聚-L-乳酸及其复合材料的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
聚-L-乳酸(PLLA)因其良好的生物相容性和可生物降解性,已应用于骨科替代材料等领域,但由于存在炎症反应和不具有生物活性、无骨传导能力等问题,限制了其进一步的应用。目前对PLLA材料的研究热点之一是通过与玻璃陶瓷复合,实现其生物降解可控性和生物活性的有机结合,应用于不同的植入环境。
     本文主要制备了具有超高分子量的聚-L-乳酸,通过采用纤维模压成型的方法获得了具有高强度的PLLA材料,并对PLLA等温结晶和非等温结晶进行了深入的理论研究。同时通过将PLLA和生物玻璃(BG)复合、成型,制备了具有生物活性和可降解性的复合材料,研究了生物玻璃改性与含量对复合材料力学性能的影响,并进一步研究了PLLA和PLLA/BG的体外降解行为。此外采用体外细胞培养和体内试验对PLLA/BG复合材料进行了生物学评介。
     首次合成了具有超高重均分子量的PLLA。以L-乳酸为原料制备L-丙交酯(LLA),采用水洗-重结晶法纯化LLA,结果表明,采用水洗-重结晶法可得到高纯度的LLA,其收率达40.6%,比传统的重结晶法提高约12.1%。采用开环聚合法在140℃,单体与催化剂摩尔比([M]/[I])为12000,聚合时间为24小时的最佳工艺条件下制备的PLLA重均分子量达102.4×10~4,分子量分布窄,其分布系数为1.16。
     改进传统溶液纺丝技术,首次提出了稀溶液沉析纺丝的新方法。采用稀溶液沉析纺丝方法制备了PLLA纤维,利用纤维取向模压技术制备了高强度的PLLA材料,并研究了成型工艺对材料力学性能的影响。研究结果表明,当PLLA溶液浓度为0.05g·mL~(-1)时,用稀溶液沉析纺丝可制得取向性能较好的具有多孔结构的PLLA纤维。将PLLA纤维在温度185℃,压力130MPa的条件下模压成型,材料的抗弯强度达238.8±6.5MPa,剪切强度达127.5±3.5MPa,其力学性能比传统成型方法大幅度提高。
     系统深入地研究了PLLA的等温和非等温结晶行为。非等温结晶结果表明,PLLA在低的降温速率(2℃·min~(-1))下的结晶在118℃伴随有结晶区域的转变。玻璃化温度和结晶度随着降温速率的降低而增大。随着降温速率的降低,球晶尺寸增大,当降温速率大于10℃·min~(-1)时,PLLA接近为无定形材料。当PLLA在90℃-140℃等温结晶时,Avrami指数为n=3.01±0.13,表明PLLA以球晶方式生长。利用Hoffman-Lauritzen理论对PLLA的等温结晶机理进行了分析,研究表明结晶RegimeⅡ和RegimeⅢ的转变温度为118℃左右,成核常数Kg(Ⅱ)和Kg(Ⅲ)分别为6.025×10~5K~2和1.307×10~6K~2,且Kg(Ⅲ)/Kg(Ⅱ)为2.17,接近2,与LH理论一致。
     采用溶胶—凝胶法制备了CaO-SiO_2-P_2O_5生物玻璃,并进行了体外活性实验(invitro)。生物玻璃具有典型的介孔结构,介孔分布较窄,孔径小于10 nm。经模拟体液(SBF)浸泡后,在生物玻璃表面有一层碳酸羟基磷灰石颗粒(0.5-10μm)生成,表现出优异的生物活性。
     采用蒸发溶剂的方法制备了PLLA/BG薄膜,并采用模压成型的方法首次制备了PLLA/BG复合生物材料,通过控制生物玻璃的含量实现对PLLA/BG复合材料初始强度的调控。同时对PLLA/BG薄膜进行了体外生物活性研究;以3-氨丙基-三甲氧基硅烷(APS)作为偶联剂,对生物玻璃进行了表面改性,并考察了APS改性和生物玻璃含量对复合材料力学性能的影响。研究结果表明,PLLA/BG薄膜在SBF中浸泡3天后在表面生成了碳酸羟基磷灰石的棒状晶体,具有择优生长现象,14天后,在复合材料的表面同时有棒状晶体和HCA层生成,表现出较好的生物活性。生物玻璃表面经APS处理后,颗粒分散均匀,同时改善了其在PLLA基质中的分散性,提高了复合材料的力学强度,生物玻璃含量为10wt%时,PLLA/BG材料的抗弯强度达153.9±8.8MPa。PLLA/BG复合材料的抗弯强度和剪切强度随生物玻璃含量的增大而下降,但其抗弯模量随之而升高。随着生物玻璃含量的增加,PLLA/BG材料逐步具有典型脆性断裂的特征。
     系统研究了PLLA和PLLA/BG材料在PBS中的降解行为,并首次得出了PLLA/BG降解的动力学方程。结果表明,PLLA和PLLA/BG材料的吸水率、失重率随降解的进行逐渐增加,而PBS溶液的pH值、材料的力学性能和相对分子量则呈降低趋势,分子量分布逐渐变宽,但PLLA/BG复合材料比PLLA变化较慢。PLLA的熔融温度、熔化焓和结晶度随降解的进行都呈现出先升高后降低的趋势。PLLA的降解属于本体水解,呈“双态降解”规律。生物玻璃的存在并未改变PLLA的降解机理,但减缓了酸对PLLA的催化降解作用。两种材料的降解均符合一级反应动力学,37℃时,PLLA和PLLA/BG在PBS中的降解速率常数分别为9.2×10~(-3)day~(-1)和6.4×10~(-3)day~(-1)。
     采用体外细胞试验和体内试验对PLLA/BG复合材料进行了细胞毒性和生物相容性评介,同时考察了PLLA/BG复合材料与组织界面的成骨能力,并成功地进行了兔子股骨髁间骨折试验。结果表明,PLLA/BG复合材料无急性毒性,无致热原,不导致溶血,无遗传毒性,无抑菌作用,无非感染性炎症;该复合材料有良好的组织相容性,并具有较好的成骨能力;兔子股骨髁间骨折试验表明复合材料其强度以及降解特性可以维持兔股骨髁间骨折固定的初始稳定性,8周后骨折基本愈合,是一种具有发展前途的骨折内固定材料。
Poly-L-lactide (PLLA) with the merits of good biocompatibility and biodegradability has been applied to bone replacement materials. A major drawback of PLLA, once implanted, however, is the release of acidic degradation products which may lead to inflammatory responses. Another limitation is its lack of bioactivity, which means, for the case of bone tissue engineering, that it do not allow bone apposition or bonding on the polymer surface. Composite materials, based on PLLA and ceramic, with bioactivity and different biodegradation rate have attached a lot of attention in the biomaterials field and become a hot research topic.
     In this paper, poly-L-lactide with ultra-high weight average molecular mass was synthesized, and PLLA materials were fabricated by fiber oriented moulding, moreover, non-isothermal and isothermal melt crystallization of PLLA were investigated. PLLA/BG composite was obtained by mouding, the effects of modification and content of bioactive glass on the properties of PLLA/BG were investigated, and the degradation behaviors of PLLA and PLLA/BG in vitro were also studied. Besides, the toxicity and biocompatibility of PLLA/BG have been evaluated in vitro and in vivo.
     Poly-L-lactide with ultra-high weight average molecular mass was synthesized for the first time by ring-opening polymerization from high purity L-lactide. Combinations of watering and two times' recrystallization can improve the purity and the yield of L-lactide. The yield of L-lactide reachs 40.6% and increases 12.1% compared with the simplex recrystallization method. Poly-L-lactide with a weight average molecular mass of about 102.4×10~4 and polydispersity index of 1.16 was obtained when polymerization was conducted with molar ratio of monomer to initiator ([M]/[I]) 12000 for 24 h at 140℃.
     A new technique of diluted solution extracting and spinning was presented for the first time to obtain PLLA fiber. PLLA materials were fabricated by fiber oriented moulding and the effects of molding pressure and temperature on the mechanical strength of PLLA were also investigated. The good oriented fiber with porous structure (0.1~1μm) was obtained by diluted solution extracting and spinning method. Bending and shearing strength of the samples increase firstly and then decrease with the increase of molding temperature and pressure. The bending and shearing strength are 238.8±6.5MPa and 127.5±3.5MPa, respectively, on conditions that molding temperature is 185℃and the pressure is 130MPa, which are enhanced more than traditional moulding methods.
     The influence of non-isothermal melt crystallization on thermal behavior and isothermal melt crystallization kinetics of PLLA were investigated. Crystallization performed at lower cooling rates (2℃·min~(-1)) is accompanied by a variation of the kinetics around 118℃. The glass transition temperature of PLLA decreases with increase of cooling rate, and the crystallinity at the end of crystallization increases with decreasing cooling rate. The size of PLLA spherulites increases with a decrease in the cooling rate, and PLLA becomes almost amorphous cooled at rapid rate (>10℃·min~(-1)). PLLA exhibits an Avrami crystallization exponent n = 3.01±0.13 in isothermal crystallization in the range from 90℃to 140℃. According to Hoffman-Lauritzen theory, two crystallization regime are identified with a transition temperature occurring at 118℃, and the value of Kg(III)/Kg(II) is 2.17 [K_g(II)=6.025×10~5K~2, K_g(III)=1.307×10~6K~2].
     The bioactive glass of CaO-SiO_2-P_2O_5 was prepared by using the sol-gel method, and the bioactivity in vitro was investigated after soaking in the simulated body fluid (SBF) at 37℃. Bioactive glass is typical amorphous material with mesopore diameters varied from 1 to 10μm. After 7 days in SBF, the surfaces consisted of spheres with diameters ranging between 0.5μm to 10μm, which composed of needle-like crystallites with crystallinity similar to that of a biological apatite.
     PLLA/BG film was fabricated by a solvent evaporation technique and PLLA/BG composite materials were obtained for the first time by mouding method. The bioactivity of PLLA/BG film in vitro was also studied. The bioactive glass was modified by 3 -aminopropyltrimethoxysilane (APS), and the effects of APS modification and bioactive glass content on mechanical properties were also investigated. Rod-like HCA crystals deposited on the surface of PLLA/BG film after soaked in SBF for 3 days. Both rod-like crystals and HCA layer formed on the surface after 14 day in SBF. The high bioactivity of PLLA/BG composite indicates the potential of materials for integration with bone. Glass particles treated by APS are better incorporated into polymer-rich phase during the phase separation process. Therefore, an improved interface between PLLA and bioactive glass particles is formed with the coverage of PLLA on glass particles, and the mechanical properties were enhanced. Bending strength reaches 153.9±8.8MPa when the content of bioactive glass is 10 wt%. With the increasing of the amount of bioactive glass, the bending strength of composite decreases while the bending modulus increases. The shearing strength also decreases as the amount of bioactive glass increases. A typical morphology of brittle failure with a smooth fracture surface is observed with increasing bioactive glass content.
     The degradation behaviors of PLLA and PLLA/BG composite in PBS solution were investigated in detail, and the kinetics of PLLA/BG was obtained for the first time. The results indicate that mass loss, water uptake and polydispersity index of PLLA and PLLA/BG increase with the increasing time, however, pH value, mechanical strength and weight average molecular mass decrease. The melting temperature, melting enthalpy and crystallinity of PLLA firstly increase, and then decrease as the increasing degradation time. The degradation kinetics of PLLA and PLLA/BG composite are indicative of an autocatalysis process and simple bulk hydrolysis, and presented the modal of "biomodal degradation". The speed of degradation of PLLA/BG is slowed down by incorporating bioactive glass. The degradation behaviors of both PLLA and PLLA/BG comply with first-order kinetics, and the rate constants of the biodegradation process of PLLA and PLLA/BG are 9.2×10~(-3)day~(-1) and 6.4×10~(-3)day~(-1), respectively. The probability of PLLA/BG composite for internal fixation of bone fracture was expounded and proved from the point of the initial strength, the retention of strength and the modulus of the composite.
     The toxicity and biocompatibility of PLLA/BG composite materials were evaluated in vitro and in vivo, and the bone-bonding ability of PLLA/BG composite was also carried out. The rabbits with malleolar fracture were treated successfully by interal fixation using screws made of PLLA/BG composite. PLLA/BG composite has no acute toxicity, hemolysis, pyrogen characteristic, bacteria-restraining and nonbacterial inflammatory. The results of biocompatibility test show that the bioactive glass existing in the PLLA composite facilitates both adhesion and proliferation of rat fibroblast on the PLLA/BG composite film and extracting solution. A good ability of bone-bonding of PLLA/BG was deterinined by implantation into rabbit muscle. Malleolar fracture of rabbits was healed in 8 weeks in the main, which indicates that PLLA/BG has a great prospect for fixation of bone fracture.
引文
[1]孙雪,奚廷斐.生物材料和再生医学的进展.中国修复重建外科杂志,2006,20(2):189-193
    [2]王迎军,刘康时.生物医学材料的研究与发展.中国陶瓷,1998,34(5):26-29
    [3]王勃生,孙福玉,孟庆恩,等.第三代生物医学材料的研究与发展.材料科学与工程,1994,13(1):1-4
    [4]王勃生,孟庆恩,高振英,等.生物材料的战略意义及近期发展方向.材料导报,1995,9(3):1-5
    [5]Karp Jeffrey M,Dee,Kay C.Opinions and trends in biomaterials education:Report of a 2003 Society for Biomaterials survey.Journal of Biomedical Materials Research,2004,70(1):1-9.
    [6]Zhou H.International Sysposium on Biomaterials and Fine Polymers[R].Wuhan University of Technology,1994.
    [7]闫玉华,张宏泉,李世普.生物陶瓷及制品的研究现状和发展前景.中国陶瓷,1998,34(2):36-37
    [8]钱国栋,王民权.生物陶瓷的发展、应用与展望.材料科学与工程,1995,14(1):16-20
    [9]黄学辉,孙淑珍,钱进夫,等.TCP-HA-BG多孔复合生物陶瓷降解性能研究.武汉工业大学学报,1995,17(1):1-3
    [10]王迎军,刘康时,司徒朴,等.多孔型经基磷灰石颌面骨的研制与临床应用.中国陶瓷,1995,31(1):7-9
    [11]Stobierak E,Paszkiewicz Z.Porous hydroxyapatite ceramica.Journal of Materials Science Letters,1999,18:1163-1165.
    [12]储成林,朱景川,王世栋.羟基磷灰石(HA)生物复合材料的研究进展.材料导报,1999,13(2):51-54
    [13]Murray M,Wang J.An improvement in processing of hudroxyapatite cermics.J.Mater.Sci,1995,30:3061-3071
    [14]Suchanek W,Yoshimrua M.Processing and properties of hydroxyapatite-based biomaterials for use hard tissue replacement implants.J.Mater.Res,1998,(1):94-117.
    [15]薄颖慧,廖凯荣,卢泽俭,等.聚乳酸/羟基磷灰石复合材料的研究.中山大学学报(自然科学版),1999,38(3):43-47
    [16]沈序辉,宋晨路,沈鸽,等.有机-羟基磷灰石复合骨替代材料.材料科学与工程,1999,18(4):85-90
    [17]Vergeten C C P M,De Wijin J R,Blitterswijk C A V,et al.Hydroxyapatite /poly(L-lactide)composites:An animal study on push-out strengths and interface histology.J Biomed Mater Res,1993,27:433
    [18]Jalil R U.Biodegradable poly(lactic acid)and poly(lactide-co-glycolide)polymers in sustained drug delivery.Drug Development and Industrial Pharmacy,1990,16(16):2353-5367
    [19]黄俊豪.生物降解材料-聚乙交酯医用纤维的研究.华南理工大学学报(自然科学版),1994,22(6):71-79
    [20]Manninen M J.Self-reinforced poly- L -lactide screws in the fixation of cortical bone osteotomies in rabbits.J Mater Sci:Mater Med,1993,4:179-185
    [21]Suuronen R,Pohjonen T,Taurio R,etal.Strength retention of self-reinforced poly-L-lactide screw sand plates:an in vivo and in vitro study.J Mater Sci:Mater in Med,1992,3:426-432
    [22]Viljanen J,Kinnunen J,Bondestam S,et a.Bone changes after experimental osteotomies fixed with absorbable self-reinforced poly-L-lactide screws or metallic screws studied by plain radiographs,quantitative computed tomography and magnetic resonance imaging.Biomaterials,1995,16(17):1353-1358
    [23]Ruan J M.Biocampatbility evaluation of biomaterials in vitro.Glasgow Strathclycle University PHD,1998,40:37-76
    [24]Cohen J,Wulff J.Clinical failure caused by corrosion of a vitallium plate.J Bone Joint Surg Am,1972,54(3):617-628
    [25]Meinig R P,Rahn B,Perren S M,et al.Bone regeneration with resorbable polymeric membranes:treatment of diaphyseal bone defects in the rabbit radius with poly(L-lactide)membrane.J Orthop Trauma,1996,10(3):178-190
    [26]Bostman O M.Current concept review absorbable implants for the fixation of fracture.J Bone Joint Surg,1991,73(A):148-153
    [27]Zhang R,Ma P X.Porous poly(L-lactic acid)/apatite composites created by biomimetic process.J Biomed Mater Res,1999,45(4):285-293
    [28]Zhang R,Ma P X.Poly(a-hydroxyl acids)/hydroxyapatite porous composites for bone-tissue engineering:I.Preparation and morphology.J Biomed Mater Res,1999,44(4):446-55
    [29]Chu C C.Degradation phenomena of two linear aliphatic polyester fibres used in medicine and surgery.Polymer,1985,26(4):591-594
    [30]Gilding D K,Reed A M.Biodegradable polymers for use insurgery-polyglycolic/poly (actic acid)homo-and copolymers.Polymer,1979,12(20):1459-1964
    [31]张国栋.聚乳酸的研究进展.化学进展,2000,12(1):89-102
    [32]邹翰.21世纪我国生物材料科学展望.物理,1997,26(5):264-267
    [33]James Lunt.Large-scale Production,properties and commercial applications of polylactic acid polymer.Polymer Degradation and Stability,1998,59:145-152
    [34]Ajioka M,Enomoto K,Suzuki K,et al.Bull Chem Soc Jpn,1995,68(8):2125-2135
    [35]Otera J,awada K,Yano T.Chem Lett,1996,3:225-226
    [36]王征,王婷,赵学明.直接缩合法合成聚乳酸.天津大学学报,2000,33(1):48-50
    [37]Japan Steel Works,Ltd.Process for producing lactic acid polymers and a process for the direct production of shaped articles from lactic acid polymers[P].US 5,574,129,1996-11-12
    [38]秦志忠,杨百春,曹雪琴.生物降解材料-聚乳酸的直接合成研究.合成技术及应用,1999,15(1):12-14
    [39]张贞裕.生物降解材料聚丙酯的研究(Ⅱ)-丙交酯单体的纯化方法研究.黑龙江大学自然科学学报,1998,15(1):110-112
    [40]Matsumura S,Mabuchi K,Toshima K.Novel ring-opening.Polymerization of lactide by lipase.Macromol.Symp.,1998,130:285-304
    [41]Jacbson,Degeep,Fritz,et al.Polylactide(PLA)-a new way of production.Polym.Eng.Sci.,1999,39(7):1311-1319
    [42]李汝珍,苏涛.丙交酯中残存乳酸和水的定量测定.化学世界,2002,2:103-106
    [43]张科,王鹏.聚乳酸的微波辐射合成方法研究.高分子材料科学与工程,2004,20(3):46-48
    [44]魏世成,郑谦,邓先模,等.超高分子量聚D,L乳酸小夹板螺钉的组织反应与降解动物实验研究.华西口腔医学杂志,1999,17(1):21-24
    [45]熊成东,戴琦,邓先模.聚乳酸-聚丙二醇嵌段共聚物的合成及表征.化学通报,1994,5:59-61
    [46]张国栋,冯新德,顾忠伟.端基含葡氨糖衍生物的聚乳酸的合成与表征.高分子学报,1998,4:509-512
    [47]Li Y X,Volland C,Kissel T.Biogradable brushlike graft polymers from poly(D,L-Lactide)or poly(D,L-Lactide-coglycolide)and charge-modifiede,hydrophilic dextrans as backbone-in-vitro degradation and control.Polymer,1998,39(14):3087-3097
    [48]Kissel T,Brich Z,Bantle S,et al.Synthesis of polyglycolic/poly(lactic acid)as backbone-in-vitro degradation and control.J Control Release,1991,16:27-42
    [49]宋谋道,朱吉亮,张邦华,等.可生物降解的聚乳酸弹性体的性能研究.高分子学报,1998,4:454-458
    [50]Achim Gopferich,Lieb E,Hacker M.Mediating specific cell adhesion to low-adhesive diblock copolymers by instant modification with cyclic RGD peptides.Biomaterials,26(15):2333-2341.
    [51]马建标.功能高分子材料[M].北京:化学工业出版社,2000.343
    [52]Breitenbach A,Kissel T.Biodegradable comb polyesters:Part 1.Synthesis,characterization and structural analysis of poly(lactide)and poly(lactide-co-glycolide)grafted onto water-soluble poly(vinyl alcohol)as backbone.Polymer,1998,39(14):3261-3271.
    [53]曹雪波,王远亮,潘君,等.马来酸酐改性聚乳酸的力学性能研究.高分子材料科学与工程,2002,18(1):115-118
    [54]潘君,王远亮,曹雪波,等.大鼠成骨细胞在聚乳酸、马来酸酐改性聚乳酸表面的粘附性能研究.生物化学与生物物理进展,2001,28(5):688-690
    [55]Zhang Yeli,Chu Chih-Chang.Biodegradation of hydrophilic-hydrophobic hydrogels and its effect on albumin release.Journal of Materials Science:Materials in Medicine,2002,13(7):667-676.
    [56]Hyun Do Kim,Eun Hee Bae.Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation.Biomaterials,2004,25(12):2319-2329
    [57]Vivares D,Belloni L,Tardieu A.Catching the PEG-induced attractive interaction between proteins.European Physical Journal E,2002,9(1):15-25
    [58]Sun Qianyao,Beelen T P M,PEG-mediated silica pore formation monitored in situ by USAXS and SAXS:systems with properties resembling diatomaceous silica.Journal of Physical Chemistry B,2002,106(44):11539-11548.
    [59]Cai Kaiyong,Yao Kangde,Hou Xin.Improvement of the functions of osteoblasts seeded on modified poly(D,L-lactic acid)with poly(aspartic acid).Journal of Biomedical Materials Research,2002,62(2):283-291.
    [60]Cai Kaiyong,Yao Kangde,Influence of different surface modification treatments on poly(D,L-lactic acid)with silk fibroin and their effects on the culture of osteoblast in vitro.Biomaterials,2002,23(7):1603-1611.
    [61]Cai Kaiyong,Yao Kangde,Cui,Yuanlu.Surface modification of poly(D,L-lactic acid)with chitosan and its effects on the culture of osteoblasts in vitro.Journal of Biomedical Materials Research,2002,60(3):398-404.
    [62]Maruyama Atsushi,Ohnishi Yu-ichiro,Polycation comb-type copolymer reduces counterion condensation effect to stabilize DNA duplex and triplex formation.Colloids and Surfaces B:Biointerfaces,1999,16(1)273-280..
    [63]Ooya Tooru,Yamashita Atsushi,Effects of polyrotaxane structure on polyion complexation with DNA.Science and Technology of Advanced Materials,2004,5(3):363-369.
    [64]Hyun Do Kim,Eun Hee Bae,Ick Chan Kwon.Effect of PEG-PLLA diblock copolymer on macroporous PLLA scaffolds by thermally induced phase separation.Biomaterials,2004,25(12):2319-2329.
    [65]郭颖志,张连来.正交设计法在聚乳酸微球制备工艺上的应用.高分子材料科学与工程,1999,15(3):126-128
    [66]Swiecki Z,Wala D,Rosiek G.Mechanical features of biocomposites containing porous corundum grains.Journal of Materials Processing Technology,2000,106(3):136-140
    [67]Liu Rong,Ma Guanghui,Meng Fan-Tao.Preparation of uniform-sized PLA microcapsules by combining Shirasu Porous Glass membrane emulsification technique and multiple emulsion-solvent evaporation method.Journal of Controlled Release,2005,103(1):31-43.
    [68]Aslan S,Calandrelli L,Laurienzo P.Poly(D,L-lactic acid)/poly(ε-caprolactone)blend membranes:preparation and morphological characterization.Journal of Materials Science,2000,35(7):1615-1622.
    [69]Martin O,Averous L.Poly(lactic acid):Plasticization and properties of biodegradable multiphase systems.Polymer,2001,42(14):6209-6219.
    [70]He Yong,Asakawa Naoki.Blends of poly(3-hydroxybutyrate)/4,4 prime -thiodiphenol and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/4,4 prime -thiodiphenol:Specific interaction and properties.Journal of Polymer Science,Part B:Polymer Physics,2000,38(22):2891-2900.
    [71]Scapin S M N,Silva D R M.Use of triethylcitrate plasticizer in the production of poly-L-lactic acid implants with different degradation times.Journal of Materials Science:Materials in Medicine,2003,14(7):635-640.
    [72]Laverde German V,McCarthy S P.Analysis of the mechanical properties of biodegradable films made from blends of polylactic acid(PLA)and polyesters by blown film extrusion.Annual Technical Conference - ANTEC,Conference Proceedings,1998,2:2515-2519
    [73]Ganster J,Fink H P,Pinnow M.High-tenacity man-made cellulose fibre reinforced thermoplastics 3 Injection moulding compounds with polypropylene and alternative mat rices.Cmposites Part A:Appl Sci Manuf,2005,260-268
    [74]张兴栋.生物医学材料.材料科学技术百科全书.北京:中国大百科全书出版社,1995.927
    [75]齐锦刚,曹丽云,王建中,等.碳纤维增强聚乳酸复合材料体外降解特性.复合材料学报,2005,22(2):34
    [76]Bonfield W.Composites for bone replacement.J Biobed Eng,1988,10(6):522-529
    [77]Shikinami Y,Okuno M.Bioresorbable devices made of forged composites of hydroxyapatite particles and poly-L-lactide(PLLA).Biomaterials,2001,22(23):197-205
    [78]Kasuga Toshihiro,Nogami Masayuki.Bonelike apatite coating on skeleton of poly(lactic acid)composite sponge.Materials Transactions,2004,45(4):989-993.
    [79]Kasuga Toshihiro,Maeda Hirotaka,Kato Katsuhito.Preparation of poly(lactic acid)composites containing calcium carbonate(vaterite).Biomaterials,2003,24(19):3247-3253
    [80]Kasuga Toshihiro,Ozaki Shin-Ya.Mechanical properties of polylactic acid composites containing β-Ca(PO_3)_2 fibers in simulated body fluid.Journal of Materials Science Letters,1999,18(24):2021-2023
    [81]Hench L L,Splinter R J,Allen W C,et al.Bonding mechanism at the interface of ceramic prosthetic materials.J Biomed Mater Res Symp,1971,2:117-141.
    [82]Matthew B H.生物玻璃的研究进展和临床应用.中医正骨,2001,13(2):58-62
    [83]Hench L L.Biomaterials:a forecast for the future.Biomaterials,1998,19(2):1419-1423.
    [84]Peitl O,Zanotto E D,Hench L L.Highly bioactive P_2O_5-Na_2O-CaO-SiO_2glass-ceramics.Jounal of Non-crystalline solids,2001,292:115-126
    [85]Kokubo T,Kushitani H,Sakka S,et al.Solutions able to reproduce in vivo surface-structure changes in bioactive glass-ceramic A-W.J Biomed Mater Res,1990,24:721-734.
    [86]Zhong J P,Greenspan D C.Bioglass surface reactivity:from in vitro to in vivo.In:LeGeros R Z,LeGeros J P,editors,Bioceramics,vol.11.New York:World Scientific,1998:415-418.
    [87]Sudo H,Kodama H A,Amagai Y,et al.In vitro differentiation and calci.cation of new clonal osteogenic cell line derived from new born mouse calvaria.J Cell Biol, 1983,96:191-198.
    [88]Jaakkola T,Rich J,Tirri T,et al.In vitro Ca-P precipitation on biodegradable thermoplastic composite ofpoly(e-caprolactone-co-dl-lactide)and bioactive glass (S53P4).Biomaterials,2004,25:575-581
    [89]Onish H.Particulate bioglass compared with hydroapatite as a bone graft substitute.Clinical orthopaedics and related research,1997,334:316-325.
    [90]J-szamet L R,DarbarG S,Griffith S,et al.Particulate bioglass as a grafting materials in the treatment of periodontal defects.J.Clin.Periodontal,1997,24:410-423.
    [91]Stamley H R,Hall M B,Clark A E,et al.Using 45S5 bioglass cones as endosseous ridge mainterance implants to prevent materials to prevent alveolar ridge resorption:a 5-year revaluation.Int.J.Oral.Maxilloface Implant,1997,12(1):95-112.
    [92]Clark A,Oguntebi B,Wilson J.Pulp capping with bioglass and autologous demineralized dentin in miniature swine.J.Endod,1995,21(2):79-86.
    [93]Luderer A A.Glass ceramic mediated magnetic induced localized hypothermia:response of a murine mammary carcinoma.Radiation Res,1983,94:190-208.
    [94]孟雷,陈奇.生物微晶玻璃的最新进展.硅酸盐通报,2004,(3)60-63
    [95]Kokubo T,Ito S,Sakka S.Formation of a high strength bioactive glass-ceramic in the system MgO-CaO-SiO_2-P_2O_5.J Mater Sci,1980,21(2):536-540
    [96]Zhang Y,Santos J D.Crystallization and microstructure analysis of calcium phosphate-based glass ceramics for biomedical applications.J Non-Cryst Solids,2000,272(1):14-21
    [97]刘贵志.Si-Na_2O-CaO-P_2O_5-B_2O_3系统生物玻璃在体内的特性.特种玻璃,1990,(7):6-14
    [98]李世普.特种陶瓷工艺学[M].武汉:武汉工业大学出版社,1997:98-105
    [99]蔡玉荣,武军,周廉.生物玻璃材料研究进展.材料导报,2002,16(12):40-42
    [100]严建华,冯乃谦.磷酸盐多孔微晶玻璃的研制及其在无机抗菌剂方面的应用.玻璃与搪瓷,2000,(2):48-52
    [101]Vallet-Regi M,Victoria Ragel C,.Salinas A J.Glasses with Medical Applications.European Journal of Inorganic Chemistry,2003,23(6):1029-1042
    [102]Pereira D,Cachinho S,Ferro M C,et al.Surface behaviour of high.MgO-containing glasses of the Si-Ca-P-Mg system in a synthetic physiological fluid.Journal of the European Ceramic Society 2004,24:3693-3701
    [103]Julian R,Jones S,Ahir S,et al.Large-scale production of 3D bioactive glass macroporous scaffolds for tissue engineering.Journal of Sol-Gel Science and Technology,2004,29:179-188
    [104]Sepulveda P,R Jones J,Hench L L.J.Bioactive sol-gel foams for tissue repair.Biomed Mater Res,2002,59:340-348
    [105]Ijiri S,Nakamura T,Fujisawa Y,et al.Ectopic bone induction in porous apatite-wollastonite-containing.J.Biomed Mater.Res,1997,35:421-432
    [106]Ylanen H,Karlsson K H,Itala A,et al.Effect of immersion in SBF on porous bioactive bodies made by sintering bioactive glass microspheres.J.Non-crystal Solids,2000,275:107-115
    [107]和峰,刘昌胜.骨修复用生物玻璃研究进展.玻璃与搪瓷.2004,32(4):54-58
    [108]和峰,刘昌胜.骨修复用生物玻璃研究进展(续).玻璃与搪瓷.2004,32(5):45-50
    [109]Padilla S,Roman J,Carenas A,et al.The influence of the phosphorus content on the bioacfivity of sol-gel glass ceramics.Biomaterials,2005,26:475-483
    [110]李霞.溶胶-凝胶法CaO-P_2O_5-SiO_2系生物玻璃的制备及机理探讨.玻璃与搪瓷,2003,31(1):37-40
    [111]Joni Korventausta,Mika Jokinena,Ari Rosling,et al.Calcium phosphate formation and ion dissolution rates in silica gel-PDLLA composites.Biomatedals,2003,24:5173-5182
    [112]Jianli Liu,Xigeng Miao.Sol-gel derived bioglass as a coating material for porous alumina scaffolds.Ceramics International,2004,30:1781-1785
    [113]Santos E M.,Radin S,Ducheyne P.Sol-gel derived carrier for the controlled release of proteins.Biomaterials,1999,20:1695-1700
    [114]Li R,Clark A E,Hench L L.An investigation of bioactive glass powders by sol-gel processing.J Appl Biomater,1991,2:231-239.
    [115]Vallet-Regm H M,Romero A M,Ragel C V,et al.XRD,SEM,EDS and FTIR studies of in vitro growth of an apatite-like layer on sol-gel glasses.J Biomed Mater Res,1999,44:416-421.
    [116]Zhou Zhi-hua,Ruan Jian-ming,Zou Jian-peng,et al.Synthesis and structural characterization of macroporous bioactive glass.J.Cent South Univ Technol.,2007,14(3):
    [117]Li N,Jie Q,Zhu S,et al.A new route to prepare macroporous bioactive sol-gel glasses with high mechanical strength.Materials Letters,2004,58:2747-2750
    [118]Gheysen.G.Bioglass composites:a potential materials for dental application.Biomaterials,1983,4:77-80
    [119]赖琛,唐绍裘.生物陶瓷材料在生物材料中的应用.陶瓷工程,2000,34(6):41-43
    [120]Unki T,Juhasz A,Tasnadi P.Changes of the mechanical properties during the crystallization of bioactive glass-ceramics.J Mater Sci,200,35:3059-3069
    [121]Guo H B,.Miao X,Chen Y,et al.Characterization of hydroxyapatite-bioglass-316L fibre.composites prepared by spark plasma sintering.Materials Letters,2004,58:304-307
    [122]Park K,Vastios T.Characteristics of carbon fibre-reinforced calcium phosphate composites fabricated by hot pressin.Mater Sci,1997(16):985-993
    [123]Ducheyne P,Hench L L.Bioactive-bioinert composite bioceramies.J.Mater.Sci,1982,17(2):595-604
    [124]宁聪琴,周玉,雷廷权,等.纯钛表面HA/BG生物复合涂层的组织结构研究.[J].材料科学与工艺,2002,8(3):30-33
    [125]申剑锋,常程康,毛大立,等.羟基磷灰石涂层材料的制备及其性能表征.无机材料学报,2001,16(5):993-998
    [126]Barth E.Bioactive glass ceramic on titanium substrate:The effect of molybdenum as an intermediate bond coating.Biomaterials,1986,(4):7-10.
    [127]顾卫明,黄炳堂,孙荆,等.生物玻璃涂层植入材料的动物实验研究.无机材料学报,1999,14(4):640-644
    [128]陈晓明,焦玉恒,许传波.电泳沉积法制备羟基磷灰石/生物玻璃梯度涂层的研究.材料科学与工程,2002,20(4):545-548
    [129]陈晓明,李世普,韩庆荣.等.在非水溶液体系中电泳沉积Ti6A14V/BG/HA梯度涂层.硅酸盐学报,2001,29(6):565-568
    [130]刘仲阳,廖小东,王培录,等.氩离子辅助沉积生物玻璃陶瓷膜的结构和特性研究.功能材料,2002,33(2):200-203
    [131]Hench L L,Wilson J.Surface-active biomaterials.Science,1984,226:630-636
    [132]Huang J,Di Silvios L,Wang M,et al.Evaluation of in vitro bioactivity and biocompatibility of Bioglass-reinforeed polyethylene composite.J Mater Sci:Mater Med,1997,8:809-813
    [133]Lu H H,E-Amin S F,Laurencin C T.Sixth world biomaterials congress transaction.2000,3:972-978
    [134]Qiu Q,Ducheyne P,Ayyaswamy P.Sixth world biomaterials congress transaction.2000,3:938-943
    [135]Roether J A,Boecaccini A R,Hench L L,et al.Development and in vitro charaeterisation ofnovel bioresorbable and bioactive composite materials based on polylactide foams and Bioglasss for tissue engineering applications.Biomaterials, 2002,23:3871-3878
    [136]Boccaccini A R,Notingher I,Maquet V,et al.Bioresorbable and bioactive composite materials based on polylactide foams filled with and coated by Bioglasss particles for tissue engineering applications.J Mater Sci:Mater Med,2003,14:443-450
    [137]Maquet V,Boccaccini A R,Pravata L,et al.Preparation,characterisation and in vitro degradation ofbioresorbable and bioactive composites based on Bioglasss-polylactide foams.J Biomed Mater Res 2003,66A:335-346.
    [138]Boccaccini A R,Maquet V.Bioresorbable and bioactive polymer/Bioglasss composites with tailored pore structure for tissue engineering applications.Comp Sci Technol,2003,63:2417-2429.
    [139]Maquet V,Blacher S,Pirard R,et al.Preparation ofmacroporous biodegradable poly(lactide-co-e-caprolactone)foams and characterization by mercury intrusion porosimetry,image analysis and impedance spectroscopy.J Biomed Mater Res,2003,66A:199-213.
    [140]Roether J A,Gough J E,Boccaccini A R,et al.Novel bioresorbable and bioactive composite based on bioactive glass and polylactide foams for bone tissue engineering.J Mater Sci:Mater Med 2002,13:1207-1214.
    [141]Maquet V,Boccaccini A R.Porous poly(a-hydroxyacid)/Bioglasss composite scaffolds for bone tissue engineering.I:preparation and in vitro characterization.Biomaterials,2004,25:4185-4194
    [142]Heikkila J T,Aho A J,Kangasniemi I,etal.Polymethylmethacrylate composites:disturbed bone formation at the surface of bioactive glass hydroxyapatite.Biomaterals,1996,17:1755-1760
    [143]Rodriguez-Lorenzo L M,Salinas A,Vallet-Regi,M.Composite biomaterials based on ceramic-polymers I:reinforced system based on Al_2O_3/PMMA/PLLA.J Biomed Mater Res,1996,30:515-522.
    [144]Arcos D,Ragel C V,Vallet-Regi M.Bioactivity in glass/PMMA composites used as drug delivery system.Biomaterials,2001,22:701-708.
    [145]汤爱明,吴琳莉,陈纯,等.PETA与生物玻璃复合及其性能研究.化学与粘接,2003,(2):61-63
    [146]任耀彬,郑裕东,王迎军,等.用于骨组织工程的羟基丁酸-戊酸共聚物/生物活性玻璃复合多孔支架材料.高分子材料科学与工程,2003,19(4):196-199
    [147]郑裕东,王迎军,陈晓峰,等.PHBV/Sol-gel Bioglass多孔材料在模拟生理溶液中 的化学反应研究.高等学校化学学报,2003,24(7):1325-1328
    [148]Agrawal C M,Ray R B.Biodegradable polymeric scaffolds for musculoskeletal tissue engineering.J Biomed Mater Res,2001,55(2):141-150.
    [149]Niederauer G G;Slivka M A,Leatherbury N C,et al.Evaluation of multiphase implants for repair of focal osteochondral defects in goats.Biomaterials,2000,21(24):2561-2571.
    [150]Middleton J C,Tipton A J.Synthetic biodegradable polymers as orthopaedic devices.Biomaterials,2000,21(23):2335-2346.
    [151]Nakamura P,Hitomi S,Watanabe S,et al.Bioabsorption of polylactides with different molecular properties.J Biomed Mater Res,1989,23(10):1115-1130.
    [152]Chen Lianxi,Jiang Xin et al.The Ring-opening Polymerization of D,L-Lactid Initiated with Stannous Octoate.Journal of Wuhan University of Technology (Materials Science),2001(4):10-13
    [153]Lou,Ling.Yin,Jing-Bo.Liang,Qi-Zhi.Preparation and properties of L-lactide and poly(L-lactide).Polymeric Materials Science and Engineering,2003,19(2):72-79
    [154]葛海雄,隋峥嵘,潘孝春,等.聚L-丙交酯的制备及其热稳定性能的研究.北京大学学报,2001(37),2:251-254
    [155]江昕,陈连喜,贺建华,等.丙交酯的合成与纯化研究.武汉理工大学学报,2002,24(4):42-44
    [156]Fridman I D,Kwork J,Downey R J,et al.Lactide polymerization.U.S.Pat.5,357,034,1994-10-18
    [157]Kricheldorf.Hans R.et al.Polylactones - 6.influence of various metal salts on the opticalpurity of poly(L-lactide).Polymer Bulletin(Berlin),1985,14(6):497-502
    [158]Nicholson,John W.Tawfik,Hamsa et al.A study of cements formed by aqueous lactic acid and aluminosilicate glass.Journal of Materials Science:Materials in Medicine,2002(13),4:417-419
    [159]Gilding D K,Reed A M.Biodegradable polymers for use insurgery-polyglycolic/poly(attic acid)homo-and copolymers.Polymer,1979,12(20):1459-1964
    [160]Hu Y S,Zhang Z P,Song D.Preparation and Properties of Self-reinforced L- and D,L-lactide Copolymer Rods.Chinese Chemical Letters,2000,11(11):1023-1026
    [161]Kang Moo Huh,You Han Bae.Synthesis and characterization of poly(ethylene glycol)/poly(L-lactic acid)alternating multiblock copolymers.Polymer,1999,40(22):6147-6155
    [162]Mandelkern L.The crystalline state in physical properties of polymers.American chemical society,Washton D.C.,1984:176-190
    [163]Manninen M J.Self-reinforced poly- L -lactide screws in the fixation of cortical bone osteotomies in rabbits.J Mater Sci:Mater Med,1993,4:179-185
    [164]Tormala P,Pohjonen T.Mechanical properties and degradation of self- reinforced SR-PLA stereocopolymers in vitro.Transactions of the Annual Meeting of the Society for Biomaterials in conjunction with the International Biomaterials Symposium,1996,2:94-99
    [165]Tormala P,Bleach N C.Effect of filler content on mechanical and dynamic mechanical properties of particulate biphasic calcium phosphate-Polylactide composites.Biomaterials,2002,23(7):1579-1585
    [166]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990
    [167]复旦大学高分子化学教研室.高分子化学[M].上海:复旦大学出版社,1995
    [168]Sang Dae Park,Mitsugu Todo,Kazuo Arakawa.Effect of crystallinity and loadingrate on mode I fracture behavior of poly(lactic acid).Polymer,2006,47:1357-1363
    [169]Hoffman J D,Davis G T.Lauritzen J I.Treaties on solid state chemistry:crystalline and non-crystalline solids.New York:Plenum Press,1976:80-156
    [170]Weira N A,Buchanana F J,Orra J F.Processing,annealing and sterilisation of poly-L-lactide.Biomaterials,2004,25:3939-3949
    [171]Munehisa Yasuniwa,Koji Iura,Yusuke Dan.Melting behavior of poly(L-lactic acid Effects of crystallization temperature and time.Polymer,2007,48:5398-5407
    [172]Di Lorenzo M L.Crystallization behavior of poly(L-lactic acid).European Polymer Journal 2005,41:569-575
    [173]Hideto Tsuji.Properties and morphologies of poly(L-lactide):1.Annealing condition effects on properties and morphologies of poly(L-lactide).Polymer,1995,36:2709-2715
    [174]Tadakazu Miyata,Toru Masuko.Crystallization behavior of poly(L-lactic acid).Polymer,1998,39:5515-5521
    [175]焦剑,雷渭嫒.高聚物结构、性能与测试[M].北京:化学工业出版社,2005
    [176]Hoffman J D.Nucleation theory and the crystallization of polyethylene.Polymer,1983,24:3-15
    [177]Di Lorenzo M L.Determination of spherulite growth rates of poly(L-lactic acid)using combined isothermal and non-isothermal procedures.Polymer,2001,42:9441-9446
    [178]Kalb B,Pennings A J.General crystallization behavior of poly(L-lactic acid).Polymer,1980,21:607-612
    [179]Maria Laura,Di Lorenzo,Clara Silvestre.Measurement of spherulite growth rates using tailored temperature programs.Thermochimica Acta 2003,396:67-73
    [180]Salmeron Sanchez M,Gomez Ribelles J L,Hemandez Sanchez F,Mano J F.On the kinetics of melting and crystallization of poly(l-lactic acid)by TMDSC.Thermochimica Acta,2005,430:201-210
    [181]Nattapol Apiwanthanakorn,Pitt Supaphol,Manit Nithitanakul.Non-isothermal melt-crystallization kinetics of poly(trimethylene terephthalate).Polymer Testing,2004,23:817-826
    [182]Pitt Supaphol,Pakin Thanomkiat,Roger A.Phillips.Influence of molecular characteristics on non-isothermalmelt-crystallization kinetics of syndiotactic polypropylene.Polymer Testing,2004,23:881-895
    [183]Duval C.Inorganic thermogravimetric analysis.New York:Elsevier;1963:274
    [184]He Feng,Liu Changsheng.Preparation of porous glass-ceramic with controlled pore size and porosity by adding porosifier.Journal of Inorganic Materials,2004,19(6):1267-1276
    [185]Brunauer S,Deming L S,Deming W E,et al.On a theory of the van der Waals adsorption of gases.J Am Chem Soc 1940,62:1723-1732
    [186]Pereira M M,Clark A E,Hench L L.Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro.J Biomed Mater Res.1994,28:693-698
    [187]Kokubo T.Nobel bioactive materials.Anales de Qui'mica Int Edn.1997,93:49-55.
    [188]陈晓峰,王迎军,赵娜如,等.CaO-P_2O_5-SiO_2系统溶胶-凝胶玻璃的生物矿化行为.材料研究学报,2003,17:268-275
    [189]Rey C,Hina A,Tofighi A,et al.Maturation of poorly crystalline apatites:Chemical and structural aspects in vivo and in vitro.Cells and Mater 1995,5:345-356.
    [190]Vallet-Regi M.Ceramics for medical applications.J.Chem Soc Dalton Trans.2001,17:97-108
    [191]Stamboulis A,Hench L L.Bioresorbable polymers:their potential as scaffolds for bioglasss composites.Key Eng Mater 2001,192-195:729-732.
    [192]Stamboulis A,Boccaccini AR,Hench LL.Novel biodegradable polymer/bioactive glass composites for tissue engineering applications.Adv Eng Mater 2002,4:105-9.
    [193]Marcolongo M,Ducheyne P,LaCourse W C.Surface reaction layer formation in vitro on a bioactive glass fiber/polymeric composite.J Biomed Mater Res,1997,37: 440-448,.
    [194]Roethera J.A.,Boccaccinib A.R.,Hench L.L,et al.Development and in vitro characterization of novel bioresorbable and bioactive composite materials based on polylactide foams and Bioglass for tissue engineering applications.Biomaterials,2002,23:3871-3878
    [195]万千.HA/316L不锈钢生物功能梯度材料的理化性能及体外生物活性研究:[硕士学位论文],长沙:中南大学,2006
    [196]Wilson J,Piggot G H,Schoen F J,et al.Toxicology and biocompatibility of bioglass.J Biomed Mater Res 1981,15:805-810
    [197]Ignjatovic N,Uskokovic D.Synthesis and application of hydroxyapatite/polylactide composite biomaterial.Applied Surface Science,2004,238(1-4):314-319
    [198]Suljovrujic E,Ignjatovic N,Uskokovic D.Gamma irradiation processing of hydroxyapatite/poly-L-lactide composite biomaterial.Radiation Physics and Chemistry,2003,67(3-4):375-379
    [199]Dupraz A,De W.J.,Meer S,et al.Characterization of silane-treated hydroxyapatite powders for use as filler in biodegradable composites.J Biomed Mater Res,1996,30:231-238
    [200]Mohsen N M,Craig RG.Effect of silanation of fillers on their disperability by monomer systems.J Oral Rehab,1995,22:183-189
    [201]Pluedemann E P.Silane coupling agents.New York:Plenum Press,1982,p.115-151
    [202]Hong Z,Zhang P,He C,et al.Nano-composite of poly(L-lactide)and surface grafted hydroxyapatite:Mechanical properties and biocompatibility.Biomaterials,2005,26:6296-6304
    [203]Niemela T,Niiranen H,Kellomaki M,et al.Self-reinforced composites of bioabsorbable polymer and bioactive glass with different bioactive glass contents.Part Ⅰ:Initial mechanical properties and bioactivity.Acta Biomaterialia,2005,1:235-242
    [204]Merolli A,Gabbi C,Cacchioli A,et al.Bone response to polymers based on poly-lactic acid and having different degradation times.Journal of materials Science:Materials in Medicine,2001,12:775-778
    [205]国家食品药品监督管理局.ISO 15814:1999,MOD.中华人民共和国医药行业标准:外科植入物-聚交酯体外降解试验.北京:中国标准出版社,2004
    [206]Li S M,McCarthy S.Further investigations on hydrolytic degradation of poly (DL-lactide).Biomaterials,1999,20(1):35-44.
    [207]王玉林,万怡灶,李群英,等.C/PLA复合材料的体外降解特性研究.2001,32(5):553-555
    [208]Gonzalez M F,Ruseckaite R A,Cuadrado T R.Structural changes of polylactic acid microspheres under hydrolytic degradation.J Appl Polym Sci,1999,71:1223-1230
    [209]Majola A,Vainionpaa S,Rollanen P,et al.J Mater Sci:Mater Med,1992,3:43249.
    [210]沈序辉,宋晨路,沈鸽,等.有机-羟基磷灰石复合骨替代材料.材料科学与工程,1999,17(4):
    [211]Duck E A R,Zavaglia C A C,Belangero W D.In vitro study of poly(lactic acid)pin degradation.Polymer,1999,40(23):6465-6473
    [212]Li S M,Garreau H,Vert M.Structure-Property Relationship In The Case Of The Degradation Of Massive Poly(α-Hyroxy Acids)In Aqueous Media.J.Mater Sci:Mater.in Med.,1990,1:131-139
    [213]Tsuji H,Mizuno A,Ikada Y.Properties and morphology of poly(L-lactide).Ⅲ.Effects of initial crystallinity on long-term in vitro hydrolysis of high molecular weight poly(L-lactide)film in phosphate-buffered solution.J Appl Polym Sci,2000,77(7):1452-1464
    [214]Tsuji H,Ikada Y.Properties and morphology of poly(L lacide)4.Effect of structural parameters on long term hydrolysis of poly(L-lactide)in phosphate buffer solution,Polym.Deg.Stab,Polym Degrad Stab 2000:67:179-189
    [215]Lee M W,Tanl H T,Chandrasekaran M.Synthesis and characterisation of PLLA by melt polycondensation using binary catalyst system.SIMTech technical reports,2005,6(3):40-44
    [216]柯扬船,何平笙.高分子物理教程[M].北京:化学工业出版社.2005
    [217]Iannacea S,Maffezzoli A,Leo G;Nicolais L.Influence of crystal and amorphous phase morphology on hydrolytic degradation of PLLA subjected to different processing conditions.Polymer 2001,42:3799-3807
    [218]Cartier L,Okihara T,Ikada Y,et al.Epitaxial crystallization and crystalline polymorphism of polylactides.Polymer,2000,41:8909-8919
    [219]Li S M,Garreau H,Vert M.Structure -property relationships in the case of the degradation of massive poly(a-hydroxy acids)in aqueous media,part 3:Influence of the morphology ofpoly(L-lactic acid).J Mater Sci:Mater Med,1990,1(4):198-206
    [220]Tsuji H,Nakahara K,Ikarashi K.Poly(L-Lactide):8.Hightemperature hydrolysis of poly(L-lactide)films with different crystallinities and crystalline thickness in phosphate- buffered solution.Macromol Mater Eng,2001,286(7):398-406
    [221]Pitt C G,Chasalow F I,Hibionada Y M,et al.The degradation of poly(ε-caprolactone)in vivo.J App Polym Sci,1981,26:3779-3787
    [222]Wu X.S.Encyclopedic handbook of biomaterials andbioengineering,New York:Marcel Dekker,1995.
    [223]Li S.Hydrolytic degradation characteristics of aliphatic polyesters derived from lactic and glycolic acids.J.Biomed Mater.Res.(Appl.Biomater),1999,48(3):342-353
    [224]Ruan J M,Zou,J P,Zhou J N,Hu J Z.Porous hydroxyapatite-tricalcium phosphate bioceramics.Powder Metallurgy,2006,49(1):66-69
    [225]Agrawal C M,Ray R B.Biodegradable polymeric scaffolds for musculoskeletal tissue engineering.J Biomed Mater Res,2001,55:141-50
    [226]Rokkanen P U,Bostman O,Hirvensalo E,et al.Bioabsorbable fixation in orthopaedic surgery and traumatology.Biomaterials,2000,21(24):2607-2613
    [227]Niederauer G G,Slivka M A,Leatherbury N C,et al.Evaluation of multiphase implants for repair of focal osteochondral defects in goats.Biomaterials,2000,21:2561-2571
    [228]Johson H J.Biocompatibility test procedures for materials evaluation in vitro I comparative test system sensitivity.J Biomed Mater Res,1983;17:571-579
    [229]中华人民共和国国家技术监督局.GB/T 16886.5-2003/ISO 10993-5:1999.医疗器械生物学评价(第5部分):体外细胞毒性试验.北京:中国标准出版社,2003
    [230]王英慧.成纤维细胞的生物学特性及其成骨作用的研究进展.大同医学院学报,2006,2:30-32
    [231]陈米娜,魏大鹏,范昕建,等.聚乳酸材料对成骨样细胞增殖和分化的影响.四川大学学报(医学版),2005,36(6):839-842
    [232]Pietrzak W S,Eppley B L.In Vitro Characteristics of a Bioabsorbable Suspension Screw and Suture System for Endoscopic Brow Lift Surgery.J.Craniofac Surg,2007,18(2):429-436
    [233]Bhang S H,Lim J S,Choi C Y,et al.The behavior of neural stem cells on biodegradable synthetic polymers.J Biomater Sci Polym Ed.2007,18(2):223-39
    [234]Rokkanen P U,Bostman O,Hirvensalo E,et al.Bioabsorbable fixation in orthopaedic surgery and raumatology.Biomaterials.2000,21(24):2607-2613
    [235]Bokstman O,Pihlajama H.K.Clinical biocompatibility of biodegradable orthopaedic implants for internal fixation:a review.Biomaterials,2000,21: 2615-2621
    [236]Calandrelli L,Immirzi B,Malinconico M,et al.Preparation and characterisation of composites based on biod egradable polymers in vivo applications.Polymer,2000,41:8027-8033
    [237]祝天经.异种骨移植与固定.长沙:中南大学出版社,2006,56-65
    [238]中华人民共和国国家技术监督局.GB/T 16886.6-1997.医疗器械生物学评价第6部分:植入后局部反应试验.北京:中国标准出版社,2003
    [239]Gogolewski S,Jovanovic M,Perren S M,etal.Tissue response and in vivo degradation of selected polyhydroxyacids(PLA),Poly(3- hydroxybutyrate)(PHB),and Poly(3-hydtoxybutyrate-co-3hydroxybutyrate)(PHB/VA).J Biomed Mater Res.1993,27:1135-1143
    [240]Dagang G,Haoliang S,Kewei X,Yong H.J Biomed Mater Res.Long-term variations in mechanical properties and in vivo degradability of CPC/PLGA composite.Appl Biomater.2007,22:533-544
    [241]Taizo Furukawa,Yoshitaka Matsusue,Tsunoru Yasunaga,et al.Biodegradation behavior of ultra-high-strength hydroxyapatite/poly(L-lactide)composite rods for internal fixation of bone fractures.Biomaterials,2000,21:889-898
    [242]Heidemann W,Jeschkeit S,Ruffieux K,et al.Degradation of poly-L-lactide implants with or without addition of calcium phosphates in vivo.Biomaterials,2001,22:2371-2381
    [243]Shikinami Y,Okun M.Bioresorbable devices made of forged composites of hydroxyapatite(HA)particles and poly-l-lactide(PLLA).Part Ⅱ:practical properties of miniscrews and miniplates.Biomaterials,2001,22:3197-3211
    [244]丁仁奎,祝天经,王万春,等.牛皮质骨棒治疗兔膝关节内骨折的实验研究.临床骨科杂志,1998,1(2):89-91
    [245]Suuronen R,Pohjonen T,Hietanen J,Lindqvist C.A 5-year in vitro and in vivo study of the biodegradation of polylactide plates.J Oral Maxillofacial Surg 1998,56:604-614

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700