尖晶石锌铁氧体纳米颗粒的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
尖晶石结构的锌铁氧体由于良好的气敏特性、光催化活性等,使得其在气敏传感器、催化剂等方面具有广泛的应用。本文以硝酸盐溶液为原料,分别使用溶胶-凝胶法和碳吸附法制备了尖晶石ZnFe_2O_4纳米颗粒,主要研究内容和结论如下:
     采用改进的溶胶-凝胶法制备尖晶石ZnFe_2O_4纳米颗粒。在前驱体溶液中通过加入丙烯酰胺使溶液更好的成胶,同时加入一定量的葡萄糖用以防止凝胶体在干燥过程中的塌缩。实验结果表明:使用络合剂柠檬酸、柠檬酸和EDTA、EDTA均可在500℃时得到高纯相的ZnFe_2O_4纳米颗粒,使用不同的络合剂对制得ZnFe_2O_4纳米颗粒的尺寸大小和形貌具有一定的影响。其中使用络合剂柠檬酸制得的ZnFe_2O_4纳米颗粒分散性较好,使用络合剂EDTA对ZnFe_2O_4纳米颗粒晶粒的细化具有一定的作用,但是ZnFe_2O_4纳米颗粒有一定程度的团聚现象。
     碳吸附法是利用活性炭的强吸附作用制备纳米材料的一种新方法。本文分析了使用碳吸附法制备ZnFe_2O_4纳米颗粒流程中各参数(活性炭的使用量、溶液的pH值和烧结温度)对ZnFe_2O_4纳米颗粒的影响,结果表明:用碳吸附法能够制备出纯度较高的尖晶石ZnFe_2O_4纳米颗粒,并得出最佳制备参数为:活性炭与金属原子的摩尔比为2:1、溶液的pH值为3、烧结温度为500℃。
     分析比较了溶胶-凝胶法和碳吸附法制得ZnFe_2O_4纳米颗粒的物性和磁性,结果表明:两种方法制得的ZnFe_2O_4纳米颗粒在烧结温度为500℃时,均具有较小的尺寸和良好的分散性,VSM分析显示室温下制得的ZnFe_2O_4纳米颗粒显示出超顺磁性,其中碳吸附法制得的ZnFe_2O_4纳米颗粒的磁滞回线呈现出明显的“S”形,说明碳吸附法制得的ZnFe_2O_4纳米颗粒的尺寸更小一些。
Spinel zinc ferrite was widely used in gas-sensitive sensors, catalyst, for its good gas-sensitive and characteristics photocatalytic activity. In this paper, with nitrate solution as raw materials, spinel ZnFe_2O_4 nanoparticles were prepared by sol-gel and carbon adsorption. The main contents and conclusions were as follows:
     Spinel ZnFe_2O_4 nanoparticles were preared by a modified sol-gel route.In this route, the solution was better gelled by using acrylamide, simultaneously an appropriate amount of glucose was added to prevent the gel shrinkage during drying. The results showed that high-phase-purrity ZnFe_2O_4 nanoparticles can be prepared by using the chelating agent citric acid, ethylenediamine-tetraacetic acid (EDTA) and ethylenediamine-tetraacetic acid (EDTA) at a sintering temperature of 500℃. Using different chelating agent had influence on the grain size and morphology of ZnFe_2O_4 nanoparticles. By using citric acid as chelating agent the ZnFe_2O_4 nanoparticles have a good dispersion; the ZnFe_2O_4 nanoparticles by using ethylenediamine-tetraacetic acid (EDTA) as chelating agent has a certain effect on grain refinement, but with a certain degree of adhension phenomenon.
     Carbon adsorption is a new route to the preparation of nanoparticles, which is used the strong adsorption property of activated carbon. We analyzed the parameters, which included the amount of activated carbon, the pH value of solution, the sintering temperature to the influence of ZnFe_2O_4 nanoparticles.The results revealed that high-phase-purrity ZnFe_2O_4 nanoparticles can be prepared by carbon adsorption, the best parameters for carbon adsorption was: the molar ratio of activated carbon to metal atoms is 2:1, the solution pH value for 3, the sintering temperature for 500℃.
     Analysed and compared the morphology and magnetic of ZnFe_2O_4 nanoparticles prepared by sol-gel and carbon adsorption .The result revealed that high-phase-purrity ZnFe_2O_4 nanoparticles can be prepared by using two methods at the sintering temperature for 500℃.The ZnFe_2O_4 nanoparticles prepared by sol-gel and carbon adsorption have a smaller grain size and a good dispersion. The VSM showed the ZnFe_2O_4 nanoparticles displayed paramagnetic at room temperature.The hysteresis loop of ZnFe_2O_4 nanoparticles preparaed by carbon adsorption displayed an obvious "S" shape, explained that ZnFe_2O_4 nanoparticles prepared by carbon adsorptionwith a smaller size.
引文
[1]徐国财,张立德.纳米复合材料.北京:化学工业出版社,2002,32-41
    [2]周志刚.铁氧体磁性材料.北京:科学出版社,1981,3-10
    [3]米飞.包覆结构铁氧体复合材料制备及性能研究:[沈阳理工大学硕士学位论文].沈阳:沈阳理工大学,2009,1-14
    [4]刘春静.锰锌铁氧体纳米粉体的包覆工艺及其烧结动力学研究:[河北工业大学硕士学位论文].天津:河北工业大学,2008,5-11
    [5]王英楠.纳米ZnFe_2O_4的制备及其光生电荷行为的研究:[吉林大学硕士学位论文].吉林:吉林大学,2007,3-6
    [6] I.Mohai,J.Szepvolyi,I.Bertoti,et al.Thermal plasma synthesis of zinc ferrite nanopowders.Solid State Ionics,2001,141-142:163-168
    [7] Sharm R K,Suwalk O,Lakshmi N,et al.Synthesisis of chromium substituted nanoparticles of cobalt zinc ferrites by coprecipitation.Materials Letters, 2005, 59(27):3402-3405
    [8] Dey S, Ghose J.Synthesis,characterization and magnetic studies on nanocrystalline Co0.2Zn0.8Fe_2O_4.Materials Research Bulletin,2003,38(11-12):1653-1660
    [9] J. Azadmanjiri, S.A. Seyyed Ebrahimi, H.K. Salehani. Magnetic properties of nanosize NiFe_2O_4 particles synthesized by sol–gel auto combustion method. Ceramics International,2007,33(8):1623-1625
    [10] He X H,Song G S,Zhu J H.Non-stoichiometric NiZn ferrite by sol-gel processing.Materials Letters,2005,59(14-15):1941-1944
    [11] Liu X M, Fu S Y, Huang C J. Magnetic properties of Ni ferrite nanocrystals dispersed in the silica matrix by sol-gel technique.Journal of Magnetism and Magnetic Materials,2004,281(2-3):234-239
    [12] Fu Y, Ma R T,Zhao H T.Synthesis , characterization and electromagnetic studies on nanocrystalline zinc ferrite powders by polyacrylamide gel method. Nanotechnology and Precision Engineering,2008,6(6):400-404
    [13] A.Pradeep, P.Priyadharsini, G.Chandrasekaran. Production of single phase nano size NiFe_2O_4 particles using sol–gel auto combustion route by optimizing the preparation conditions. Materials Chemistry and Physics,2008,112(2):572-576
    [14] M.R. Barati, S.A.Seyyed Ebrahimi, A.Badiei. The role of surfactant in synthesis of magnetic nanocrystalline powder of NiFe_2O_4 by sol–gel auto-combustion method. Journal of Non-Crystalline Solids,2008,354(47-51):5184-5185
    [15]颜爱国.尖晶石型铁氧体纳米晶的控制合成、结构和性能研究:[中南大学博士学位论文].长沙:中南大学,2008,14-20
    [16] Miroslaw M.Bucko,Krzysztof Haberko,Hydrothermal synthesis of nickel ferrite powders,their properties and sintering.Journal of the European Ceramic Society,2007,(27):723~727.
    [17] Hu C Q,Gao Z H,Yang X R.One-pot low temperature synthesis of MFe_2O_4 (M=Co,Ni,Zn) superparamagnetic nanocrystals.Journal of Magnetism and Magnetic Materials,2008,320(8):L70-L73
    [18] Kim C K,Lee J H,Katoh S S,et al.Synthesis of Co-,Co-Zn and Ni-Zn ferrite powders by the microwave-hydrothermal method.Materials Research Bulletin,2001,36(12):2241-2250
    [19] Manickam Sivakumar,Atsuya Towata,Kyuichi Yasui,et al.A new ultrasonic cavitation approach for the synthesis of zinc ferrite nanocrystals.Current Applied Physics,2006,6(3):591-593
    [20] Zhang Z J, Zhong L, Jin S Y.Temperature dependence of cation distribution and oxidation state in magnetic Mn-Fe ferrite nanocrystals.J.Am.Chem.Soc, 1998, 120(8):1800-1804.
    [21] Liu C, Zhou B S, Rondinone A J,et al.Reverse micelle synthesis and characterization of superparamagnetic MnFe_2O_4 spinel ferrite nanocrystallites. Phys.Chem B,2000,104(6):1141-1145
    [22] Vestal C R,Zhang Z J.Synthesis of CoCrFeO4 nanoparticles using microemulsion methods and size-dependent studies of their magnetic properties.Chem. Mater,2002,14(9):3817-3822
    [23]付真金,廖其龙,卢忠远,等.流变相-前驱物法制备纳米镍铁氧体粉末.精细化工,2007,34(3):217-220
    [24]刘飞飞.一维纳米锌铁氧体的制备,表征及其光催化性能研究:[大连理工大学硕士学位论文].大连:大连理工大学,2009,12-16
    [25]宋力晶.AAO模板法制备的一维磁性纳米管及纳米线阵列的结构与磁性:[兰州大学硕士学位论文].兰州:兰州大学,2007,33-36
    [26] N.Kislov,S.S.Srinivasan,Yu.Emirov,et al.Optical absorption red and blue shifts in ZnFe_2O_4 nanoparticles. Materials Science and Engineering B,2008,153:70-77
    [27] C.N.Chinnasamy, A.Narayanasamy, N.Ponpandian, et al.The influence of Fe3+ ions at tetrahedral sites on the magnetic properties of nanocrystalline ZnFe_2O_4. Materials Science and Engineering A, 2001,304-306:983-987
    [28] Malick Jean, Virginie Nachbaur.Determination of milling parameters to obtain mechanosynthesized ZnFe_2O_4. Journal of Alloys and Compounds, 2008,454:432-436
    [29] H.Ehrhardt,S.J.Campbell,M.Hofmann.Structural evolution of ball-milled ZnFe_2O_4.Journal of Alloys and Compounds,2002,339:255-260
    [30] T.Shimada,T.Tachibana,T.Nakagawa,et al.Site occupation study ZnFe_2O_4 and NiFe_2O_4 by far-infrared reflectivity.Journal of Alloys and Compounds, 2004, 379: 122-126
    [31] F.J.Guaita,H.Beltran,E.Cordoncillo,et al.Influence of the precursors on the formation and the properties of ZnFe_2O_4.Journal of the European Ceramic Society,1999, 19:363-372
    [32] Cheng Hsiung Peng, Chyi Ching Hwang,Ching Kai Hong,et al.A self-propagating high-temperature synthesis method for Ni-ferrite powder synthesis. Materials Science and Engineering,2004,(107):295-300
    [33] Zhang G J,Li X E,Yang W,Li S Y,et al. Preparation of nanometer NiFe_2O_4 powder by solution SHS method.Journal of Gansu Sciences,2002,14(4):9-13
    [34]徐康,刘建军,徐洮.用冲击波合成法制备纳米铁酸锌粉体-一种制备纳米粉体的新方法.无机材料学报,1997,12(5):759-762
    [35] Liu J,He H L,XiaoG J, et al.Synthesis of nanosized nickel ferrites by shock waves and their magnetic properties.Materials Research Bulletin,2001,(36):2357~2362
    [36] Xian T, Yang H, Feng W J, et al. Preparation of high-quality BiFeO3 nanopowders via apolyacrylamide gel route. Journal of Alloys and Compounds,2009,68(2):341-357
    [37] Wu S Q, Liu YY., He L N, et al.Mater. Lett. 58 (2004) 2772–2775
    [38] Wichaid Ponhan, Santi Maensiri.Fabrication and magnetic properties of electrospun copper ferrite (CuFe_2O_4) nanofibers. Solid State Sciences ,2009,11 (2):479–484
    [39] Yu M,Lin J,Fu J, et al.Sol-gel synthesis and photoluminescent properties of LaPO4:A(A=Eu3+,Ce3+,Tb3+) nanocrystalline thin films. Journal of Materials Chemistry, 2003,13(6):1413–1419
    [40] Feng S, Deng Y Q.Abnormal FT-IR and FTRaman spectra of ionic liquids confined in nano-porous silica gel.Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2005,62(1-3): 239–244
    [41] Xu J H, Ke H , Jia D C, et al.Low-temperature synthesis of BiFeO3 nanopowders via a sol-gel method. Journal of Alloys and Compounds,2009,472(1-2): 473–477
    [42] Zhang H W, Fu X Y, Niu S Y, et al.Synthesis and luminescent properties of nanosized YVO4:Ln(Ln=Sm,Dy).Journal of Alloys Compd. 2008,457(1-2) :61–65.
    [43] Nakanishi K, Infrared Absorption Spectroscopy. Holden Day, San Franciso, 1977.
    [44] Yang G Q, Han B, Sun Z T,et al. Preparation and characterization of brown nanometer pigment with spinel structure. Dyes and Pigments, 2002 ,55(1):9–16.
    [45] S.Boumaza , A. Boudjemaa ,A.Bouguelia,etal. Visible light induced hydrogen evolution on new hetero-system ZnFe_2O_4/SrTiO3. Applied Energy, 2010, 87(7):2230–2236
    [46] Yuksel Koseoglu, Abdulhadi Baykal,Muhammet S. Toprak, et al. Synthesis and characterization of ZnFe_2O_4 magnetic nanoparticles via a PEG-assisted route.Journal of Alloys and Compounds, 2008, 462(1-2):209-213.
    [47] F.J.Burghart, W.Potzel, G..M.Kalvius,et al. Magnetism of crystalline and nanostructured ZnFe_2O_4 . PhysicaB:Condensed Matter,2000,289-290:286-290.
    [48] F.A.Lopez,A.Lopez-Delgado,J.L.M.deVidales,et al. Journal of alloys and compounds,1998,265:29-32.
    [49]立本英机,安部郁夫.活性炭的应用技术.高尚愚.南京:东南大学出版社,2002,2-65.
    [50]卢敬科.改性活性炭的制备及其吸附重金属性能的研究.[浙江工业大学硕士学位论文],2009,9-50.
    [51]刘皓.活性炭材料的制备与应用.[北京工业大学硕士学位论文].北京:北京工业大学,2008,1-15
    [52]朱祥兵.新型吸附材料的制备及其对溶液样品中痕量元素吸附性能的研究.[兰州大学博士学位论文].兰州:兰州大学,2009,77-79
    [53]杨娜.多孔有机/无机纳米复合材料的制备及性能研究.[上海交通大学硕士学位论文].上海:上海交通大学,2008,28-32
    [54]张育哲.中孔纳米材料的制备及改性.[天津大学硕士学位论文].天津:天津大学,2006,6-15
    [55]黄伟,贾艳秋,孙盛凯.活性炭及其改性研究进展.化学工业与工程,2006,27(5):39-44.
    [56]王军,杨许召.表面活性剂新应用.北京:化学工业出版社,2009,2-50
    [57]赵世民.表面活性剂-原理、合成、测定及应用.北京:中国石化出版社,2005,120-212
    [58]郭贵宝,王正德,李玉生,等.微乳液和碳吸附耦合法制备氧化钐、氧化钆掺杂氧化铈纳米粉体及其电性能的研究.稀土,2006,27(3):35-38
    [59]许嘉,郭贵宝,云峰,等.均匀沉淀碳吸附耦合法制备Y2O3及表征.内蒙古科技大学学报,2008,27(3):245-247
    [60]李玉生,郭贵宝,安胜利.反向微乳液碳吸附法制备Ce0.8Sm0.2O1.9-δ纳米粉体及其催化还原性能的研究.内蒙古科技大学学报,2007,26(3):225-228
    [61]郭贵宝,袁春华,李玉生,等.碳吸附燃烧法制备CeO2纳米粒子及表征.包头钢铁学院学报,2006,25(3):226-228
    [62]Zhang C X, Wang Y X, Yan X F.Liquid-phase adsorption:Characterization and use of activated carbon prepared from diosgenin production residue. Colloids and Surface A:Physicochemical and Engineering Aspects,2006,280(1-3):9-16

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700