辽宁省典型有色金属矿区土壤重金属污染评价及植物修复研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有色金属矿山开发活动给矿区及其周边地区造成了严重的土壤重金属污染,成为矿区环境污染的主要来源,恢复难度很大。然而价格低廉、环境扰动小、没有二次污染的植物修复技术是金属矿区土壤重金属污染治理及生态环境恢复的极为有效的措施。本文选取辽宁省抚顺红透山铜矿区、丹东青城子铅锌矿区、葫芦岛杨家杖子钼矿区作为研究区域,开展野外实地植被调查,并采集植物样品及根际上壤样品。通过对植物与土壤重金属含量和土壤理化性质的测定分析,并对矿区的土壤营养状况及重金属污染情况进行评价,以便弄清矿区土壤重金属污染程度和确定上壤改良措施;通过对土壤重金属的赋存形态进行分析并探讨各形态对植物的效应,以便确定土壤重金属的生物毒害性;通过对植物进行野外调查,并测定矿区的优势植物对重金属的富集与转移能力,以便筛选出适合本研究区域土壤状况的重金属忍耐型植物或具有(潜在)超累积特性的植物,然后优选植被配置模式,并加强后期维护管理,完成植物修复工程。研究结果表明:
     (1)有色金属矿区存在Cu、Cd、Zn、Pb等重金属的复合污染,而且它们之间可能具有同源关系。
     红透山铜矿区上壤中重金属Cu、Cd、Zn、Pb的含量严重超标,尤其Cu、Cd、Zn在上壤中的积累程度更为强烈。全量Cu与Zn、Cd,全量Zn与Cu、Cd,全量Pb与Hg,全量Cr与As,全量Cd与Cu、Zn、As之间都有着极显著的正相关关系;全量Cu与全量As呈显著正相关关系。青城子铅锌矿区上壤中Pb、Cd、Zn、Cu含量严重超标,尤其Pb、Cd的含量均超出100多倍,可见二者在土壤中的积累程度非常强烈。土壤中多数重金属的含量间有着极显著的相关性,说明各种重金属的污染具有同源性,都可能与矿区频繁的采矿活动密不可分。杨家杖子钼矿区土壤中Pb、Zn、Cd、Cu含量轻微超标。土壤中Cu和Pb、Cr, Zn和As,Pb和Cu、Cr, Cd和Hg的总量间呈极显著正相关性,表明这些重金属元素间可能具有同源关系。
     (2)有色金属矿区土壤重金属污染严重,主要污染因子为Cu、Cd、Zn、Pb等。
     采用模糊综合-加权平均模型以及模糊综合指数法评价红透山铜矿区的重金属污染程度:排土场主要重金属污染因子为Cu、Cd、Zn,尾矿库主要重金属污染因子为Cu、Zn、Pb,周边耕地主要重金属污染因子为Cd、Zn、As、Cu。采用地积累指数法和潜在生态危害指数法评价青城子铅锌矿区的重金属污染程度:重金属Pb、Cd污染极其严重,Zn偏重污染,Cu、As皆为中度污染,Cr污染较轻。通过比较RI和Igeo两种评价方式,评价结果基本一致,说明这两种方法的结合使用,既互相补充又互相印证。重金属污染程度排序为:Cd>Pb>Hg>Zn>Cu> As>Cr。其中,排土场Pb、Cd污染严重,尾矿库Cd、Pb污染极为严重,周边农田Hg、Cd污染严重。采用单项污染指数法和内梅罗综合污染指数法评价杨家杖子钼矿区的重金属污染程度:排土场、尾矿库及其附近耕地的综合污染指数Pj均大于3,土壤重金属污染程度很严重。
     (3)杨家杖子钼矿区可交换态Zn, Mo, Cu, Cd含量高,对植物的有效性和毒性大,并且大多数重金属的有机物结合态与上壤养分含量之间相关性显著。
     采用Tessier连续提取法进行样品分析:采场周边山地可交换态Cd, Cu, Zn含量最高,排土场周边耕地可交换态Zn, Mo, Cu含量最高,尾矿库周边耕地可交换态Cd, Zn, Mo含量最高,对植物的有效性和毒性最大。
     通过对土壤中重金属可利用态与作物体内重金属含量的相关性分析发现:土壤中Zn、Cd的有效态含量和作物籽粒内的五种重金属含量间有着极显著的或弱的负相关关系,其余元素间的相关性都不显著。通过对土壤样品的重金属的各个形态含量与土壤养分含量之间进行相关性分析发现:Cu的有机物结合态与全N、速效N、速效P、全K、速效K之间具有极显著负相关关系;Zn的全量与可交换态、铁锰氧化物结合态之间有着极显著正相关性,与有机质、全P间具有极显著正相关性;Pb的全量、可交换态含量、有机物结合态含量与土壤养分含量之间多呈显著或极显著负相关性;全P与Cd的全量、其它各种形态的含量之间大多数具有极显著正相关关系;Hg的有机物结合态与土壤养分含量之间多呈极显著负相关性。
     (4)有色金属矿区上壤养分含量很低,尤其速效N和速效K等营养元素非常贫乏。
     采用模糊综合评价法和主成分分析法对矿区的土壤肥力状况进行综合评价:红透山铜矿区的排上场和尾矿库岩土的养分状况为2级——“贫乏”,周边耕地的上壤养分状况为5级——“丰富”。排土场最缺乏的上壤营养元素为氮和钾,尾矿库最缺乏有机质、磷和钾。青城子铅锌矿区的排土场中除了速效磷外,其余营养元素都很贫乏;尾矿库中有机质、全N、速效N、速效K极度贫乏,全K贫乏;附近耕地中只有全N和速效N贫乏,其余较丰富。上壤综合肥力状况排序为:附近耕地>排土场>尾矿库。杨家杖子钼矿区的土壤pH值与上壤养分含量间绝大多数存在极显著负相关关系,废弃地的土壤呈碱性,养分含量极低。上壤综合肥力状况排名依次为:附近山坡榛树林下、附近耕地、尾矿库内沙棘地、排土场、尾矿库。
     (5)通过调整土壤pH值、Eh值、有机质、质地等措施来改变重金属在土壤中的活性,从而改变其生物有效性以及植物的利用率,提高植物的成活率。
     采取向酸性土壤中施加石灰,增大土壤碱性的办法来降低重金属的生物有效性;采用灌溉或淹水的措施创造还原性的环境条件,降低土壤Eh值,减少土壤中重金属离子的数量;增施污水污泥、生活垃圾、动物粪便及植物秸杆等有机肥,提高土壤中养分及有机质的官能团含量;选择对植物无危害或危害较轻且浓度低时对植物生长有利的微量元素来拮抗含量过高的重金属元素。通过试验发现,这些改良措施在研究区域中的应用是切实可行的。
     (6)分析比较有色金属矿区优势植物对重金属的富集、转移能力,挑选出山刺玫、薹草、地榆等对重金属累积能力强的植物,为植物修复的先锋种的确定提供科学依据。
     实地调查了矿区废弃地的自然植物群落,分析测定了主要优势植物及其根际土壤中的重金属含量并作了相关分析:红透山铜矿区优势植物地上部的Cu、Zn、Cd分别与土壤中的Cu、Zn、Cd的含量具有极显著的正相关关系;青城子铅锌矿区优势植物中的Zn、Pb、Cd分别与土壤中的Zr、Pb、Cd的含量具有极显著的正相关关系;杨家杖子钼矿区土壤与玉米中的Hg,大豆中的Pb、Hg,谷子中的Zn达到显著性相关。
     植物富集重金属能力比较:红透山铜矿区对Cu富集能力较强的分别是野艾蒿、薹草、假酸浆,对Zn富集能力较强的分别是山刺玫、薹草、假酸浆,对Pb富集能力较强的分别是芦苇、落叶松、假酸浆,对Cd富集能力较强的分别是旱柳、大籽蒿、假酸浆。青城子铅锌矿区对Cu富集能力较强的分别是羊胡子薹草和辣蓼铁线莲、野艾蒿和白花败酱、大籽蒿,对Zn富集能力较强的分别是羊胡子薹草和烟管头草、苦荬菜和兴安毛连菜、白桦,对Pb富集能力较强的分别是烟管头草和辣蓼铁线莲、兴安毛连菜和白花败酱、野山楂,对Cd富集能力较强的分别是地榆和烟管头草、苦荬菜和白花败酱、白桦。杨家杖子钼矿区三种农作物对重金属的富集能力排序是:玉米和谷子:Cu>Zn>Cd>Hg>Pb;大豆:Cu>Cd>Zn>Hg>Pb。
     植物转移重金属能力比较:红透山铜矿区尾矿库、排土场、垃圾场中对Cu转移能力较强的分别是山刺玫、薹草、假酸浆,对Zn转移能力较强的分别是山刺玫、薹草、假酸浆,对Pb转移能力较强的分别是珍珠梅、薹草、假酸浆,对Cd转移能力较强的分别是山刺玫、薹草、假酸浆。青城子铅锌矿区对Cu转移能力最强的分别是地榆、兴安毛连菜、龙牙草,对Zn转移能力最强的分别是烟管头草、苦荬菜、大籽蒿,对Pb转移能力最强的分别是烟管头草、兴安毛连菜、绣线菊,对Cd转移能力最强的分别是地榆、兴安毛连菜、绣线菊。
     (7)筛选出珍珠梅、假酸浆、苦荬菜等重金属忍耐型或超累积植物,经过栽植试验确定最佳植物配置模式并应用于有色金属矿区的植物修复工程中。
     根据群落演替理论,矿山废弃地植被恢复过程是从先锋植物的引入开始,经过一系列演替阶段,最终达到中生性的顶极群落。研究区域的地带性植被是针阔叶混交林,从裸地开始的进展演替大致经过裸地→草丛→灌丛→针叶林→针阔叶混交林阶段。
     筛选重金属忍耐型或(潜在)超累积植物:在红透山铜矿区的原始尾矿库中选取野艾蒿、山刺玫和珍珠梅,排土场中选取薹草、落叶松和大籽蒿,覆盖生活垃圾的尾矿库中选取假酸浆和灰绿藜等;在青城子铅锌矿区的排土场中选取烟管头草、地榆、羊胡子薹草,尾矿库中选取兴安毛连菜、苦荬菜、白花败酱,周边山地中选取白桦、绣线菊、大籽蒿等;在杨家杖子钼矿区选取高羊茅、早熟禾、黑麦草三种草坪草和沙棘等对重金属忍耐能力强的植物品种作为研究区域废弃地植物恢复的先锋物种。
     确定最佳植物配置模式:红透山铜矿区尾矿库的恢复方向以保护为主,采用灌木与草本植物相结合的植物恢复措施,最佳植物配置模式:山刺玫×珍珠梅×(假酸浆、灰绿藜、苋菜);排上场的恢复方向以保护为主,兼顾利用,采用乔木与草本相结合的植物恢复措施,最佳植物配置模式:落叶松×(山杨、刺槐)×(大籽蒿、薹草)。青城子铅锌矿区尾矿库的恢复方向以保护为主,利用草本植物群落迅速覆盖尾砂裸地,逐渐改良上质,为乔、灌木的生长创造条件,最佳植物配置模式:水淹地:芦苇×蔺草×水蓼,其它:兴安毛连菜×苦荬菜×白花败酱;排上场的恢复方向以保护为主,兼顾利用,植物恢复措施采用乔木、灌木与草本植物相结合的方式,最佳植物配置模式:油松×白桦×(胡枝子、地榆)×(铁杆蒿、升麻、羊胡子薹草、烟管头草)。杨家杖子钼矿区尾矿库的恢复方向以保护为主,兼顾利用,采用灌木与草本植物相结合的植物恢复措施,最佳植物配置模式:沙棘×柠条×(高羊茅、早熟禾、黑麦草)。
     以上研究结论对于受到重金属严重污染的金属矿山的环境治理和生态恢复具有重要的现实意义,大大提高了植被重建效果和生态恢复成功率,有利于矿山生产及其生态环境的可持续发展。
The development activity of nonferrous metals mine caused serious soil heavy metal pollution to mine areas and the surrounding areas, which became the main source of environmental pollution of mine areas. It is very difficult for this kind of pollution to be restored. However, the phytoremediation technology of low price, less environmental disturbance and no secondary pollution is the most effective measure for the soil heavy metal pollution control in metal mine areas and the improvement of eco-environmental quality. Therefore, this dissertation takes Hongtoushan copper mine area in Fushun city of Liaoning province, Qingchengzi lead-zinc mine area in Dandong city and Yangjiazhangzi molybdenum mine area in Huludao city as research areas to carry out field vegetation survey and collect plant samples as well as rhizosphere soil samples. The analysis of measuring the heavy metal content of plants and soil as well as physical and chemical properties of soil and the evluation towards soil nutrient status in mine areas and the pollution condition caused by heavy metals have been carried out to make clear the pollution degree of heavy metal in mine areas and determine soil improvement measures; The field investigation towards plants and the measuring on the enrichment and metastasis potential towards heavy metal caused by dominant plants have been carried out in order to screen out the heavy metal resistant plants suitable for the soil condition in this research area or the plants with (potential)hyper-accumulator characteristics. Then the perfect pattern of forest vegetation will be selected and the late maintenance management will be strengthened to complete phyto-remediation project. The research results show that:
     (1) The compound pollutiont of the heavy metal--Cu、Cd、Zn、Pb is in the nonferrous metals mineland.And there may be homoeologous relationship between these heavy metal elements.
     The content of the heavy metal--Cu、Cd、Zn、Pb in Hongtoushan copper mine area is beyond the standard greatly. Especially the accumulation of Cu、Cd、Zn in the soil is much higher. There is rather obvious positive relation between the total content of Cu, Zn and Cd, so it is the same with the total content of Zn, Cu and Cd as well as the total content of Pb and Hg together with the total content of Cr and As; The relation between the total content of Cu and As is obviously positive. The content of Pb, Cd, Zn, and Cu in Qingchengzi lead-zinc mine area is beyond the standard greatly; especially the content of Pb and Cd is both over100times higher. That shows the accumulation of Pb and Cd in the soil is very strong. There exists very apparent corelation between the contents of most heavy metals in the soil, which shows the pollution of various heavy metals has homology and all are probably closely related with frequent mining activity in mining areas. The contents of Pb, Zn, Cd and Cu in the soil of Yangjiazhangzi molybdenum mine area are slightly beyond the standard. There exist very obvious positive correlation between the total content of Cu and Pb, Cu and Pb and Cr, Zn and As and Pb, Cu and Cr, as well as Cd and Hg; that shows there may be homoeologous relationship between these heavy metal elements.
     (2) The pollution degree of soil heavy metal is rather serious in the nonferrous metals mineland.And the main pollution factors are Cu, Cd,Zn and Pb.
     Adopting fuzzy synthetic evaluation----weighed average model and fuzzy synthesis index to evaluate the pollution degree of heavy metal in Hongtoushan copper mine area: the main pollution factors of waste dump are Cu, Cd and Zn; the main pollution factors of tailing pond are Cu, Zn and Pb; the main pollution factors of the surrounding farmland are Cd, Zn, As and Cu. Adopting geo-accumulation index method and potential ecological risk index to evaluate the pollution degree of heavy metal Qingchengzi lead-zinc mine area: the pollution of heavy metals—Pb and Cd is extremely serious; the pollution of Zn is lopsided; the pollution of Cu and As is both moderate; and the pollution of Cr is slighter. The evalution result of the two evaluation modes—RI and Igeo is basically the same through comparing, which shows the combination of the two models is mutally supplemented and verified. The sequencing for the pollution degree of heavy metals is Cd>Pb>Hg>Zn>Cu>As>Cr. Among them, the pollution from Pb and Cd in waste dump is serious; the pollution from Cd and Pb in tailing pond is extremely serious; the pollution from Hg and Cd of the surrounding farmland is serious. Adopting single pollution index and Nemerow multi-factor index methods to evaluate the pollution degree of heavy metal in YangJiaZhangZi molybdenum mine areas:the multi-factor pollution index--Pj in waste dump, tailing pond and surrounding farmland is all over3, which shows the pollution degree of soil heavy metal is rather serious.
     (3) The content of exchangeable Zn, Mo, Cu and Cd in Yangjiazhangzi molybdenum mine area is the highest. All those factors have the highest effectiveness and toxity on plants.
     Adopting Tessier sequential extraction to perform sample analysis:the content of exchangeable Cd, Cu and Zn in surrounding mountain area around stopes is the highest; the content of exchangeable Zn, Mo and Cu of the farmland around waste dumps is the highest; the content of exchangeable Cd, Zn and Mo of the farmland around tailing pond is the highest. All those factors have the highest effectiveness and toxity on plants.
     Through the correlation analysis on the usability of heavy metal in soil and the content of heavy metal in crops, we can discover that:there exists very apparently weak or strong negative correlation between the available contents of Zn and Cd in soil and the contents of five kinds of heavy metals in crop seeds. The correlation between the rest elements is not significant. Through the correlation analysis between the content of all forms of heavy metal from soil samples and the content of soil nutrient, we can discover that:there is very significantly negative correlation between the combined state of organic sulphide of Cu and total nitrogen, available nitrogen, available phosphorus, total potassium and available potassium; there is very significantly positive correlation between the total content of Zn and its exchangeability as well as iron-manganese oxides; there is very significantly positive correlation between Zn and organic material as well as available phosphorus; obvious and extremely obvious negative correlation exists between the total content of Pb, the exchangeable content of Pb, the content of the combined state of organic sulphide of Pb and the content of soil nutrient; there is very apparent positive correlation between available phosphorus and the total content of Cd as well as other sorts of forms; very obvious negative correlation often exists between the combined state of organic sulphide of Hg and the content of soil nutrient.
     (4) The content of soil nutrient is very low in the nonferrous metals mineland. The most deficient nutrient elements of soil are nitrogen and potassium.
     Adopting fuzzy synthetic evaluation method and principal components analysis method carry out comprehensive evaluation on the soil fertility in mine areas:the nutrient situation of waste dump and the rock soil of tailing pond in Hongtoushan copper mine area is grade Ⅱ----"poorness"; the nutrient situation of surrounding farmland is grade V---"abundance". The most deficient nutrient elements of soil in waste dump are nitrogen and potassium; what the tailing pond is lacking in most is organic material, phosphorus and potassium. Of all nutritive elements besides phosphor, shortage of nitrogen and potassium in the waste dump and tailing mine area of Qingchengzi lead-zinc mine area is the most severe. And then the nutrient situation of vicinal agricultural land is abundant except the element of nitrogen. The sequencing of comprehensive fertility condition of soil is:surrounding farmland>waste dump> tailing pond. There usually exists very obvious negative correlation between the soil pH value of Yangjiazhangzi molybdenum mine area and the content of soil nutrient. The soil of abandoned land presents alkaline and the content of its nutrient is very low. The sequencing of comprehensive fertility condition of soil is:soil under hazelnut trees of nearby mountain slope> nearby farmland> sea buckthorns land in tailing pond> waste dump> tailing pond.
     (5) The measures of adjusting the pH value, Eh value, organic material and texture etc will be taken to change the activity of heavy metal in soil. Thus Bio-availability of heavy metal and the utilization fate of heavy metal by plants will also be changed to further improve the survival percentage of plants.
     Adopting the methods of applying lime to the acid soil and increasing soil alkaline to decrease the Bio-availability of heavy metal; To create the reducing environmental condition by irrigating or flooding so as to reduce the Eh value of soil and the number of heavy metal ions in soil; Increase the use of organic fertilizer like sewage sludges, solid waste, animal manure and plant straws etc to increase the content of soil nutrient and functional group; choose microelements which are harmless to plants or the microelements which are lightly harmful to plants and are good for the growth of plants when the concentration of microelements are low to resist the heavy metals with too high content. The discovery is made through experience that these improvement measures are feasible for the application in research area.
     (6) The enrichment and metastatic potential of analysis as well as comparison towards heavy metal have been carried out about main dominat plants in the nonferrous metals mineland. And the plants of rosa davarica pall, carex and garden burnet have stronger cumulate ability for heavy metal so that a theoretic basic can be provided for the selection of pioneer plants in the vegetation restoration process.
     Field survey has been conducted the natural plant community on the abandoned land in mine areas and analysis as well as determination have been carried out about main dominat plants and relative analysis has been performed about their heavy metal content in the rhizosphere soil:Cu, Zn and Cd of the dominant plants above earth are obviously positively correlated with the content of them respectively in the soil of Hongtoushan copper mine area and Zn, Pb and Cd in Qingchengzi lead-zinc mine area; the soil in Yangjiazhangzi molybdenum mine area has obvious correlation with Hg of corns, Pb and Hg of soybeans and Zn of millet.
     Comparison for the ability of enriching heavy metals by plants:the plants having stronger enriching ability for Cu in Hongtoushan copper mine area are respectively wild mugwort, carex and nicandra physalodes; the plants having stronger enriching ability for Zn are respectively rosa davarica pall, carex and nicandra physalodes; the plants having stronger enriching ability for Pb are respectively reed, larch and nicandra physalodes; the plants having stronger enriching ability for Cd are respectively Hankow willow, artemisia sieversiana and nicandra physalodes. The plants having stronger enriching ability for Cu in Qingchengzi lead-zinc mine area are respectively carex goat beard water pepper, clematis, wild mugwort, patrinia villosa and artemisia sieversiana; the plants having stronger enriching ability for Zn are respectively carex goat beard, cernuum, lactuca indica, Xingan oxtongue and birch; the plants having stronger enriching ability for Pb are respectively cernuum, water pepper, clematis, Xingan oxtongue, patrinia villosa and wild hawthorn; the plants having stronger enriching ability for Cd are respectively garden burnet, cernuum, lactuca indica, patrinia villosa and birch. The sequencing of enriching ability for heavy metal of three kinds of crops in Yangjiazhangzi molybdenum mine area are:corn and millet:Cu>Zn>Cd>Hg>Pb; soybeans:Cu>Cd>Zn>Hg>Pb.
     Comparison for the ability of transferring heavy metals by plants:the plants having stronger transferring ability for Cu in the tailing pond of Hongtoushan copper mine area, waste dump, and refuse dump are respectively rosa davarica pall, carex and nicandra physalodes; the plants having stronger transferring ability for Zn are respectively rosa davarica pall, carex and nicandra physalodes; the plants having stronger transferring ability for Pb are respectively false spiraea, carex and nicandra physalodes; the plants having stronger transferring ability for Cd are respectively rosa davarica pall, carex and nicandra physalodes. The plants having the strongest transferring ability for Cu in Qingchengzi lead-zinc mine area are respectively garden burnet, Xingan oxtongue and agrimony; the plants having the strongest transferring ability for Zn are respectively cernuum, lactuca indica and artemisia sieversiana; the plants having the strongest transferring ability for Pb are respectively cernuum, Xingan oxtongue and spiraea; the plants having the strongest transferring ability for Cd are respectively garden burnet, Xingan oxtongue and spiraea.
     (7) Sifting heavy metal resistant plants or the plants with (potential) hyper-accumulator characteristics such as false spiraea, nicandra physalodes and lactuca indica. And the optimus plant disposition mode are determined and applied in the vegetation restoration project through planting trials.
     According to community succession theory, the vegetation restoration process of abandoned land in mine areas begins with the introduction of pioneer plants and reaches the mesophytic climax community in the end after a series of succession stages. The zonal vegetation in research area is coniferous and broadleaved mixed forest. The progressive succession begins with bare land roughly experiences the stages of bare land→hassock→shrub→coniferous forest→coniferous and broadleaved mixed forest.
     Sift the heavy metal resistant plants or the plants with (potential) hyper-accumulator characteristics:Selecting wild mugwort, rosa davarica pall and false spiraea in original tailing pond of Hongtoushan copper mine area; selecting carex, larch and artemisia sieversiana in waste dump; selecting nicandra physalodes and glaucum etc in tailing pond covered with solid waste; selecting cernuum, garden burnet and carex goat beard in waste dump of Qingchengzi lead-zinc mine area; selecting Xingan oxtongue, lactuca indica and patrinia villosa; selecting white birch、spiraea and artemisia sieversiana etc in surrounding mountainous regions; selecting the plant variety possessing strong resistence against heavy metal like three kinds of turf grass---tall fescur, bluegrass and ryegrass as well as sea buckhorn etc in Yangjiazhangzi molybdenum mine area as the poineer species of plant restoration on the abandoned land in research areas.
     Determine the optimus plant disposition mode:the restoration in tailing pond of copper mine area aims at centering on protection, adopting plant restoration measure of the combination of shrub and herb plants. The optimus plant disposition mode:rosa davarica X false spiraea X (nicandra physalodes, glaucum and amaranth); the restoration in waste dump of Hongtoushan copper mine area aims at centering on protection and considering utilization as well by adopting the plant restoration measure of the combination of arbor and herb plants. The optimus plant disposition mode:larch X (aspen and black locust) X (artemisia sieversiana and carex). The restoration in tailing pond of Qingchengzi lead-zinc mine area aims at centering on protection, utilizing herb plant community to cover tailings bare land rapidly and improve soin quality gradually so as to create conditions for the growth of arbon and shrub. he optimus plant disposition mode:water-flooded land:reed X grass X polygonum hydropiper; others:Xingan oxtongue X lactuca indica X patrinia villosa; the restoration in waste dump aims at centering on protection and considering utilization as well by adopting the plant restoration measure of the combination of arbor, shrub and herb plants. The optimus plant disposition mode:Chinese pine X birch X (lespedeza and garden burnet) X (artemisia gmelinii, skunk bugbane, carex goat beard and cernuum). The restoration in tailing pond of Yangjiazhangzi molybdenum mine area aims at centering on protection and considering utilization as well by adopting the plant restoration measure of the combination of shrub and herb plants. The optimus plant disposition mode:sea buckhorn X caragana×(tall fescue, bluegrass and ryegrass).
     Above research conclusions are of large practical significance to environmental control and ecological restoration of metal mine areas polluted seriously by heavy metal, have greatly improved vegetation reconstruction effect and ecological restoration success rate, and will have a far-reaching impact on the sustainable development of the mine area and its entironment.
引文
[1]唐文杰.广西三锰矿区土壤污染与优势植物重金属富集研究[D].广西师范大学,2008.
    [2]刘月莉.四川甘洛铅锌矿区植被生态调查及重金属超富集植物的筛选[D].四川农业大学,2008.
    [3]刘小红.九华铜矿重金属污染调查及耐铜植物的筛选、耐性机理研究[D].合肥:安徽农业大学,2005.
    [4]孙健,铁柏清,钱湛,et al.湖南省有色金属矿区重金属污染土壤的植物修复[J].中南林学院学报.2006,26(1):125-128.
    [5]王显炜,徐友宁,杨敏,et al.国内外矿山土壤重金属污染风险评价方法综述[J].中国矿业.2009,18(10):54-56.
    [6]梁家妮,马友华,?静.土壤重金属污染现状与修复技术研究[J].农业环境与发展.2009,26(4):45-49.
    [7]郭平.长春市土壤重金属污染机理与防治对策研究[D].吉林大学,2005.
    [8]焦丽香,郭加朋.土壤重金属的污染与治理进展研究[J].科技情报开发与经济.2009,19(1):155-156.
    [9]徐鸿志.安徽省主要土壤重金属污染评价及其评价方法研究[D].安徽农业大学,2007.
    [10]曲蛟.钼矿区及周边农田土壤重金属污染现状分析及评价[D].东北师范大学,2007.
    [11]孙叶芳.矿区士壤重金属毒性评价及污染修复[D].浙江大学,2005.
    [12]周建民,党志,司徒粤,et al.大宝山矿区周围土壤重金属污染分布特征研究[J].农业环境科学学报.2004,23(6):1172-1176.
    [13]杨振,胡明安,Zhen Y, et al.程潮铁矿重金属污染及其环境地球化学研究[J].矿业安全与环保.2007,34(2):23-28.
    [14]宋书巧,梁利芳,周永章,等.广西刁江沿岸农田受矿山重金属污染现状与治理对策[J].矿物岩石地球化学通报.2003,22(2):152-155.
    [15]刘磊,肖艳波.土壤重金属污染治理与修复方法研究进展[J].长春工程学院学报(自然科学版).2009,10(3):73-78.
    [16]俄胜哲,杨思存,崔云玲,et al.我国土壤重金属污染现状及生物修复技术研究进展[J].安徽农业科学.2009,35(19):9104-9106.
    [17]冯颖俊,孙龙仁.重金属污染土壤的植物修复技术研究进展[J].现代农业科学.2009(02):30-32.
    [18]李梅,曾德华,Mei L I, et al.重金属污染的植物修复研究进展[J].贵州农业科学.2007,35(3): 135-138.
    [19]李德明,郑听,张秀娟.重金属对植物生长发育的影响[J].安徽农业科学.2009,37(1):74-75.
    [20]祝沛平,李凤玉,梁海曼.铜对植物器官分化的影响[J].植物生理学通讯.1999,35(4):332-336.
    [21]Ayala M B, Sandmann G. Activities of Cu-containing proteins in Cu-depleted pea leaves[J]. Physiologia Plantarum.1988,72(4):801-806.
    [22]Arguello J M, Eren E, Gonzalez-Guerrero M. The structure and function of heavy metal transport P1B-ATPases[J].2007,20(3-4):233-248.
    [23]夏增禄,穆从如,孟维奇,等.Cd、Zn、Pb及其相互作用对烟草、小麦的影响[J].生态学报.1984,4(3):231-236.
    [24]马引利Al、Cd、Hg对小麦幼苗生长的影响及DNA损伤效应研究[D].陕西师范大学,2004.
    [25]Andersen M, Raulund-Rasmussen K, Strobel B, et al. The Effects of Tree Species and Site on the Solubility of Cd, Cu, Ni, Pb and Zn in Soils[J]. Water, Air,& Soil Pollution.2004,154(1): 357-370.
    [26]吴旭红,何士敏,张树权.镉胁迫下大豆幼苗生理生化特性分析[J].黑龙江环境通报.2001,25(3):65-68.
    [27]秦天才,吴玉树,王焕校.镉、铅及其相互作用对小白菜生理生化特性的影响[J].生态学报.1994,14(01):46-50.
    [28]王艳杰,傅桦.晚近10年来土壤重金属污染植物修复研究[J].首都师范大学学报(自然科学版).2004(S1):141-145.
    [29]刘小宁,马剑英,张慧文,et al.植物修复技术在土壤重金属污染中应用的研究进展[J].中国沙漠.2009,29(5):859-865.
    [30]岳庆玲.湖南典型矿区土壤和植物重金属污染研究[D].西北农林科技大学,2004.
    [31]浙江大学环境修复与生态健康教育部重点实验室.植物修复技术应用前景广泛[J].国际学术动态.2006(3):26-28.
    [32]王松良,郑金贵.土壤重金属污染的植物修复与金属超富集植物及其遗传工程研究[J].中国生态农业学报.2007,15(1):190-194.
    [33]杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报.2001,21(11):1932-1940.
    [34]丁佳红,刘登义,李影,et al.狮子山铜尾矿植物对铜的吸收及土壤特的影响[J].生物学杂志.2004,21(3):20-22.
    [35]王英辉,陈学军,赵艳林,et al.铅锌矿区土壤重金属污染与优势植物累积特征[J].中国矿业大学学报.2007,36(4):487-493.
    [36]罗强.南京栖霞铅锌矿货场土壤与植物重金属含量与对照区含量分析[J].西昌学院学报(自 然科学版).2005,19(3):57-60.
    [37]张庆欣,董宝君,李友权.营养杯育苗造林在杨家杖子尾矿库生态恢复中的应用[J].辽宁城乡环境科技.2007(03):11-13.
    [38]辽宁省国土资源厅.辽宁省矿山生态环境保护与治理专题研究报告[R].,2001.
    [39]鲍士旦.土壤农化分析[M].北京:中国农业出版社,2005:66-68.
    [40]Filip Z. International approach to assessing soil quality by ecologically-related biological parameters[J]. Agriculture, Ecosystems & Environment.2002,88(2):169-174.
    [41]李洪伟.淮南矿区土壤重金属污染的初步调查研究[D].安徽理工大学,2006.
    [42]周秀艳.渤海西岸金属矿产采冶区环境地球化学研究[D].东北大学,2004.
    [43]于凤金.红透山式矿床成矿模式与找矿模型研究[D].东北大学,2006.
    [44]孔令韶,王美林,胡肄慧,等.辽宁红透山铜矿铜异常区的植物群落及其主要植物的铜含量特征[J].植物学报(英文版).1984(03):302-311.
    [45]Gabler H E, Schneider J. Assessment of heavy-metal contamination of floodplain soils due to mining and mineral processing in the Harz Mountains, Germany[J]. Environmental Geology.2000, 39(7):774-782.
    [46]胡肄慧,孔令韶,王美林,等.辽宁青城子矿区植物群落及植物和土壤中元素含量的关系[J].植物学报.1984(04):432-439.
    [47]沙德铭,赵东芳,张森,et al.辽宁青城子铅锌矿深部找矿工作曙光初现[J].矿物学报.2007,27(z1):432-439.
    [48]周秀艳.渤海西岸金属矿产采冶区环境地球化学研究[D].东北大学,2004.
    [49]苏梅.阳光下的破冰之旅——辽宁省葫芦岛杨钢地区钼矿资源整合纪实[J].国土资源.2006(12):20-29.
    [50]李春喜.生物统计学[M].北京:科学出版社,2008.
    [51]Wang Z, Chang A C, Wu L, et al. Assessing the soil quality of long-term reclaimed wastewater-irrigated cropland[J].2003,114(3-4):261-278.
    [52]段永惠.模糊综合评价在土壤环境质量评价中的应用研究[J].农业系统科学与综合研究.2004(04):303-305.
    [53]W D J, B P T. Defining and assessing soil quality//Doran J W, et al. Defining Soil Quality or A Sustainable Environment[J]. SSSA spec publ SSSA and ASA, Madison, W I.1994:331.
    [54]de la Paz Jimenez M, de la Horra A, Pruzzo L, et al. Soil quality: a new index based on microbiological and biochemical parameters[J]. Biology and Fertility of Soils.2002,35(4): 302-306.
    [55]李萍.藏东南耕作棕壤养分模糊综合评价[J].土壤.2003(05):435-437.
    [56]Gailey F A, Lloyd O L L. Grass and surface soils as monitors of atmospheric metal pollution in Central Scotland[J]. Water, Air,& Soil Pollution.1985,24(1):1-18.
    [57]贾振邦,周华,赵智杰,等.应用地积累指数法评价太子河沉积物中重金属污染[J].北京大学学报(自然科学版).2000(04):525-530.
    [58]彭景,李泽琴,侯家渝.地积累指数法及生态危害指数评价法在土壤重金属污染中的应用及探讨[J].广东微量元素科学.2007,14(08):13-17.
    [59]李如忠,洪天求,贾志海,等.基于盲数的水体沉积物潜在生态风险评价方法[J].生态环境.2007(05):1346-1352.
    [60]杨丽原,沈吉,张祖陆,等.南四湖表层底泥重金属污染及其风险性评价[J].湖泊科学.2003(03):252-256.
    [61]吴燕玉.辽宁省土壤元素背景值研究[M].北京:中国环境科学出版社,1994.
    [62]李静.重金属和氟的土壤环境质量评价及健康基准的研究[D].杭州:浙江大学,2006.
    [63]刘磊,肖艳波.土壤重金属污染治理与修复方法研究进展[J].长春工程学院学报(自然科学版).2009,10(3):73-78.
    [64]龚根辉.城市十壤重金属污染研究现状与展望[J].安徽农学通报.2009,15(15):148-149.
    [65]李洪伟.淮南矿区土壤重金属污染的初步调查研究[D].安徽理工大学,2006.
    [66]徐鸿志.安徽省主要土壤重金属污染评价及其评价方法研究[D].安徽农业大学,2007.
    [67]唐文杰.广西三锰矿区土壤污染与优势植物重金属富集研究[D].广西师范大学,2008.
    [68]刘敬殉,刘晓晖,陈长清,et al.湘西烟区土壤肥力状况分析与综合评价[J].中国农学通报.2009,25(2):46-50.
    [69]梁剑,张健,Jian L, et al.多元统计分析在四川退耕还林区土壤肥力评价中的运用[J].环境科学研究.2008,21(2):68-72.
    [70]兰忠明,王飞,Zhongming L, et al.多元统计分析在三明烟区土壤肥力评价中的运用[J].中国农学通报.2006,22(3):263-266.
    [71]马利强,郝玉光,张秋良,et al.不同配置农田防护林对土壤物理性质的影响[J].内蒙古大学学报(自然科学版).2009,40(3):303-308.
    [72]林大仪.土壤学实验指导[M].北京:中国林业出版社,2004.
    [73]章牧,朱鹤健.东南沿海地区特色农业评价与信息化技术[M].北京:中国农业出版社,2003:111-113.
    [74]薛生国,周菲,叶晟,et al.金属尾矿废弃地植物稳定技术研究进展[J].环境科学与技术.2009,32(8):101-104.
    [75]顾继光,周启星,王新.土壤重金属污染的治理途径及其研究进展[J].应用基础与工程科学学报.2003,11(2):143-151.
    [76]张殿顺.土壤重金属污染特征及尾矿地的改良措施研究[D].保定:河北农业大学,2007.
    [77]Maenpaa K A, Kukkonen J V K, Lydy M J. Remediation of Heavy Metal-Contaminated Soils Using Phosphorus: Evaluation of Bioavailability Using an Earthworm Bioassay[J]. Archives of Environmental Contamination and Toxicology.2002,43(4):389-398.
    [78]王新,吴燕玉,梁仁禄,等.各种改性剂对重金属迁移、积累影响的研究[J].应用生态学报.1994,05(01):89-94.
    [79]王立群,华珞,王学东,et al.土壤重金属污染的调控机理及应用研究[J].环境科学与技术.2009,32(6):76-84.
    [80]Naidu R, Kookana R S, Sumner M E, et al. Cadmium Sorption and Transport in Variable Charge Soils: A Review[J]. Journal of Environmental Quality.1997,26(3):602-617.
    [81]朱勇.北仑区梅山乡土壤肥力分析及评价[J].宁波农业科技.2008(04):13-15.
    [82]宋阿琳,娄运生,梁永超,et al.不同水稻品种对铜镉的吸收与耐性研究[J].中国农学通报.2006,22(9):408-411.
    [83]郝秀珍,周东美.金属尾矿砂的改良和植被重建研究进展[J].土壤.2005,37(1):13-19.
    [84]陈世宝,华珞,白玲玉,等.有机质在士壤重金属污染治理中的应用.[J].农业环境与发展.1997,14(3):26-29.
    [85]张亚丽,沈其荣,姜洋.有机肥料对镉污染十壤的改良效应[J].土壤学报.2001,38(2):212-218.
    [86]余贵芬,蒋新,孙磊,et a1.有机物质对十壤镉有效性的影响研究综述[J].生态学报.2002,22(5):770-776.
    [87]陈武.环境中重金属污染土壤的植物修复研究进展[J].化学工程与装备.2009(8):770-776.
    [88]Bolan N S, Adriano D C, Natesan R, et al. Effects of Organic Amendments on the Reduction and Phytoavailability of Chromate in Mineral Soil [J]. J Environ Qual.2003,32(1):120-128.
    [89]涂从,郑春荣,陈怀满.土壤-植物系统中重金属与养分元素交互作用[J].中国环境科学.1997,17(6):526-529.
    [90]Kalyanaraman S B, Sivagurunathan P. Infrared studies on the effect of zinc on b lack-gram [J]. Journal of Plant Nutrition.1994,17(5):851-857.
    [91]Zhu B, Alva A K. Distribution of Trace Metals in Some Sandy Soils under Citrus Production [J]. Soil Sci Soc Am J.1993,57(2):350-355.
    [92]熊先哲,周启星,吴燕玉.重金属Cd-Zn对水稻的复合污染和生态效应[J].应用生态学报.1994,5(4):438-441.
    [93]陈怀满.土壤中Cd、P、Zn含量对水稻产量和植株中矿物浓度的影响[J].土壤学报.1985,22(1):85-92.
    [94]符建荣.十壤中铅的积累及污染的农业防治[J].农业环境科学学报.1993,13(5):223-226,232.
    [95]A K, H P. Trace elements in soils and plants [M]. Florida: CRC Press,1992:365-370.
    [96]郝秀珍,周东美.沸石在土壤改良中的应用研究进展[J].土壤.2003,35(2):103-106.
    [97]束文圣,叶志鸿,张志权,et al.华南铅锌尾矿生态恢复的理论与实践[J].生态学报.2003,23(8):1629-1639.
    [98]谭启玲,胡承孝,赵斌,et al.城市污泥的特性及其农业利用现状[J].华中农业大学学报.2002,21(6):587-592.
    [99]李慧君,殷宪强,谷胜意,et al.污泥及污泥堆肥对改善土壤物理性质的探讨[J].陕西农业科学.2004(1):29-31.
    [100]孙约兵,周启星,任丽萍,et al.青城子铅锌尾矿区植物对重金属的吸收和富集特征研究[J].农业环境科学学报.2008,27(6):2166-2171.
    [101]束文圣,杨开颜,张志权,et al.湖北铜绿山古铜矿冶炼渣植被与优势植物的重金属含量研究[J].应用与环境生物学报.2001,7(1):7-12.
    [102]张庆欣,董宝君,李友权.营养杯育苗造林在杨家杖子尾矿库生态恢复中的应用[J].辽宁城乡环境科技.2007,27(3):11-26.
    [103]Fc L. he impacts of the bad properties of Tongling Copper mine tailings on vegetation rehabilitation and the control Counter measures[J]. Resource Development & Market.1999,15(3):147-149.
    [104]顾继光,林秋奇,胡韧,et al.矿区重金属在土壤-作物系统迁移行为的研究--以辽宁省青城子铅锌矿为例[J].农业环境科学学报.2005,24(4):634-637.
    [105]王志勇,王钦文.重金属对粮食食用安全性的影响与对策[J].粮食与饲料工业.2003(11):1-2.
    [106]罗绪强,王世杰,张桂玲,et al.土壤镉污染及其生物修复研究进展[J].山地农业生物学报.2008,27(4):357-361.
    [107]崔玉静,黄益宗,朱永官.镉对人类健康的危害及其影响因了的研究进展[J].卫生研究.2006,35(5):656-659.
    [108]王宇,李业东,曹国军,et al.长春地区土壤中重金属含量及其在玉米子粒中的积累规律[J].玉米科学.2008,16(2):80-82,87.
    [109]李红英,潘平,安晓骥,et al.土壤和植物中重金属元素含量与土壤性质关系探讨[J].宁夏农林科技.2007(4):14-15.
    [110]古一帆,何明,李进玲,et al.上海奉贤区土壤理化性质与重金属含量的关系[J].上海交通大学学报(农业科学版).2009,28(6):601-605,623.
    [111]叶丽丽,王翠红,邹玲,et al.长沙市郊蔬菜土壤重金属含量及其与土壤肥力的关系[J].湖南农业科学.2009(10):32-35.
    [112]Grill E, Winnacker E L, Zenk M H. Synthesis of seven different homologous phytochelatins in metal-exposed Schizosaccharomyces pombe cells[J]. FEBS Letters.1986,197(1-2):115-120.
    [113]常青山.重金属超富集植物的筛选与螯合吸附研究[D].福建农林大学,2005.
    [114]杨刚,伍钧,唐亚,et al.铅锌矿业废弃地草本植物重金属耐性研究[J].四川环境.2006,25(4):18-21,38.
    [115]孙健,铁柏清,秦普丰,et al.铅锌矿区土壤和植物重金属污染调查分析[J].植物资源与环境学报.2006,15(2):63-67.
    [116]张春华,毛亮,周培,et al.超积累植物与非超积累植物吸收累积重金属的差异性研究[J].上海交通大学学报(农业科学版).2009,28(6):592-600.
    [117]李博文,郝晋珉.土壤镉、铅、锌污染的植物效应研究进展[J].河北农业大学学报.2002,25(z1):74-76.
    [118]金芬,邵华,杨锚,et al.我国粮食产地土壤重金属健康风险基准值研究[J].农业质量标准.2008(5):42-45.
    [119]龙新宪,杨肖娥,倪吾钟.重金属污染土壤修复技术研究的现状与展望[J].应用生态学报.2002,13(6):757-762.
    [120]亢希然,范稚莲,莫良玉,et al.超富集植物的研究进展[J].安徽农业科学.2007,35(16):4895-4897.
    [121]闫研,李建平,赵志国,et al.超富集植物对重金属耐受和富集机制的研究进展[J].广两植物.2008,28(4):505-510.
    [122]N. W S, R. L J, P. M S, et al. Positive responses to Zn and Cd by roots of the Zn and Cd hyperaccumulator Thlaspi caerulescens[J]. New Phytol.2000,145:199-210.
    [123]Maxted A P, Black C R, West H M, et al. Phytoextraction of cadmium and zinc from arable soils amended with sewage sludge using Thlaspi caerulescens:Development of a predictive model[J]. Environmental Pollution.2007,150(3):363-372.
    [124]Winder L, Merrington G, Green I. The tri-trophic transfer of Zn from the agricultural use of sewage sludge[J]. The Science of The Total Environment.1999,229(1-2):73-81.
    [125]Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants[J]. New Phytologist.2009,181(4):759-776.
    [126]戴媛,谭晓荣,冷进松.超富集植物修复重金属污染的机制与影响因素[J].河南农业科学.2007(4):10-13.
    [127]H M. Mineral Nutrition of Higher Plants (second edition) [M]. London:Academic Press,1995:889.
    [128]Chaney R L, Angle J S, Mcintosh M S, et al. Using hyperaccumulator plants to phytoextract soil Ni and Cd.[J]. Z Naturforsch C.2005,60(3-4):190-198.
    [129]Yang X, Feng Y, He Z, et al. Molecular mechanisms of heavy metal hyperaccumulation and phytoremediation.[J]. J Trace Elem Med Biol.2005,18(4):339-353.
    [130]Callahan D, Baker A, Kolev S, et al. Metal ion ligands in hyperaccumulating plants[J]. Journal of Biological Inorganic Chemistry.2006,11(1):2-12.
    [131]Blarney F, Joyce D, Edwards D, et al. Role of trichomes in sunflower tolerance to manganese toxicity[J]. Plant and Soil.1986,91(2):171-180.
    [132]周琼.我国超富集·富集植物筛选研究进展[J].安徽农业科学.2005,33(5):910-912,916.
    [133]Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants[J]. Journal of Geochemical Exploration.1977,7:49-57.
    [134]邢丹,刘鸿雁.铅锌矿区重金属耐性植物与超富集植物筛选研究进展[J].安徽农业科学.2009,37(7):3208-3209,3329.
    [135]Baker A, Brooks R, Pease A, et al. Studies on copper and cobalt tolerance in three closely related taxa within the genusSilene L. (Caryophyllaceae) from Zaire[J]. Plant and Soil.1983,73(3): 377-385.
    [136]魏巧,李元,祖艳群,et al.修复重金属污染土壤的超富集植物栽培措施研究进展[J].云南农业大学学报.2008,23(1):103-108.
    [137]Keller C, Hammer D, Kayser A, et al. Root development and heavy metal phytoextraction efficiency: comparison of different plant species in the field[J]. Plant and Soil.2003,249(1):67-81.
    [138]S S W, Y L C, Q Z Z. Natural colonization of plants on five Pb/Zn mine tailings in South China[C]. Florence, Italy: 1998.
    [139]董社琴,李冰雯,周健,et al.超积累植物对十壤中重金属元素吸收机理的探讨[J].太原科技.2004(1):64-66.
    [140]Ma, Y. M, Dickinson, et al. Toxicity of Pb/Zn mine tailings to the earthworm Pheretima and the effects of burrowing on metal availability[J]. Biology and Fertility of Soils.2002,36(1):79-86.
    [141]Bradshaw A. Restoration of mined lands--using natural processes[J]. Ecological Engineering.1997, 8(4):255-269.
    [142]孙儒泳,博李,诸葛阳.普通生态学[M].北京:高等教育出版社,1993.
    [143]苏智先,王仁卿.生态学概论[M].北京:高等教育出版社,1993.
    [144]Glenn-Lewin D C, Peet R K, Veblen T J. Plant succession:theory and prediction[M]. London: Chapman and Hall,1992.
    [145]Finegan B. Forest succession[J]. nature.1984,312(5990):109-114.
    [146]杨修,高林.德兴铜矿矿山废弃地植被恢复与重建研究[J].生态学报.2001,21(11):1932-1940.
    [147]孙庆业,蓝崇钰,黄铭洪,et al.铅锌尾矿上自然定居植物[J].生态学报.2001,21(9):1457-1462.
    [148]柯夫达B.A.土壤学原理(下)[M].北京:科学出版社,1983.
    [149]李松克,严光娅,邹芬,et al.提高土壤有机质与其砷汞铅含量的效应研究[J].农技服务.2008,25(6):45-46,76.
    [150]侯光炯.土壤学(南方本)(第二版)[M].北京:中国农业出版社,1999:45.
    [151]宋书巧,梁利芳,周永章,et al.广西刁江沿岸农田受矿山重金属污染现状与治理对策[J].矿 物岩石地球化学通报.2003,22(2):152-155.
    [152]胡远满,王连平,肖笃宁.景观生态学研究进展[M].长沙:湖南科学技术出版社,1998.
    [153]刘忠民.鞍山市周边铁矿废弃地几种复垦模式的比较[J].金属矿山.2007(8):83-85.
    [154]张百胜.内蒙古平庄矿区露天煤矿植被恢复与重建的研究[D].中国农业科学院,2007.
    [155]杨胜香.广西锰矿废弃地重金属污染评价及生态恢复研究[D].广西师范大学,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700