettability of a Chemical Vapor Deposition Prepared ZnO Film between Superhydrophobicity and Superhydrophilicity[J]. Langmuir, 2004, 20: 5659-5661
    [75] K.S. Kenneth, A. Lau, K. Karen, B. Gleason. Particle functionalization and encapsulation by initiated chemical vapor deposition (iCVD)[J]. Surface and Coatings Technology. 2007, 201: 9189-9194
    [76] L. Huang, S.P. Lau, H.Y. Yang et al. Stable Superhydrophobic Surface via Carbon Nanotubes Coated with a ZnO Thin Film[J]. J. Phys. Chem. 2005, 109: 7746-7748.
    [77]刘斌,傅叶勍,阮维青,和亚宁,王晓工.利用软模板和紫外光固化技术制备超疏水表面[J].高分子学报, 2008, 2: 155-160.
    [78] M.H. Sun, C.X. Luo, L.P. Xu, et al. Artificial lotus leaf by nano casting[J]. Langmuir, 2005, 21: 8978-8981.
    [79] M.E. Abdelsalam, et al. Wetting of regularly structured gold surfaces[J]. Langmuir, 2005, 21: 1753.
    [80] S.M. Lee, T.H. Kwon. Mass-producible replicati on of highly hydrophobic surfaces from plant leaves[J] .Nanotechnol ogy, 2006, 17: 3189-3196 .
    [81] A. Luke, Connal, G.G. Qiao. Preparation of Porous Poly( dimethylsiloxane )-Based Honeycomb Materials with Hierarchal Surface Features and Their Use as Soft-Lithography Templates[J] . Adv Mater, 2006, 18: 3024-3028.
    [82] L. Feng, S. Li, L. Jiang, et al. Super-hydrophobic surface of aligned polyacrylonitrile nanofibers [J]. Angewandte Chemie-International Edition, 2002, 41: 1221-1223.
    [83] L. Feng, Z.L. Yang, L. Jiang, et al. Superhydrophobicity of nanostructured carbon films in a wide range of pH values[J]. Angewandte Chemie-International Edition, 2003, 42: 4217-4220.
    [84]金美花,廖明义,江雷,等.软模板印刷法制备超疏水性聚苯乙烯膜[J].化学学报, 2008, 66: 145-148.
    [85] M. Thieme, R. Frenzel, et al. Generation of Ultrahydrophobic Properties of Aluminium-A first Step to Self-cleaning Transparently CoatedMetal Surfaces[J]. Adv Eng Mater, 2001, 3: 691-695.
    [86]谢永元,周勇亮,俞小春,等.以砂纸为模板制作聚合物超疏水表面[J].高等学校化学学报, 2007, 28: 1577-1580.
    [87]马英,马永梅,曹新宇,邹洪,江雷.超疏水性塑料薄膜简易制备方法研究[J].塑料, 2006, 35: 39-42.
    [88] H. Yabu, M. Shimomura. Single-step fabricati on of transparent superhydrophobic porouspolymer films[J]. Chemistry of Materials, 2005, 17: 5231-5234.
    [89] K.C. Chang, Y.K. Chen, H. Chen. Fabrication of highly transparent and superhydrophobic silica-based surface by TEOS/PPG hybrid with adjustment of the pH value[J]. Surface and Coatings Technology, 2008, 202: 3822-3831.
    [90] K.C. Chang, Y.K. Chen, H. Chen. Fabrication of superhydrophobic silica-based surfaces with high transmittance by using polypropylene and tetraeyhoxysilane precursors[J] . Journal of Applied Polymer Science, 2008, 107: 1530-1538.
    [91] N.J. Shirtcliffe, G. McHale, M.I. Newton, C.C. Perry. Intrinsically super-hydrophobic organ-silica sol-gel foams[J]. Langmuir, 2003, 19: 5626-5631.
    [92] Q.F. Xu, J.N. Wang, I.H. Smith, K.D. Sanderson. Superhydrophobic and transparent coatings based on removable polymeric spheres[J]. Journal of Materials Chemistry, 2009, 19: 655-660.
    [93] T.L. Sun, G.J. Wang, L. Jiang, et al. Control over the Wettability of an Aligned Carbon Nanotube Film[J]. J. Am. Chem. Soc., 2003, 125: 14996-14997.
    [94]郭敏,刁鹏,蔡生民,刘忠范.表面修饰引发的纳米棒阵列膜的超疏水性[J].高等学校化学学报. 2004, 25: 547-549.
    [95] K.K.S. Lau, J. Bico, K.B.K. Teo, et al. Superhydrophobic Carbon Nanotube Forests[J]. Nano Letters, 2003, 3: 1701- 1705.
    [96] X. Wu, L. Zheng, D. Wu. Fabrication of superhydrophobic surfaces from microstructured ZnO-based surfaces via a wet-chemical route[J]. Langmuir, 2005, 21: 2665-2667.
    [97] M. Jin, X. Feng, L. Feng, T. Sun, J. Zhai, T. Li, L. Jiang. Superhydrophobic aligned polystyrenenanotube films with high adhesive force[J]. Adv. Mater. 2005, 17: 1977-1981.
    [98]王燕华,钟莲,刘圆圆,姜泉良,郭向阳,王佳.镁基体超疏水表面制备及表征[J].腐蚀科学与防护技术. 2010, 22: 329-332.
    [99] J. Bravo, L. Zhai, Z.Z. Wu, R.E. Cohen, M.F. Rubner. Transparent superhydrophobic films based on silica nanoparticles[J] .Langmuir, 2007, 23: 7293-7298.
    [100]李松梅,周思卓,刘建华.铝合金表面原位自组装超疏水膜层的制备及耐蚀性能[J]. Acta Phys. -Chim. Sin., 2009, 25: 2581-2589.
    [101] Y. Li, F. Liu, J.Q. Sun. A facile layer-by-layer deposition process for the fabrication of highly transparent superhydrophobic coatings[J]. Chemical Communications, 2009, 19: 2730-2732.
    [102]李杰,张会臣,连峰,庞连云.基于激光加工和自组装技术硅基底超疏水表面的制备[J].功能材料. 2010, 41(9): 1618-1622.
    [103]白硕,杨凌露,等.具有超疏水性质的图案化Ag膜[J].物理化学学报, 2006, 22: 1296-1299.
    [104] X.Y. Song, J. Zhai, Y.L. Wang. Fabrication of super-hydrophobic surfaces by self-assembly and their water-adhesion properties[J]. J Phys Chem B, 2005, 109: 4048-4052.
    [105]贾若琨,杨莹,罗娟,甄丽颖.溶剂散逸自组装法制备超疏水针垫阵列膜[J].应用化学. 2010, 9: 1046-1049.
    [106] K.S. Liu, M.L. Zhang, J. Zhai et al. Bioinspired construction of Mg-Li alloys surfaces with stable superhydrophobicity and improved corrosion resistance[J]. Appl Phys Lett, 2008, 92, 183103: 1-3.
    [107] B.T. Qian, Z.Q. Shen. Fabrication of superhydrophobic surfaces by dislocation-selective chemical etching on aluminum, copper, and zinc substrates[J]. Langmuir, 2005, 21: 9007-9009.
    [108] Y.H. Wang, W. Wang, L. Zhong et al. Super-hydrophobic surface on pure magnesium substrate by wet chemical method[J]. Applied Surface Science, 2010, 256: 3837-3840.
    [109]赵坤,杨保平,张俊彦.铝合金基体超疏水表面的制备及防冰霜性能研究[J].功能材料. 2010, 1: 80-88.
    [110] K. Tsujii, et al. Super Oil-Repellent Surfaces[J]. Angew Chem Int Ed Engl, 1997, 36: 1011-1012.
    [111] H. Yan, K. Kurogi, H. Mayama, K. Tsujii. Environmentally stable super water-repellent poly(aldylpyrrole)films[J]. Anges. Chem. Int.Ed. 2005, 44: 3453-3456.
    [112] N.J. Shirtcliffe, G. McHale, M.I. Newton, G. Chabrol, C.C. Perry. Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces[J]. Adv. Mater. 2004, 16: 1929-1932.
    [113] J.T. Han, Y. Jang, D.Y. Lee, J.H. Park, S.H. Song, D.Y. Ban, K. Cho. Fabrication of a Bionic Superhydrophobic Metal Surface by Sulfur-Induced Morphological Development[J]. J. Mater.Chem. 2005, 15: 3089-3092.
    [114] M. Niemitz, G. Ko?m, Wettability of poly(2,2-bithienyl-5,5-diyl)layers[J]. Angew. Mackromol. Chem, 1991, 185: 147-154.
    [115] C.H. Wang, Y.Y. Song, J.W. Zhao. Semiconductor supported biomimetic superhydrophobic gold surfaces by the galvanic exchange reaction[J]. Surface Science. 2006, 600: 38-42.
    [116] M. Li, J. Zhai, H. Liu et al. Electrochemical Deposition of Conductive Superhydrophobic Zinc Oxide Thin Films[J]. Journal of Physical Chemistry. 2003, 107: 9954-9957.
    [117] Q. Xie, G. Fan, N. Zhao, J. Xu, J. Dong, L. Zhang, Y. Zhang, Facile creation of a bionic super-hydrophobic block copolymer surface[J]. Adv. Mater. 2004, 16: 1830-1833.
    [118] Q.D. Xie, J. Xu, L. Jiang, et al. Facile Creation of a Super-Amphiphobic Coating Surface with Bionic Microstructure[J]. Adv. Mater. 2004, 16: 302-305.
    [119]康志新,赖晓明,王芬,龙雁,李元元. Mg-Mn-Ce镁合金表面超疏水复合膜层的制备及耐腐蚀性能[J].中国有色金属学报. 2011, 21: 283-289.
    [120] J. Liang, Z.G. Guo, J. Fang, J.C. Hao. Fabrication of Superhydrophobic Surface on Magnesium Alloy[J]. Chem Lett, 2007, 36: 416-417.
    [121] T. Ishizaki, N. Saito. Rapid Formation of a Superhydrophobic Surface on a Magnesium Alloy Coated with a Cerium Oxide Film by a Simple Immersion Process at Room Temperature and Its Chemical Stability[J]. Langmuir 2010, 26: 9749-9755.
    [122] T. Liu, L.H. Dong, T. Liu, Y.S. Yin. Investigations on reducing microbiologically– in?uenced corrosion of aluminum by using super-hydrophobic surfaces[J]. Electrochimica Acta, 2010, 55: 5281-5285.
    [123] N. Edwin, O. Markus, S. Bernhard. Lotus effect surfaces[J]. Macromolecular Symposia, 2002, 187: 677-682.
    [124]王苏浩,李梅,苏彬,路庆华.聚苯硫醚超疏水复合涂层的制备与性能[J].高分子学报, 2007, 7: 624-627.
    [125] M.T. Khorasani, H. Mirzadeh, Z. Kermani. Wet tability of porous polydimet hylsiloxane surface: Morphology study[J] . J Appl Sur Sci, 2005, 242: 339-345.
    [126] D.A. Brevnov, M.J. Barela, M.J. Brooks, et al. Fabrication of anisotropic superhydrophobic nanoporous membranes by plasma polymerization of C4F8 on anodic aluminum oxide[J]. J. Electrochem. Soc. 2004, 15: B484-489.
    [127]曾荣昌,柯伟,徐永波. Mg合金的最新发展及应用前景[J].金属学报, 2001, 37: 673-685.
    [128]贺忠臣,丁毅,等. AZ31镁合金表面碱性化学镀镍工艺研究[J],轻合金加工技术, 2008, 2: 28-30.
    [129]王立平,薛群基,等.镁合金表面超疏水表面的制备[P].中国专利: 200710078089.3, 2007,12, 25.
    [130]黄昆原著,韩汝琦改编.固体物理学[M],北京:高等教育出版社, 2002.
    [131]竺际舜.无机化学[M].北京:科学出版社, 2008.
    [132] N. Cai, C. Liu, N. Brown, B. Meenan. An exploratory study of the effects of the dielectric-barrier-discharge surface pre-treatment on the self-assembly processes of a (3-Aminopropyl) trimethoxysilane on glass substrates[J]. Appl. Surf. Sci. 2007, 253: 6932-6938.
    [133] Z.L. Li, W. Han, D. Kozodaev, JoséC.M. Brlkken-zijp, Gijsbertu de With, Peter C. Thüne. Surface properties of poly(dimethylsiloxane)-based inorganic/organic hybrid materials[J]. Polymer. 2006, 47: 1150-1158.
    [134] R. Rosliza, H.B. Senin, W.B. Nik. Electrochemical properties and corrosion inhibition of AA6061 in tropical seawater[J]. Colloids Surf. A., 2008, (2~3): 185-189.
    [135] X.Y. Fu, X.H. He. Fabrication of super-hydrophobic surfaces on aluminum alloy substrates[J]. Applied Surface Science, 2008, 255: 1776-1781.
    [136]李廷先,李琪敏,张文婷,郭培. 7A04铝合金硬质阳极氧化工艺研究[J].材料导报, 2007, 21: 410-411.
    [137] J. Lahann, S. Mitragotri, T. N. Tran, H. Kaido, J. Sundaram, I. S. Choi, S. Hoffer, G. A. Somorjai, R. Langer. A Reversibly Switching Surface[J]. Science , 2003, 299: 371.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700