莲雾果实采后贮藏生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
莲雾果实外形美观,营养丰富,不仅风味独特,还具有食疗功效,深受消费者喜爱。但由于莲雾果实组织幼嫩,呼吸代谢旺盛,衰老速度快,极不耐贮运,采收后如不及时处理,莲雾的食用品质将急剧劣变,失去商业价值。本文旨在通过对采后莲雾果实的生理变化、有机酸代谢、细胞壁降解酶活性变化及果实组织结构的变化进行研究,并比较低温(5℃)和常温(25℃)两种条件对其贮藏效果的影响,探讨采后莲雾果实的生理过程及低温贮藏的效果。实验结果表明:
     莲雾果实在贮藏期间,硬度逐渐变小,失重率逐渐增加,出汁率缓慢上升,细胞膜透性也呈现上升趋势。莲雾果实的呼吸强度出现两次高峰,乙烯释放量呈现先上升后下降的趋势。低温条件(5℃)下贮藏能有效减少莲雾果实的失重率,降低细胞膜透性,抑制果实的呼吸强度,降低果实乙烯的释放量。
     莲雾果实中有机酸有苹果酸,草酸,柠檬酸,抗坏血酸,乳酸,乙酸等,主要有机酸为苹果酸,约占70%。低温贮藏能有效减低莲雾果实中有机酸的损失。在整个贮藏期间,莲雾果实的总糖含量呈现先上升后下降的趋势,糖酸比也呈现先上升后下降的趋势,低温能延缓糖代谢的过程。
     贮藏过程中的莲雾果实的多聚半乳糖醛酸酶(PG)和纤维素酶(Cx)的活性变化均呈现波动上升的趋势,果胶甲酯酶(PME)的活性呈现上升趋势,且在PME的作用下,莲雾果实中的原果胶含量不断降低,可溶性果胶含量不断增加,果实硬度下降。低温能延缓酶活性高峰值的出现,同时延缓果实中原果胶转化成可溶性果胶的进程。
     对贮藏过程中的莲雾果实进行石蜡切片观察,发现随着贮藏时间的延长,果实组织结构逐渐瓦解,细胞破裂,皱缩现象加剧,低温能够较好地保持细胞组织结构的完整性和稳定性。
     综上所述,低温条件下贮藏能够较好地保持莲雾果实的品质,延缓莲雾果实的成熟和衰老,对莲雾果实的保鲜有积极意义。
Wax apple with beautiful shape and rich nutrition is loved by consumers for not only the unique flavor, but also the diet therapy efficacy. However, wax apple is difficult to storage because its tender tissue and exuberant breathe metabolism. If wax apple is not handled in a timely manner after harvest, the edible quality of it will sharply deteriorate, and then it will lose commercial value. This paper aims to research the physiological changes, organic acid metabolism, cell wall degrading enzyme activities and organizational structure changes of wax apple, and compare low temperature (5℃) to normal temperature (25℃) for the effect to the storage. We can explore the physiological process of wax apple and the effect of low temperature for storage. The results show that:
     During storage period, the firmness of wax apple was becoming smaller, and the weightlessness rate and juice yield kept increasing, and the membrane permeability also showed a rising trend. Respiration rate of wax apple achieved the peak twice. Ethylene release ascended firstly and declined finally. Low temperature storage(5℃) can effectively reduce weightlessness rate and membrane permeability of wax apple fruits, and restrain respiration rate and ethylene release of wax apple.
     The organic acids in wax apple are malic acid, oxalic acid, ascorbic acid, lactic acid, acetic acid, citric acid, etc. The mainly organic acid is malic acid, accounting for approximately 70%. Low temperature can decrease organic acid loss effectively. Throughout the storage period, total sugar content, as the same as sugar acid ratio, presented the first decline after rising trend. Low temperature can delay the process of sugar metabolism.
     The activities of polygalacturoneses (PG) and cellulase (Cx) of wax apple changed in a fluctuated rising trend. The activity of pectinmethylesterases (PME) showed a rising trend, and the content of soluble pectin content continuously increased with the protopectin content lowering and the fruit firmness declined. Low temperature can delay the emergence of peak value of enzyme activity and the transform process of pectin.
     The changes of wax apple fruit organizational structure were observed by paraffin sections. We found that organization structure ruptured gradually and shrink intensified with the cells broken down. Low temperature can well maintain the integrity and the stability of the cellular structure.
     In summary, low temperature can keep the quality of wax apple and delay its mature and aging and is positive to the preservation of wax apple.
引文
[1]张有林,苏东华.果品贮藏保鲜技术[M].北京:中国轻工业出版社, 2000: 34.
    [2]吴彩娥,王文生,寇晓虹.果实成熟软化机理研究进展[J].果树学报, 2001, 18(6): 365-369.
    [3] Brummell D A, Harpster M H. Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants[J]. Plant Molecular Biology. 2001, 47: 311-340.
    [4] Ariel R V, Montserrat S, Jocelyn K C, et al. The linkage between cell wall metabolism and fruit softening, looking to the future[J]. Fournal of the Science of Food and Agriculture. 2007, 87: 1435-1448.
    [5]朱继英,王相友.果实采后软化机理的研究进展[J].山东理工大学学报, 2004, 18(3): 96-99.
    [6]刘炳辉,董晓颖,李志军,等.硬肉桃果实成熟前后几种与果实软化相关的生理指标的变化[J].植物生理学通讯, 2008, 44(5): 887-890.
    [7]刘顺枝,彭永宏.猕猴桃果实采后呼吸作用的研究[J].嘉应大学学报, 1995, 1(1): 125-129.
    [8]赵云峰,林河通,林娇芬,等.龙眼果实采后呼吸强度、细胞膜透性和品质的变化[J].福建农林大学学报, 2005, 34(2): 263-268.
    [9]钟耀广,朱蓓薇.樱桃果实采后生理及保鲜研究[J].北方园艺, 2004(2): 67-68.
    [10]屈慧鸽,孙宪忠,赵淑兰,等.软枣猕猴桃贮藏过程中软化因素研究[J].特产研究, 1999(3): 25-28.
    [11]陆胜民,席玙芳.梅果采后软化与乙烯释放及抗氧化酶活性的变化[J].南京农业大学学报, 2003, 26(4): 124-126.
    [12]张桂霞,王英超,王瑞.柿果软化过程中几中生理指标的变化[J].安徽农业科学, 2010, 38(17): 8915-8916.
    [13]王志华,王文辉,丁丹丹,等.丰水梨果实采后生理生化变化的研究[J].保险与加工, 2010, 3(10): 33-36.
    [14]赵永红,李宪利,姜泽盛,等.设施油桃果实发育过程中有机酸代谢的研究[J],中国生态农业学报. 2007, 15(5): 87-89.
    [15]何志刚,李维新,林晓姿,等.枇杷果实成熟和贮藏过程中有机酸的代谢[J],果树学报. 2005, 22(1): 23-26.
    [16] Mccann M C. Wells B, Roberts K. Direct visualization of cross-links in the primary plant cell wal1[J], Cell Science. 1990, 96: 323-334.
    [17]朱明月,沈文涛,周鹏.果实成熟软化机理研究进展[J].分子植物育种, 2005, 3(3): 421-426.
    [18]张广华,葛会波,张进献,等.草莓果实软化机理及调控研究进展[J].果树学报, 2001, 18(3): 172-177.
    [19]焦中高,刘杰超,王思新.甜樱桃采后生理与贮藏保鲜[J].果树学报, 2003, 20(6): 498-502.
    [20]阚娟,金昌海,汪志君,等.β-半乳糖苷酶及多聚半乳糖醛酸酶对桃果实成熟软化的影响[J].扬州大学学报. 2006, 27(3): 76-80.
    [21]杨德兴,戴京晶,庞向宇,等.猕猴桃衰老过程中PG、果胶质和细胞壁超微结构的变化[J].园艺学报. 1993, 20(4): 431-345.
    [22]罗自生.柿果实采后软化过程中细胞壁组分代谢和超微结构的变化[J].植物生理与分子生物学学报, 2005, 31(6): 651-656.
    [23]茅林春,应铁进.桃果实絮败与果胶质变化和细胞壁结构的关系[J].植物生理学报, 1999, 25(2):121-126.
    [24] Huber D J. The role of cell wall hydrolases in fruit softening[J]. Horticultural Reviews, 1983, 5: 169-219.
    [25] Brummell D A, Cin V D, Crisosto C H, et al. Cell wall metabolism during maturation ripening and senescence of peach fruit[J]. Journal of Experimental Botany, 55: 2029-2039.
    [26]张进献,李冬杰,李宏杰.果实软化过程中细胞壁结构和组分及细胞壁酶的变化[J].河北林果研究, 2007, 22(2): 180-186.
    [27]金昌海,索标,阚娟,等.桃果实成熟软化过程中细胞壁多糖降解特性的研究[J],扬州大学学报. 2006, 27(3): 70-75.
    [28] Vicente A R, Powell A, Greve L C. Cell wall disassembly events in boysenberry( Rubus idaeus L.×Rubus ursinus Cham.&Schldl.)fruit development[J]. Functional Plant Biology, 2007, 34: 614-623.
    [29]周宏伟,吴耕西.长把梨贮藏中多聚半乳糖醛酸酶与果胶甲酯酶的作用[J].山东农业大学学报, 1992, 23(1): 67-70.
    [30]金昌海,水野雅史,阚娟,等.不同品种苹果采后后熟软化过程中细胞壁多糖的讲解[J].植物生理与分子生物学学报, 2006, 32(6): 617-626.
    [31]林河通,席玙芳,陈绍军,等.中国南方梨果采后生理和病理及保鲜技术研究[J].农业工程学报, 2002, 18(3): 185-188.
    [32] Pressey R, Hinton D M, Avants J K. Development of polygalacturonase activity and solubilization of pectin in peaches during ripening[J]. Journal of Food Science, 1971, 36: 1070-1073.
    [33] Kang I K, Chang K H, Yun J K. Changes in activities of cell wall hydrolases during ripening and softening in persimmon fruit[J]. Journal of the Korean Society for Horticultural Science, 1998, 39: 155-159.
    [34] Barrett D M, Gonzalez C. Activity of softening enzymes during cherry maturation[J]. Journal of Food Science, 1994, 59(3): 574-577.
    [35] Fischer R L, Bennett A B. Role of cell wall hydrolases in f ruit ripening[J]. Annual Review of Plant Physiological and Plant Molecular Biology, 1991, 42: 675-703.
    [36] Pressy R.β-galactasidase in ripening tomato[J]. Plant Physiological, 1983, 71: 132-135.
    [37] Dawson D M, Melton L D, Watkins C B. Cell wall changes in nectarine[J]. Plant physiological, 1992, 100: 1032-1038.
    [38] Yoshioka H, Kashiumra Y, Kaneko K.β-D-Galaetosidase andα-L- arabinofuranosidase activities during the softening of apples[J]. Journal of the Japanese Society for Horticultural Science, 1995, 63(4): 871-878.
    [39] Huber D J. Strawberry fruit softening:the potential roles of polyuronides and hemicelluloses[J]. Food Science, 1984, 49: 1310-1315.
    [40]陈发河,吴光斌,冯作山,等.葡萄贮藏过程中离区酶活性变化与落粒的关系及生长调节物质的影响[J].植物生理与分子生物学学报, 2003, 29(2): 133-140.
    [41] Itai A K, Ishihara K, Bewley J D. Characterization of expression, and cloning of beta-D xylosidase and alpha-L-arabinofuranosidase in developing and ripening tomato(Lycopersicon esculentum Mil1.)fruit[J]. Journal of Experimental Botany, 2003, 54(393): 2615-2622.
    [42] Martinez G A, Chaves A R, Civei L O. Beta-xylosidase activity and expression of a beta-xylosidase gene during strawberry fruit ripening[J]. Plant Physiology and Biochemistry, 2004, 42(2): 89-96.
    [43] Su J, Zhang J P, Chen W X.β-D-xylosidase Activity in Banana Fruits during Ripening and Softening[J]. Acta Botanicl Boreal, 2007, 27(7): 1394-1398.
    [44] Schroder R, Atkinson R G, Langenk?mper G, et al.Biochemical and molecular characterisation of xyloglucan endotransglycosylase from ripe kiwifruit[J]. Planta, 1998, 204(2): 242-251.
    [45] Nunan K J, Davies C, Robinson S P, Geoffrey B. Finche.Cell wall metabolism in fruit softening and quality and its manipulation in transgenic plants[J]. Plant Molecular Biology, 2001, 47(2): 311-339.
    [46]任艳芳,张兰兰,何俊瑜,等.猕猴桃采后软化过程中β-甘露聚糖活性变化[J].江西农业大学学报, 2010, 32(1): 40-44.
    [47]林河通.黄花梨采后软化生理基础[J].中国农业科学, 2003, 36(3): 349-352.
    [48]史莉.同果实软化有关的酶类研究进展[J].河北林业科技, 2005, 5: 37-38.
    [49] Markovic O, Heinrichova K, Lenkey B Pectolytic enzymes from banana[J]. Collection of Czechoslovak Chemical Communications, 1975, 40(3): 769-774.
    [50]吕劳富,何勇.果品蔬菜[M].北京:中国环境科学出版社, 2003.
    [51]李耀东,魏玉凝,顾淑荣. PG与番茄果实成熟的关系[J].植物学通报, 2004, 21(1): 79-83.
    [52]李曜东,顾淑荣,魏玉凝,等.转反义PG基因番茄果实细胞结构变化的研究[J].植物学通报, 2002, 19(3): 348-353.
    [53]阚娟,金昌海,汪志君,等.β-半乳糖苷酶及多聚半乳糖醛酸酶对桃果实成熟软化的影响[J].扬州大学学报, 2006, 27(3): 76-80.
    [54]万赛罗,高橼,金青,等.番茄果实成熟过程中硬度及相关生理生化指标的变化[J].中国蔬菜, 2008(4): 20-23.
    [55]吴炼,王仁才,张政兵.猕猴桃果实软化衰老机理初探[J].安徽农业科学, 2008, 36(3): 881-883,937.
    [56]王贵禧,韩雅珊,于樑.猕猴桃软化过程中阶段性转移酶活性变化的研究[J].植物学报, 1995, 37(3): 198-203.
    [57]张海新,及华.果实成熟软化与相关的酶学研究[J].食品科技, 2008, 33(11): 57-60.
    [58]李正国.果实成熟的基因调控[J].生物工程进展, 2000, 20(3): 30-34.
    [59]胡留申,董晓颖,李培环,等.桃果实成熟前后细胞壁成分和降解酶活性的变化及其与果实硬度的关系[J].植物生理学通讯, 2007, 43(5): 837-841.
    [60]朱树华,刘孟臣,周杰.一氧化氮熏蒸对采后肥城桃果实细胞壁代谢的影响[J].中国农业科学, 2006, 39(9): 1878-1884.
    [61]吴锦铸,张昭其.果蔬保鲜与加工[M].北京,化工工业出版社, 2001: 13.
    [62]弓德强,谢江辉,张鲁斌,等.低温贮藏对控制菠萝黑心病和保持品质的影响[J].农业工程学报, 2010, 26(1): 365-369.
    [63]周慧娟,乔勇进,张绍铃,等.低温减压对大团蜜露水蜜桃软化及膜伤害生理的影响[J].江苏农业学报, 2010, 26(4): 802-807.
    [64]李安妮,邓义才,朱慧英,等.芒果低温贮藏的生理生化变化研究[J].广东农业科学, 1993(6): 16-17.
    [65]黄家雄.热带水果莲雾及其栽培[J].云南农业斟技, 2008, 2: 44-45.
    [66]杨荣萍,陈贤,张宏,等.莲雾研究进展[J].中国果菜, 2009, (1): 41-43.
    [67]杨燕红,梁爱丽,覃伟远.莲雾丰产栽培技术[J].现代农业科技, 2008, (23): 54-55.
    [68]张福平.莲雾采后贮藏期间生理变化的研究[J].食品研究与开发, 2006, 27(11): 151-152.
    [69]赵云峰,林河通,林娇芬,等.龙眼果实采后呼吸强度、细胞膜透性和品质的变化[J].福建农林大学学报, 2005, 34(2): 263-268.
    [70]杨振生,袁唯.果蔬呼吸强度测定方法[J].保鲜与加工, 2003, (02): 24-25.
    [71]张桂.果蔬采后呼吸强度的测定方法[J].理化检验化学分册, 2005, (08): 596-597.
    [72]吴友根,陈金印,庞会忠,等.气相色谱法速测翠冠梨中乙烯含量[J].现代化农业, 2003, 3: 9-10.
    [73]王瑞峰,吕潇等.气相色谱法速测果实中的乙烯[J].山东农业科学, 1988, 6: 25-26.
    [74]刘志勇,沈春章,董元彦.气相色谱法速测油菜中的乙烯释放量[J].化学与生物工程, 2006, 23(2): 55-56.
    [75]张耀,王强.气相色谱法快速测定空气中的乙烯[J].电力环境保护, 1990, 2(3): 42-43.
    [76]高海燕,王善广,胡小松.利用反相高效液相色谱法测定梨汁中有机酸的种类和含量[J].食品与发酵工业, 2004, 30(8): 96-99.
    [77]李小平,姚浔平,范建中等.果汁中9种有机酸的反相高效液相色谱法测定[J].中国卫生检验杂志,2008, 18(4): 582-584.
    [78] Cfimara M M, Diez C M, Torija E, et al. HPLC determinationo f organic acids in pineapple juices and nectars [J]. Z Lebensm Unters Forsch, 1994, (198): 52-56.
    [79] Mangas J, Moreno, Suarez B, et al. Liquid Chromatographic Analysis of Non-Volatile Strawberry Compounds [J]. Chromatographia, 1998, 40(3): 197-201.
    [80]郭根和,藩葳,苏德森,等.反相高效液相色谱法同时测定枇杷中的某些有机酸[J].果树学报, 2005, 22(1): 23-26.
    [81]李艳玲,张显忠,苗苗,等.蒽酮-硫酸法测定海藻糖含量显色条件的改进[J].食品工业科技, 2009, (2): 296-297.
    [82]林盛,唐燕琼,刘振文,等.香蜜杨桃果实不同部位的可溶性固形物含量分析[J].热带作物学报, 2009, 30(8): 1080.
    [83]谭兴杰,陈芳,周永成,等.柑果实采后枯水的研究[J].园艺学报, 1985, 12 (3): 165-170.
    [84] Pathak N, Sanwal G G. Multiple forms of polygalacturonase from banana fruits[J]. Phytochem, 1998, 48(2): 249-255.
    [85]李建国,黄旭明,黄辉白.裂果易发性不同的荔枝品种果皮中细胞壁代谢酶活性的比较[J].植物生理与分子生物学学报, 2003, 29(2): 141-146.
    [86]陈建勋,王晓峰.植物生理学实验指导[M].广州:华南理工出版社, 2006: 31-32.
    [87]韩雅珊.食品化学实验指导[M].北京:北京农业大学出版社, 1992: 32-33.
    [88]周仪.植物形态解剖实验[M]. 1987: 17-18.
    [89]李素坤,张秋芝,郝玉兰,等.玉米成熟期茎秆石蜡切片方法的研究[J].安徽农业科学, 2010, 38(8): 3935-3937.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700