典型岩溶巨型漏斗中持久性有机污染物的环境行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
持久性有机污染物(POPs)是具有较强的致癌、致畸和致突变的物质,可以在全球或区域范围内进行大气远距离传输,随着温度和纬度(或高度)进行“全球蒸馏”和“蚱蜢跳效应”,并在传输过程中发生化合物组份的分异作用。与平原地区相比,高山地区具有温度低、气压低、大气干湿沉降率高、山谷风及太阳光辐射量高等气候特征,对有机污染物远距离迁移具有冷凝沉降作用。与非岩溶地区相比,岩溶石山地区具有独特地表和地下组成的双层结构空间的地下河或洞穴。美国环境保护局已确定16种多环芳烃(PAHs)为优先控制污染物,其主要来源于人类的能源燃烧过程;有机氯农药(OCPs)为历史上曾经大量使用的人工合成的有机化合物,它们正威胁着人类健康和生态环境,这些POPs一旦进入环境中,岩溶(洞穴)生态系统可能成为其最终残留或归宿地,大石围漏斗(天坑)群可能成为POPs大气远距离传输的“汇”区,洞穴生物多样性将受到威胁。
     许多研究者对世界上的南极、北极、高山和冰川特色区域(POPs的“冷陷阱区”)进行了研究,但是把岩溶地区作为POPs的特色区域研究很少。关于广西大石围天坑群土壤中PAHs分布特征,前期作了初步研究。本研究基于持久性有机污染物在全球偏远地区的积累和环境效应,利用气相色谱、气相色谱-质谱联用仪、大气干湿沉降采样装置和聚氨酯泡沫(PUF)被动采样器技术,以广西大石围天坑口部-绝壁-底部-地下河为主线进行深入研究。本研究将揭示岩溶天坑与人为排放的有机污染物的相互作用规律,以期为岩溶地区生态系统污染防治提供科学依据,因此本研究具有重要的理论和应用意义。
     第一部分大石围漏斗(天坑)群区持久性有机污染物的分布特征
     1.大石围天坑群区土壤中有机氯农药的分布特征
     采集大石围天坑不同部位的表层土壤,研究结果表明,大石围天坑群地面土壤中XOCPs平均浓度为0.57ng·g-1;天坑底部土壤中ΣOCPs平均浓度为4.83ng·g-1。研究发现,研究区土壤中ΣOCPs浓度分布特征为:天坑地面<天坑底部,天坑底部OCPs浓度明显高于顶部,天坑东南-西北剖面表层土壤中OCPs分布差异不大;与2006年比较,2007年天坑底部土壤中OCPs的浓度增加了1.0倍;这可能与有机污染物的“冷陷阱效应”有关。
     2.大石围天坑土壤中多环芳烃的分布特征
     研究结果表明,大石围天坑群地表(正地形)和地下(负地形)土壤中ΣPAHs浓度平均值分别为120.70、395.22ng·g-1,土壤中PAHs以4-6环为主。比值法推断大石围天坑土壤PAHs的来源主要为化石燃料燃烧源,主要污染途径为大气传输沉降。与OCPs相同,大石围天坑土壤中PAHs浓度的空间分布特征为:天坑底部>天坑地面,PAHs同样显示了“冷陷阱效应”,天坑东南-西北剖面表层土壤中PAHs有向西北逐渐减弱的趋势。推测受区域东南季风的影响,PAHs的污染主要来源于东南方向的广西经济发达地区。监测发现,2007年比2006年大石围天坑底部土壤中PAHs的浓度增加了3.5倍。因此大石围天坑也呈现了有机污染物的“冷陷阱效应”。
     3.百朗地下河水中有机氯农药的分布特征
     沿途采集地下河8个断面的表层水样品,研究结果表明:百朗地下河表层水中19种有机氯农药总量(ΣOCPs)浓度为1.95~71.45ng·L-1,HCHs和DDTs浓度分别为未检出至58.40ng·L-1和未检出至0.44ng·L-1。地下河水中OCPs的分布特征:上游(污染源区)高、中游段降低、下游出口升高,且高浓度的水进入地下河后呈迅速降低状态。地下河表层水中OCPs的分布与吸附作用、环境温度以及天坑土壤侵蚀有关。地下河出口水中有机氯农药浓度较高且种类最多,推测可能是地下河沉积物中因有机氯农药被释放而引起的二次污染或有污染源输入;分子标志物指示目前流域部分断面尚有新的y-HCH(林丹)和DDTs农药输入。
     4.百朗地下河水中多环芳烃的分布特征
     沿途采集了8个断面的表层水样品,研究结果表明,地下河水中YPAHs(总量PAHs)浓度为54.7to192.0ng.L-1,平均值102.3ng·L-1,PAHs组成以2-3环为主。地下河沿程水中的PAHs浓度分布特征:上游高于下游,是因为城镇污水的排放,同时地下河对4-6环PAHs具有吸附作用;大石围天坑断面的ΣPAHs浓度显著增高93.8%。大石围支流汇合处的ΣPAHs浓度被稀释降低了47.3%;百朗出口断面的ΣPAHs浓度分别高于进口和大石围断面。PAHs来源分析表明城镇和大石围天坑区域显示以石油类及其燃烧源为主,城镇的石油类源主要是人为输入,大石围天坑则主要是天然输入;其余乡村地区显示以草木、煤燃烧源为主。地下河水中苯并[a]芘浓度6个断面超过国家地表水环境质量标准。
     5.百朗地下河沉积物中有机氯农药的分布特征
     采集地下河不同断面的沉积物样品。研究结果表明,沉积物中ΣOCPs浓度为0.75~14.85ng·g-1。地下河表层沉积物中有机氯农药的分布特性:上游(县城污染源区)高于下游,短距离迁移后呈现迅速降低状态,经中游天坑处升高,下游出口处较低,与水中OCPs呈现释放状态吻合。百朗地下河出口沉积物有机氯农药浓度较高且种类最多,推测可能是地下河沉积物中因有机氯农药被释放而引起二次污染或有污染源输入;目前流域部分断面尚有新的γ-HCH(林丹)和DDTs农药输入。
     6.百朗地下河沉积物中多环芳烃的分布特征
     采集了地下河7个断面的沉积物样品,研究结果表明,百朗地下河上层沉积物中ΣPAHs浓度为37.75ng·g-1~1662.72ng·g-1;下层沉积物为43.46ng·g-1~1220.79ng·g-1;沉积物上、下层浓度没有明显的变化;地下河进口沉积物中PAHs以4-6环的为主,而出口以2-3环的为主;与其他地区相比较,百朗地下河沉积物中PAHs污染尚处在较低的水平。地下河沉积物中多环芳烃的分布特征:上游(县城污染源区)高于下游,经短距离迁移后沉积物中PAHs浓度迅速较低,中游天坑段升高,出口处降低,与水中PAHs浓度升高相吻合。
     7.百朗地下河沉积柱中有机氯农药的高分辨记录
     采集了广西百朗地下河大石围天坑河段沉积柱芯21cm,研究了OCPs的垂直分布特征,结合210Pb定年研究了1950~2007年间百朗地下河流域OCPs的污染历史。研究结果表明,沉积柱中ΣOCPs含量为0.42~10.63ng·g-1,平均值为2.74ng·g-1。百朗河流域历史上主要使用的有机氯农药有六氯苯、HCHs)、DDTs、狄氏剂和艾氏剂5种。表层沉积物OCPs分子标志物分析显示近年地下河流域仍有新的γ-HCH(林丹)和DDTs输入。有机氯农药的垂直分布表征百朗地下河流域在1950~1960年间六氯苯被最先使用,1961年替换为六六六,同时使用的有狄氏剂、艾氏剂农药,而滴滴涕使用可能稍晚,与我国有机氯农药的生产使用历史基本一致;同时,与流域历史上1984年大量使用有机氯农药和粮食产量相吻合。大石围天坑河段沉积柱芯中有机氯农药的污染峰值滞后于使用高峰期,与喀斯特山区土地利用方式和土壤颗粒在地下河中的迁移行为有关。
     8.百朗地下河沉积柱中多环芳烃的高分辨记录
     研究了百朗地下河大石围河段沉积柱中PAHs的垂直分布特征,通过21oPb定年,恢复了地下河流域PAHs1950~2007年间的污染历史。沉积柱芯中ΣPAHs浓度范围为35.34~280.17ng·g-1,平均值107.65ng·g-1,PAHs以4-6环的为主,其中苯并[a]芘浓度较高占总量的33.40%。百朗地下河沉积柱中剧毒物苯并[a]芘与总量PAHs密切相关。沉积柱芯中记录的流域污染历史,与乐业县发生战争历史、工业总产值、人口增长以及污染治理基本吻合。
     第二部分大石围漏斗(天坑)持久性有机污染物的环境行为
     1.大石围漏斗(天坑)的气象参数观测
     大石围天坑的温度变化:夏季温度从天坑坑口、绝壁、底部至地下河呈逐渐降低的趋势,直至洞穴内恒温带温度(16℃);冬季温度从天坑坑口、绝壁、底部呈逐渐降低至地下河天窗处后逐渐上升至洞穴内恒温带温度;大石围天坑的湿度变化:夏季、冬季湿度从天坑坑口、绝壁、底部至地下河(洞穴)均呈逐渐增加的趋势;大石围天坑内的风速变化:夏季从天坑主导风风向从南垭口、东垭口进入天坑,一部分风向吹向西峰后回转下沉至底部,另一部分由垭口下沉至坑底;依据洞内、外温度变化,夏季地下河(洞穴)风向由洞内向外或静风。冬季风向主要从北垭口、东垭口进入天坑,风向同理;但是在地下河天窗处由洞外向洞内有较大风速出现,并随纵深逐渐减弱。
     2.大气干湿沉降物中有机氯农药的时空变化
     选择典型的大石围天坑,采用大气干湿采样器分季节进行了为期一年(2007-03-2008-03)的大气干湿沉降样品采集。研究结果表明,大气干湿沉降中PAHs的干湿沉降通量为10.236~88.728ng·(m2·d)-1,平均值为48.974ng·(m2·d)-1。研究期间大石围天坑的OCPs沉降量为2.986g;OCPs沉降通量的空间分布为:东垭口>南垭口>北哑口>西峰;年季节的沉降通量为春季>秋季>夏季>冬季,春、夏季OCPs沉降通量高于秋、冬季1.0倍,且春季以DDTs和HCB为主,夏季以β-硫丹和HCB为主,秋季以HCHs和顺式-氯丹,冬季以HCHs为主。研究区大气OCPs沉降通量与地理位置、降雨量、温度、风向、风速等因子密切相关。
     3.大气干湿沉降物中多环芳烃的时空变化
     与有机氯农药相同的采样时间和方法,对广西乐业大石围天坑大气干湿沉降物中16种了PAHs优先控制污染物进行了研究。研究结果表明,大气干湿沉降中PAHs的干湿沉降通量为132.36~1655.27ng·(m2·d)-1,平均值为855.00ng·(m2·d)-1,大石围天坑的PAHs沉降量为51.98g;PAHs的组成以苯并[b]荧蒽、屈、苯并[a]芘、苯并[k]荧蒽、蒽、菲、萘7种为主,占PAHs总量的78.5%;大气干湿沉降物PAHs沉降通量的空间分布为:东垭口>南垭口>北垭口>西峰,与有机氯农药的一致;不同季节的沉降通量为春季>夏季>秋季>冬季,春、夏季PAHs沉降通量高于秋、冬季4.6倍,春、夏季以4~6环PAHs为主,而秋、冬季以2~3环PAHs为主;研究区大气PAHs沉降通量与降雨量、风向、风速、温度气象因子及污染源的方位密切相关;大石围天坑群大气PAHs沉降通量在春季、夏季呈季节性增高可能来源于高气温、低海拔的广西工业发达地区.
     4.大石围天坑土壤中有机氯农药的环境行为
     采集不同喀斯特地形的表层土壤。研究结果表明,大石围天坑群土壤中ΣOCPs地面、绝壁、底部和地下河浓度平均值分别为0.57、2.35、4.83和0.81ng·g-1。研究发现,研究区土壤中ΣOCPs浓度分布与富集特征为:天坑地面-天坑绝壁-天坑底部随高度降低而升高富集,进入地下河(洞穴)后浓度降低。地下河(洞穴)的厌氧环境有利于有机氯农药的降解。HCHs主要分布在东峰一侧,而DDTs主要分布在西峰一侧;天坑底部自东南至西北(地下河天窗)剖面呈现DDTs逐渐增高的趋势;DDT由地表的好氧降解转变为底部和地下河的厌氧降解;有机氯农药的传输与富集主要受到温度控制,其次为风速风向、相对湿度。
     5.大石围天坑土壤中多环芳烃的环境行为
     采集大石围天坑不同部位的表层土壤。研究结果表明,大石围天坑群地表(正地形)土壤中ΣPAHs浓度平均值120.70ng·g-1;地下(负地形)绝壁、底部和地下河土壤中ΣPAHs浓度平均值分别为131.86、395.22和1412.39ng·g-1,土壤中PAHs以4-6环为主。PAHs的来源主要主要污染途径为大气传输沉降。总体上,大石围漏斗土壤中PAHs浓度的空间分布随温差和相对湿度的升高,呈现地面—绝壁—底部—地下河(洞穴)逐渐增加,PAHs显示“冷陷阱效应”的垂向富集与分异作用。影响PAHs分布的主要环境因素是温度,其次是湿度、风向和风速,在漏斗局部显示多环境因子共同作用。环境因子夏季影响大于冬季。因此研究表明岩溶天坑中PAHs的富集和分异作用与环境因素密切相关。
     6.大石围天坑空气中有机氯农药的环境行为
     采集天坑不同部位的空气样品,观测温度、相对湿度、风速风向气象因子。研究结果表明,大石围天坑东西峰绝壁、底部和地下河空气中ΣOCPs的浓度平均值分别为8.667、11.134、15.270和27.202ng·d-1;有机氯农药主要由氯丹类、七氯类、DDTs类、六氯苯和HCHs类5类组成,其中氯丹类最高占总量的43.67%。天坑空气中OCPs的传输过程为:天坑地面-绝壁-底部-地下河(洞穴),呈现明显有机污染物的“冷陷阱效应”。天坑空气中OCPs的传输总体上主要受温差控制,其次为风向风速,因此不同部位表现出的传输行为存在差异。由于蒸气压和溶解度的差异,致使农药化合物在空气传输过程中发生分异作用,4种农药的均匀度大小依次为DDTs类>氯丹类>七氯类>HCHs类。
     7.大石围天坑空气中多环芳烃的环境行为
     采集大石围天坑口部至地下河剖面空气样品,并进行了气象参数的观测。研究结果表明,大石围天坑至地下河空气中ΣPAHs浓度平均值80.36ng·d-1,其中绝壁、底部和地下河浓度分别为67.17、85.36和101.67ng·d-1;空气中PAHs以2-3环的菲、蒽、萘、芴4种为主,占87.97%。PHAs的源来自于大气传输的化石燃料的燃烧。大石围天坑空气中PAHs的富集与传输过程为:地表-绝壁-底部-地下河,且浓度随深度/长度有明显的增加趋势,在西峰脚、天坑底部和地下河处,低分子量的PAHs菲、蒽、芴和荧蒽发生了分异作用。温度是影响天坑中PAHs大气传输、富集的主要因子,其次为风向、风速和相对湿度;相对湿度和温度一样是PAHs分异作用的主要因子,风速和风向为次要因子。总体上,天坑显示了持久性有机污染物(POPs)“冷陷阱效应”的现象。
     第三部分大石围漏斗(天坑)群持久性有机污染物的传输模型
     1.大石围天坑群中降雨-空气-土有机氯农药的交换模式
     采用同期采集的冬季降雨和空气中OCPs和PAHs组份的百分比进行分析,研究表明,气溶胶中存在较高浓度的氯丹类、七氯类、HCHs类、六氯苯4种农药,由于其挥发性、溶解性较高,与降雨相互作用后易于进入降雨之中;挥发性低、溶解性低的农药如DDTs,不易挥发,其在降雨中的比例升高;挥发性、溶解性和浓度中等的农药,其在降雨与空气中的比例基本保持一致。因此降雨-空气交换与化合物的物理化学性质挥发性、溶解度密切相关。
     天坑有机氯农药土壤-降雨交换基本吻合,只有DDTs类、氯丹类农药相差较大。DDTs在土壤中低于降雨主要是其降解主要受某些微生物降解,可能与研究区处在南方的气候区,土壤中DDTs类农药分解得较快有关。空气和降雨中氯丹的比例均较高,但是在土壤中较低,需要进一步研究。
     2.大石围天坑群中降雨-空气-土多环芳烃的交换模式
     天坑中降雨-空气交换,低分子量的萘、苊、苊烯、芴、菲5种PAH化合物,由于挥发性较强,易于从降雨中挥发到空气中;高分子量较高的、挥发性较弱的化合物易留存于降雨中,尤其是苯并[b]荧蒽,苯并[k]荧蒽、苯并[a]荧蒽3种化合物经累积而比例增加较大。这与它们的挥发性是密切相关的。
     采用全年大气干湿沉降物与土壤中PAHs的成份谱进行分析,降雨-土壤交换表明,全年大气干湿沉降物是天坑主要的来源。土壤中萘、苯并[k]荧蒽、茚并[1,2,3-cd]芘、二苯并[a,h]蒽、苯并[g,h,i]苝5种的比例略高于降雨,与它们在土壤中的挥发性较弱密切相关,土壤中萘高,主要是其在水中的挥发性强。
     3.大石围天坑群中降雨-地下河水-沉积物中有机氯农药的交换模式
     同样采用冬季的降雨、地下河水和沉积物组分比例进行对比研究,研究表明降雨-沉积物中的OCPs进行了较好的交换,而地下河水中的OCPs,由于地下河沉积物的强烈吸附和生物降解,其浓度、检出率较低,说明大气干湿沉降、上游农田的施用残留是天坑地下河OCPs主要的输入方式。水中高比例的六氯苯,由于其较活泼的物理化学性质而较少残存于沉积物中。
     4.大石围天坑群中降雨-地下河水-沉积物中多环芳烃的交换模式
     选取冬季降雨及同期的地下河表层水和沉积物进行分析。研究表明降雨、地下河水的组成基本一致,地下河水中除萘、屈两者高于降雨外,其余均低于降雨,说明降雨在地表形成径流后组成比例变化不大,同时萘、屈两者高于降雨说明地下河受到化石燃料燃烧源的输入。地下河水与表层沉积物相比,大部分2-3环的PAHs(除萘、荧蒽外)存在于水中而4-6环的主要交换(吸附)至沉积物中。天坑群的降雨、地下水和沉积物中PAHs的来源、输入和交换规律与环境介质、化合物的物理化学性质是相一致的。
     5.天坑中土壤-地下河沉积物中有机氯农药的交换模式
     针对大石围地下河段沉积物的有机氯农药浓度升高进行了分析,其原因为大石围天坑土壤中高浓度经雨水冲刷,通过天窗汇入地下河而引起。强烈的亲颗粒性而较难迁移的农药如DDTs主要是天坑土壤流失贡献率(交换)高;水溶解度高,易于迁移的化合物上游来水或沉积物移动对大石围河段沉积物贡献率高。HCB则由于其溶解性较高主要存在于水中,随水迁移。
     6.天坑中土壤-地下河沉积物中多环芳烃的交换模式
     研究把大石围天坑底部土壤中PAHs的百分比与上游断面表层沉积物的叠加后取平均值得出的成份谱,与大石围天坑暗河断面的PAHs成份谱相比较,证明了大石围天坑暗河断面沉积物中的PAHs主要来源于上游水体传输以及天坑土壤流失,使大石围天坑断面沉积物中PAHs浓度的增高得到印证。同时证明天坑这种特殊的喀斯特地貌(空间结构)对地下河的PAHs污染输入起到了重要的作用。
     7.天坑中土壤-空气中POPs的交换模式
     天坑土-气POPs交换的模式,在天坑绝壁、底部和地下河中,空气中PAHs的分布与土壤的分布相当吻合,这些与环境温度、湿度、风向风速等气象因子相关,这是天坑中空气与土壤进行了长期的交换富集而形成的分布特征。
     8.岩溶天坑群中持久性有机污染物的传输模型
     通过大石围天坑群中持久性有机污染物的来源、分布特征、环境行为、影响因子及其交换模式,结合大石围天坑群的水文地质(岩溶洞穴)系统,建立了岩溶天坑群的传输概念模型。天坑的底部土壤中OCPs和PAHs均显著高于顶部,岩溶天坑的“冷陷阱效应”成为一个POPs的被动采样器,使大气远距离或区域近距离的传输POPs进入天坑和地下河系统,产生土壤、地下河水、沉积物、洞穴空气的“污染效应”。
Persistent organic pollutants (POPs) are persistent semi-volatilile compounds, with higher toxicity and bioaccumulation. They can undergo long-range atmospheric transport on a global scale depending on temperature change, and the physical and chemical properties. The "global distillation" and "the grasshopper jumping effect" is generated with the temperature and latitude (or height), and happened compound components differentiation in the transmission processes, In comparison with plain, the mountains area characterized by lower temperature, slope winds, higher precipitation, high dry and wet deposition, it has a condensing subsidence during long range transport of organic pollutants.The United States environmental protection agency have been confirmed16kinds of polycyclic aromatic hydrocarbons (PAHs) for priority pollutants, its come main from human energy combustion processes, and a large number of use of synthetic organochlorine pesticides (OCPs) in history once. They are threatening human health and ecological environment when these POPs emissions in environment once. The karst ecological system may become its final residual or fate areas. Dashiwei sinkhole (Tiankeng) group in remote may become a area which atmospheric POPs "collecting", thus karst cave biodiversity will be threatened. Many researchers studied on the Antarctic and Arctic, mountain and glacier characteristics area (POPs "cold trap area") in the world, but POPs in karst areas research very little. Distribution characteristics of PAHs of soil in Dashiwei Tiankeng group in Guangxi had been studyed as preliminary study. This study based on persistent organic pollutants in the global remote areas of the accumulation and environmental effect. This study use a gas chromatography, gas chromatograph-mass spectrometer, atmospheric dry and wet deposition sampling device and polyurethane foam (PUF) passive sampler technology.The further study will be undergone on the top-the cliff-the bottom-the underground river in Dashiwei Tiankeng as the main line.This study will reveal the interaction law between karst Tiankeng and organic pollutants of anthropogenic emissions. In order to karst area ecological system to provide the scientific basis for the prevention and control of pollution, so this research has important theoretical and application significance.
     Part one:Distributions of persistent organic pollutants from Dashiwei Tiankeng group in Guangxi
     1. Distributions of OCPs in Soils from Dashiwei Karst Tiankeng Group in Guangxi
     The result showed that the mean concentration of the total organochlorine pestcides(Σ OCPs), in soils of the ground is0.57ng·g-1. The mean concentration of ΣOCPs in soils of the bottom of Dashiwei Tiankeng is4.83ng·g-1. This study discovered that distribution characteristic of organochlorine pesticides in soils of Dashiwei Tiankeng were:the bottom>the ground surface. The total ΣOCPs concentration in soil of the bottom section is higher obviously than that of top. Comparing with2006, the mean concentrations of ΣOCPs in soil of the bottow increased100%in2007. Consequences, Dashiwei Tiankeng cloud relate with "a cold trap effects".
     2. Distributions of PAHs in Soils from Dashiwei Karst Tiankeng Group in Guangxi
     The results showed that the total PAHs(ΣPAHs) concentration in soils of the ground (the positive landform) and the bottom section of Dashiwei Tiankeng has an average of120.70and395.22ng·g-1respectively, and PAHs compounds are mainly4-6rings PAH. Primary PAHs source come from pyrogenic sources. Pollution approaches are mainly atmospheric transport deposition. The spatial distribution of PAHs in soils in Dashiwei Tiankeng:the bottom>the ground surface. Dashiwei Tiankeng showed obviously "a cold trap effects" too. PAHs in the surface soil display a gradually decreasing trendency from southeast to northwest section in Dashiwei Tiankeng area, so this can speculate that PAHs source could main came from southeast monsoon. Monitoring of PAHs discovered the total PAHs concentration in soils of the bottom was higher than3.5times in2007with2006.
     3. Distributions of OCPs in Surface water in Bailang Underground River in Guangxi
     The results showed that concentration of ΣOCPs in surface water ranges from1.95to71.45ng.L-1, the concentrations of HCHs and DDTs are from not detectable(nd) to58.40ng/L and nd to0.44ng.L-1respectively. Distribution of OCPs in the underground river were:the concentration of OCPs in the upstream (pollution source area) was higher, that of the middle section is reduced, and that of the downstream and the outlet is increased. Distribution of OCPs in surface water of the underground river relate to adsorption, environmental temperature. It is inferred that OCPs in ambient medium in the subterranean stream are released to cause secondary pollution for the lowest value of adsorption coefficient or pollution sources inputting, and have higher concentration and most kinds of OCPs in water. The partial areas have both newly HCHs and DDTs inputting recently.
     4. Distributions of PAHs in surface water in Bailang Underground River in Guangxi
     The results showed that concentration of ΣPAHs in water ranges from54.7to192.0ng.L-1, with an average concentration of102.3ng.L-1. The predominant PAHs in water are2-3ring PAHs. The distribution of PAHs in water sampled along the underground river indicates that the mean concentration of ΣPAHs in upstream area is higher than that of downstream because of wastewater discharge. Meanwhile, the underground river has some adsorption effect to4-6ring PAHs. The concentration of ΣPAHs at Dashiwei Tiankeng section increases93.8%attribute to the release of PAHs coming from karst environmental medium and/or atmospheric transmission in the underground river system. However, the concentration of ΣPAHs at the confluence section of the tributary of Dashiwei Tiankeng is47.3%less than that of the first upstream section duo to dilution effect. The concentration ofAHs at Bailang outlet section is128.3%and17.8%higher than that of the entrance section and section of Dashiwei Tiankeng respectively. The ratios of specific PAHs indicate that PAH sources in Leye County and Dashiwei tiankeng areas mainly come from both petroleum and its combustion. However, the petroleum origin comes from anthropogenic inputs in town but natural sources inputs in Dashiwei Tiankeng. The PAH sources in rural areas are mainly originating from the combustion of grass, wood and coal. In six sections, concentrations of benzo[a]pyrene(BaP) in surface water exceed the state quality standards in China.
     5. Distributions of OCPs in surface sediments in Bailang Underground River in Guangxi
     The results showed that the concentration of EOCPs in surface sediments ranges from0.75to14.85ng·g-1. Distributions of OCPs in sediments from Bailang underground river relative with adsorption, temperature and the soil erosion of the Tiankeng bottom where connected with the underground river. Namely, OCPs of atmospheric sedimentation were easily gathered in soil at the bottom for temperature difference effect(this is "cool trap effect"), and then moved toward water body so that concentration of ΣOCPs in sediment of the underground river increased. It is inferred that OCPs in sediments of the underground river are released to cause secondary pollution or OCPs sources inputting for the lowest value of the sediment adsorption coefficient, higher concentration and more kinds of OCPs in water. The partial areas have both newly HCHs and DDTs inputting recently.
     6. Distributions of PAHs in surface sediments in Bailang Underground River in Guangxi
     The results showed that concentration of ΣPAHs in upper layer sediments ranged from37.75ng·g-1~1662.72ng·g-1, while that of under layer sediments ranged from43.46ng·g-1~1220.79ng·g-1.Concentrations of ΣPAHs between the upper layer and the under layer did not obviously change. The predominant PAHs in sediments of the entrance are4-6rings, while that of the outlet are2-3rings. Comparison with other areas in the world, concentrations of ΣPAHs in sediments from Bailang underground river is lower. This study discovered that underground river rises consumingly purify function to sewage of Leye county because of sedimentation and adsorption. Analysis of pollution sources indicated county area is both petrogenic and pyrogenic sources, while village areas are grass and wood and fuel coal combustion sources. Comparison of component of PAH between soil in Dashiwei Tiankeng and sediments of the underground river, This study discovered that karst Tiankengs along the underground river play an important role to input sediment for PAHs, so that concentration of ΣPAHs in sediment of Dashiwei Tiankeng increased106%.
     7. High-resolution Sedimentary Record of OCPs in Sediment Core of Bailang Underground River, Guangxi
     The vertical distribution characteristics of OCPs in the sediment core was studied, the pollution history of OCPs in Bailang underground river was discussed with210Pb dating data. Concentrations ofCPs ranges from0.42to10.63ng·g-1and the mean value is2.74ng·g-1. HCB,HCHs,DDTs, dieldrin and aldrin were mainly used in this basin in history. There is still new input of HCHs and DDTs in recent years. The vertical distribution of OCPs recorded that HCB was used the earliest in1955to1960, but it were replaced with HCHs in1961. Meanwhile, dieldrin and aldrin were used too, DDTs might be used at the last. Therefore, this processes reflected basically their production and usage history in China. This research suggests that the contamination peak of OCPs in the sediment core lag behind it's usage fastigium in this basin relate possibly with land use in karst mountain area and the transport of soil particles in the underground river.
     8. High-resolution Sedimentary Record of POPs in Sediment Core of Bailang Underground River, Guangxi
     The vertical distribution of PAHs of the sediment in Dashiwei Tiankeng section of Bailang underground river was studied, it recorded history of PAHs pollution in Bailang underground river basin in1950to2007with210Pb dating data. Concentration ofAHs in the sediment core range from35.34to280.17ng·g-1, average107.65ng·g-1, and the concentration of benzene[a] pyrene was higher(accounted for33.40%), The predominant PAHs in the sediments are4-6rings. The highly toxic benzene[a] pyrene related with the total PAHs closely. Pollution history recorded in the sediment core were related with the wars in history, gross industrial output value, population growth and pollution controlling.
     Part two:Environmental behaviour of persistent organic pollutants from Dashiwei Tiankeng in Guangxi
     1. Meteorological Parameters Observed in Dashiwei Tiankeng
     In summer, the temperature changes in Dashiwei Tiankeng were:the temperature from the top, the cliff, the bottom to the underground river is gradually reduced tendency until keeping constant (16℃) in cave. In winter, the temperature from the top, the cliff, the bottom has a gradual decline, but the temperature were gradually increased with length from the window to temperature constant zone (16℃). In summer and winter, the humidity changes in Dashiwei Tiankeng all were that humidity from the top, the cliff, the bottom to the underground (cave) are a gradually increasing tendency. In summer, the wind speed change in Dashiwei Tiankeng were Tiankeng dominant wind direction were from the south and east valley into Tiankeng, part of the wind blowing toward the west-peak sink to the bottom of Tiankeng. Another part of the wind of valley sink to the bottom too. In summer, the wind direction in the underground river (cave) were difference according to the temperature changes in or outside cave. In winter, wind came mainly from the north and east valley into Tiankeng, but the window place in the underground river display bigger wind speed, and weakened gradually with the length of the cave.
     2. Atmospheric Deposition of OCPs from Dashiwei Tiankeng Group in Guangxi
     The results showed that PAH depositional fluxes ranged from10.236to88.728ng·(m2·d) -1,with an average of48.974ng·(m2·d)-1. Weight of ΣOCPs which deposited into Dashiwei Tiankeng was2.986g-a"1. Spatial distribution of OCPs around Dashiwei Tiankeng were:the east valley entrance>the south valley entrance>the north valley entrance>the west peak. Seasonal variability of OCPs depositional fluxes were:spring>autumn> summer>winter. Depositions fluxes of OCPs were higher one times in spring and summer than in autumn and winter. OCPs dominant compounds were DDTs and HCB in spring, P-endosulfan and HCB in summer, HCHs and cis-chlordane in autumn, and HCHs in winter. OCPs depositional fluxses in this study area were closely related with geographic location, precipitation, temperature, wind direction and wind speed.
     3. Atmospheric Deposition of PAHs in Dashiwei Tiankeng Group in Guangxi
     The results showed that PAH depositional fluxes ranged from132.36to1655.27ng·(m2·d)-1, with an average of855.00ng·(m2·d)-1.Weight of PAHs which deposited into Dashiwei Tiankeng was51.98g-a-1, and dominant PAH compounds are benzo[b]fluoranthene, chrysene, benzo[a]pryene, benzo[k]fluoranthene, anthracene, phenanthrene and naphthalene. Spatial distribution of PAHs around Dashiwei Tiankeng were:the east valley entrance>the south valley entrance>the north valley entrance>the west peak. Seasonal variability of PAH depositional fluxes were:spring>summer>autumn>winter. Depositions fluxes of PAHs were higher4.6times in spring and summer than in autumn and winter. Dominant PAH compounds were4-6rings PAHs in spring and summer, but dominant PAH compounds were2-3rings PAHs in autumn and winter. PAH depositional fluxses in this study area were closely related with precipitation, wind direction, temperature, wind speed and location of pollution sources. PAHs increased in spring and summer in Dashiwei Karst Tiankeng Group could be transported by atmospheric movement from higher air temperature and lower elevation areas where industry developed in Guangxi.
     4. Environmental Factors on Distributions of OCPs in Soils from Dashiwei Tiankeng
     The results showed that the mean concentration of E OCPs, HCHs and DDTs in soils of the ground is0.57ng-g-1,0.06ng/g and0.02ng·g-1respectively. The mean concentration of EOCPs, HCHs and DDTs in soils of the cliff of Dashiwei Tiankeng is2.35ng·g-1and0.21ng·g-1and0.27ng·g-1respectively. The mean concentration of ΣOCPs, HCHs and DDTs in soils of the bottom of Dashiwei Tiankeng is4.83ng·g-1,0.96ng·g-1and0.28ng·g-1respectively. The mean concentration of ΣOCPs, HCHs and DDTs in soils of the underground river (cave) where linked Dashiwei Tiankeng is0.81ng·g-1,0.14ng·g-1and0.10ng·g-1respectively. This study discovered that distribution characteristic of OCPs in soils of Dashiwei Tiankeng were:the bottom>the cliff>the underground river (cave)>the ground surface, concentration ofCPs in soil of the bottom section is higher obviously than that of top. Comparing with2006, the mean concentrations of ΣOCPs in soil of the bottow increased100%in2007. Consequences, Dashiwei karst Tiankeng showed obviously "a cold trap effects".
     5. Environmental Factors on Distributions of PAHs in Soils from Dashiwei Tiankeng
     The results showed that the total PAHs concentration in soils of the ground (the positive landform) of Dashiwei great doline was an average of120.70ng.g-1. In Dashwei great doline (the negative landform), the total PAHs concentration in soils of cliff and the bottom and the underground river was an average of131.86、395.22and1412.39ng.g-1Respectively.PAHs compounds are mainly4-6rings PAH. PAHs primary source come from pyrogenic sources. Pollution approaches are mainly atmospheric transport deposition. As a whole, the spatial distribution of PAHs in soils in Dashiwei doline gradually increased from the surface-the cliff-the bottom-the underground river with the temperature and relative humidity increasing. Accumulation and differentiation of PAHs in a vertical way were showed by "coal trap effect". Environmental factors on distributions of PAHs in soils were main temperature, follow by humidity and wind direction and wind speed, environmental factors effect together in some parts, while effect of its was bigger in summer than in winter. Monitoring discovered the total PAHs concentration in soils of the bottom was higher than3.7times in2007with2006. As a consequence, this study suggested that accumulation and differentiation of karst doline was relative with these important environmental factors.
     6. Transport of OCPs in Air of Dashiwei Tiankeng in Guangxi
     The results showed that the mean concentration of Σ OCPs in soils of the ground, the cliff,the bottom and the underground river was an average of0.57、2.35、4.83and0.81ng.g-1
     respectively. This study discovered that distribution characteristic of OCPs in soils of Dashiwei Tiankeng were:the bottom>the cliff>the underground river (cave)>the ground surface, concentration of ΣOCPs in soil of the bottom section is higher obviously than that of top. The order of detectable rate of the19kinds of OCPs are:the ground surface     7. Transport and Differentiation of PAHs in Air from Dashiwei Tiankeng
     The results showed that the total PAHs concentration in air in Dashiwei Tiankeng was an average of80.36ng· d-1. The mean concentrations of the cliff and the bottom and the underground river profiles were67.17,85.36and101.67ng· d-1respectively. The2-3rings PAHs(including phenanthrene, anthracene, napnthalene and fluorene) accounted for87.97%of the total of PAHs. The transport and accumulation processes of PAHs in air in Dashiwei Tiankeng were:the ground to the cliff section to the bottom section to the underground river, and the total PAHs concentrations showed an obvious increased tendency with altitude reducing or the length of the underground river. Low molecular weight PAHs compounds (including phenanthrene, anthracene, flourene and fluoranthene) in air occurred differentiation at the root of the west peak and the bottom and the underground river. PAHs primary source came from pyrogenic sources which atmosphere transport. Ambient temperature was predominating factor influencing the transport and accumulation of gas phase PAHs in Dashiwei Tiankeng, following by wind speed and wind direction and relative humidity. Relative humidity was predominating factor influencing differentiation the same as temperature, following by wind speed and wind direction. As a whole,"a cold trapping effect" phenomenon of POPs was showed in Dashiwei Tiankeng.
     Part three:Transmission Model of Persistent Organic Pollutants in Dashiwei Tiankeng Group in Guangxi
     1. Exchange Model of OCPs in Rainfall-Air-Soil in DashiweiTiankeng
     Comparison component percentage of OCPs in precipitation and air in winter, This research showed that chlordane, heptachlor, HCHs, hexachlorobenzene4kinds of OCPs in air aerosol were higher levels.Because they have higher volatile and solubility,so that the OCPs in air is easily dissolve into rain after rain and air interact. The pesticides that volatility and solubility is low, so not easy volatile and residue in rainfall such as DDTs. Those that volatile and solubility is middle, component percentage of OCPs were consistent in rain and air. Therefore,exchange rainfall-air of OCPs were related with chemical and physical properties closely.
     Soil-rainfall exchange of OCPs in karst Tiankeng are consistent with each other, only DDTs and chlordane kinds of pesticide is large. DDTs in soils is mainly degradated by some microbe, it could related with the climate of study area in southern China. The proportion of chlordane in air and rainfall were higher, but is lower in the soil,it need to be study further.
     2. Exchange Model of PAHs in Rainfall-Air-Soil in Dashiwei Tiankeng
     Rainfall-air exchangeof PAHs in Tiankeng, light molecular weight of naphthalene, acenaphthene,acenaphthylene,fluorene and phenanthrene5kinds of PAH compounds were easily volatile into air due to their stronger volatile. Moreover, heavy molecular weight residue in rainfall, due to their weaker volatile, especially benzo[b]fluoranthene, benzo[k]fluoranthene and benzo[a]fluoranthene three compounds, so that the proportion of these compounds increase. Comparison with the annual atmospheric rainfall and soil PAHs content, the rainfall-soil exchange of PAHs showed that annual atmospheric rainfall is main pollution sources in Dashiwei Tiankengarea. the proportion of5kinds of PAH (Naphthalene, benzo[k]fluoranthene, indene[1,2,3-cd]pyrene, diphenyl[a,h]anthracene, benzo[g,h,I]perylene) in soil were slightly higher than rainfall, this is related with its weaker volatility in soil closely. Naphthalene is higher in soil due to its stronger volatility in water.
     3. Exchange Model of OCPs in Rainfall-Water-Sediments in Dashiwei Tiankeng
     The same winter rainfall, the underground water and sediments component proportion were studied as comparative. The study show that rainfall-sediment of OCPs has better exchange, but the detection rate of OCPs in the underground river is low due to sediment strong adsorption and biodegradation,and explained atmospheric rainfall and farmland use residual in the upstream is inputting sources. The high proportion of hexachlorobenzene in water because of its more lively physical and chemical properties and residue less in sediments.
     4. Exchange Model of PAHs in Rainfall-Water-Sediments in Dashiwei Tiankeng
     Selected rainfall and surface water of the underground river and sediment in winter to carry on the analysis, this study showed that the PAHs composition of rainfall is the same as the underground river. In the underground river naphthalene and chrysene both were higher than rain outside, other PAHs are all lower than those of rainfall. This display that PAHs composition percentage has change less after rainfall formed surface runoff, and explained that fossil fuel combustion source was input in the underground river.
     Except naphthalene and fluoranthene, most of2-3ring PAHs were in water, but4-6ring PAHs were main in surface sediment due to adsorption. Source, inputting and exchange law of PAHs is consistent with the environmental medium and chemical and physical properties of the compounds in the study area.
     5. Exchange Model of OCPs in Soil-Sediments in Dashiwei Tiankeng
     Concentration of OCPs in sediment increase in the section of Dashiwei Tiankeng because soil higher concentration of OCPs in the bottom of Dashiwei Tiankeng were washed into the underground river through the window. Strong hydrophobicity OCPs such as DDTs were more difficult to migration in the upstream, thus high contribution rate (exchange) of OCPs were mainly soil erosion in the bottom of Tiankeng. The compounds that water solubility is high is transfer from the upstream, so they have higher contribution rate to the sediment of Dashiwei Tiankeng section. HCB in the sediment has lower percentage, due to its solubility higher with water migration.
     6. Exchange Model of PAHs in Soil-Sediments in Dashiwei Tiankeng
     Comparison average PAHs percentage of the bottom soil in Dashiwei Tiankeng plus that of surface sediments the upstream section with that of the sediment of the section of Dashiwei Tiankeng, it is demonstrated that PAHs in the sediment of the underground river section of Dashiwei Tiankeng mainly come from the upstream water transmission and soil erosion of Tiankeng. At the same time,it proved that karst Tiankeng that have this special karst landform (spatial structure) played an important role on inputting PAHs to the underground river.
     7. Exchange Model of PAHs in Soil-Air in Dashiwei Tiankeng
     In the cliff, the bottom and the underground river, distribution of PAHs in air and soil are very consistent in Dashiwei Tiankeng, and related with environmental temperature, humidity, wind speed and meteorological factors, This distribution is form by soil-air exchanged for long time.
     8. Transport Model of POPs in Karst Tiankeng
     Through persistent organic pollutant source, distribution, environmental behavior and influence factor in Dashiwei Tiankeng group, combined with hydrological geology (karst cave) system, Transport conceptual model of POPs is established."A cold trap effect" of karst Tiankeng become a passive sampler for POPs Because concentrations of the bottom in soil was higher obviously than that of the top. Through atmospheric long range or region transport, mass POPs is input into karst Tiankeng and the underground river system, soil, underground water, sediment and cave air had been polluted.
引文
[1]余刚,牛军峰,黄俊,等.持久性有机污染物——新的全球性环境问题[M].第1版,北京:科学出版社,2005:1-105.
    [2]Menzie CA, Potocki BP, Santodonato J. Exposure to carcinogenic PAHs in the environmen[J].Environmental Science and Technology,1992,26:1278-1284.
    [3]Stout SA, Uhler AD, EmsboMattingly SD. Comparative evaluation of background anthropogenic hydrocarbons in surficial sediments from nine urban waterways[J]. Environmental Science and Technology,2004,38:2987-2994.
    [4]袁道先,蔡桂鸿.岩溶环境学[M].第1版,重庆:重庆出版社,1988:1-20.
    [5]袁道先.对南方岩溶石山地区地下水资源及生态环境地质调查的一些意见[J].中国岩溶,2000,19(2):103-108.
    [6]袁道先,薛禹群,傅家谟,等.防治我国西南岩溶地区地下河变成“下水道”的对策与建议[J].中国科学院院士建议,2007,164(4):1.
    [7]Wania F, Mackay D. Tracking the distribution of persistent organic pollutants-control strategies for these contaminants will require a better understanding of how they around the globe [J].Environmental Science and Technology,1996,30:390A-396A.
    [8]Gouin TD, Mackay KC, Jones T. Harner, S.N. Meijer. Evidence for the "grasshopper" effect and fractionation during long-range atmospheric transport of organic contaminants [J]. Environmental Pollution,2004,128:139-148.
    [9]Marti Nadal, Jason J. Wargent,et al. Influence of UV-B Radiation and Temperature on Photodegradation of PAHs:Preliminary Results[J]. Atmospheric Chemistry,2006,55: 241-252.
    [10]AARON M, PECK, KERI C. HORNBUCKLE. USE OF A CLIMATE-CONTROLLED CHAMBER TO INVESTIGATETHE FATE OF GAS-PHASE ANTHRACENE [J]. Water, Air, and Soil Pollution,2003,145:17-34.
    [11]叶常明.多介质环境污染研究[M].第1版,北京:北京出版社,1997:34.
    [12]华小梅,单正军.我国农药的生产使用状况及其污染环境因子分析[J].环境科学进展,1996,4(2):33-45.
    [13]Voldner EC, Li YF.Global usage of selected persistent organochlorines[J]. Science of The Total Environment,1995,201:160-161.
    [14]Li YF. Global technical hexachlorocyclohexane usage and its contamination consequences in the environment:from 1948 to 1997[J]. The Science of The Total Environment,1999, 232(3):121.
    [15]Iwata H, Tanabe S, Sakai N. Tatsukawa,R.Distributionofpersistentorganochiorines in the oceanic air and surface seawater and the of ocean on their globl transport and fate[J] Environment. Science & Technology,1993,27(6):1080-1098
    [16]Shen L, Wania F. Compilation, evaluation, and selection of physical-chemical property data for organochlorine pesticides[J]. Journal Of Chemical And Engineering Data,2005,50(3): 742-768.
    [17]Allen JO, Dookeran NM, Smith KA, et al.'Measurement of polycyclic aromatic hydrocarbons associated with a size-segregated atmospheric aerosols in Massachusetts[J], Environ. Sci. Technol.1996, (30):1023-1031.
    [18]Cadle SH, Mulawa PA, Hunsanger EC et al. Composition of light-duty motor vehicle exhaust particulate matter in the Denver, Colorado area', Environ[J]. Sci. Technol.1999,33: 2328-2339.
    [19]Yang QS, Mai BX, Fu JM, et al. Spatial and Temporal Distribution of Organochlorine Pesticides (OCPs) in Surface Water from the Pearl River Artery Estuary[J]. Environmental science,2004,25:150-156.
    [20]Willett KL, Ulrich EM, Hites SA. Differential toxity and environmental fates of hexachlorocyclohexane isomers[J]. Environ. Sci. Technol.1998,32:2197-2207.
    [21]Zhu YF, Xu XB, Xi ZQ. Advance in the research of multimedia transfer and transform of organochlorine pesticides[J]. Advance in science,2003,13:910-916.
    [22]Li YF, Macdonald RW. Sources and pathways of selected organochlorine pesticides to the Arctic and the effect of pathway divergence on HCH trends in biota:a review[J], The Science of the total Environment,2005,342:87-106.
    [23]Agency for Toxic Substances and Diseases Registry (ATSDR) 2000 gazette; Toxicological profile for aldrin, dieldrin, endosulfan, heptachlor and endrin. Atlanta, GA U.S Department of Health and Human Services, Public Health Service.
    [24]Bidleman T F. Atmospheric transport and air-surface exchange of pesticides[J]. Water Air and Soil Pollution,1999,115 (1-4):115-166.
    [25]Liu M, Xu SY. Environmental Biogeochemical Processes and Ecological Risk of POPs in the Yangtze Estuarine Tidal Flat Ecosystem. Beijing:China Environmental Science Press, 2005.
    [26]Lundstedt S, Haglund P, Oberg L.Degradation and formation of polycyclic aromatic compounds during bioslurry treatment of an aged gasworks soil[J]. Environ Toxicol Chem,2002,22:123-129.
    [27]Eaton RW, Chapman PJ. Bacterial metabolism of naphthalene:construction and use of recombinant bacteria to study ring cleavage of 1,2 dihydro-xynaphthalene and subsequent reactions[J]. J bacteriol,1992,172(23):7542-54.
    [28]Dean-Rose D, Moody JD, Freeman JP et al. Metabolism of anthracene by Rhodococcus species[J]. Ferns microbial lett.2001,204(1):205-11.
    [29]Akhtar Mn, Boyd DR, Thompson NJ, et al. Absolute stereochemistry of the dihydroanthracene-cis-and-trans-1,2-diols produced from anthracene by mammals and bacteria [J]. chem. Soc[Perkinl],1975, (23):2506-11.
    [30]Evans WC, Fernley HN, Griff:ths F. Oxidative metabolism of phenanthrene and anthracene by soils psuedomonads.The ring Fission mechanism[J]. Biochem,1965,95:819-31.
    [31]Jerina DM, Selander H, Yagi H, et al. Dihyrodiols from anthracene and phenanthrene[J] Am Chem Soc,1976,98(19):5988-96.
    [32]Boonchan S, Britz ML, Stanley GA. Degradation and mineralization of high molecular weight polycyclic hydrocarbons by defined fungal-bacterial co-cultures[J]. applied Environ Microbial,2000,66(3):1007-19.
    [33]Schneider J, Grosser R, Jayasimhulu K, et al. Degradation of pyrene, benz(a)anthracene, and benzo(a)pyrene by mycobacterium sp. Strain RJGII-135, isolated from a former coal gasification site[J]. Applied Environ Microbial,1996,62(l):13-9.
    [34]Georgian L, Moraru I, Draghicescu T, et al.Cytogenetic effects of alachlor and mancozeb[J]. Mutat Res. V,1983,116(3-4):341-8.
    [35]Hippelein M, McLachlan MS. Soil/air partitioning of semivolatile organic compounds.1. Method development and influence of physical-chemical properties[J]. Environmental Science & Technology 1998,32(2):310-316.
    [36]Hippelein M, McLachlan MS. Soil/air partitioning of semivolatile organic compounds.2. Influence of temperature and relative humidity[J]. Environmental Science & Technology,2000,34 (16):3521-3526.
    [37]Cousins IT, Jones KC. Air-soil exchange of semi-volatile organic compounds (SOCs) in the UK[J]. Environmental Pollution,1998,102(1):105.
    [38]Karickhoff SW. Semi-empirical estimation of sorption of hydrophobic pollutants on natural sediments and soils[J]. Chemosphere,1981,10(8):833.
    [39]Bopp L, Aumont O, et al. Response of diatoms distribution to global warming and potential implications:A global model study[J]. Geophys Res Lett.2005,32(19):4
    [40]Bidleman, TF, Wong F, Backe C,et al. Chiral signatures of chlordanes indicate changing sources to the atmosphere over the past 30 years[J]. Atmospheric Environment,2004,38, (35):5963-5970
    [41]Waller K,Vallero DA,Lewis R G. Factor influencing the distribution of lindane and otherhexachlorocyclohexane in the environment [J]. Environmental Science and Technology,1999,33(24):4373-4378.
    [42]Daly G L, Wania F. Organic contaminants in mountains[J]. Environmental Science & Technology,2005,39(2):385-398.
    [43]Wilfred E, Pereira D, Joseph L, et al. Occurrence and accumulation of pesticides and organic contaminants in river sediment, water and clamtissues from the San Joaquin river and tributaries, California [J]. Environmental Toxicology and Chemistry,1996,15(2):172-180.
    [44]Kallenborn R, Oehme M,Wynn-Williams DD, et al.Ambient air levels and atmospheric long-range transport of persistent organochlorines to Signy Island, Antarctica[J]. The Science of The Total Environment,1998,220(2-3):167.
    [45]Bidleman TF. Atmospheric transport and air-surface exchange of pesticides[J]. Water Air And Soil Pollution,1999,115(1-4):115-166.
    [46]李军,张干,等.珠江三角洲土壤中氯丹的残留特征.土壤学报,2007,44(6):1058-1062.
    [47]Shen L, Wania F, Lei YD, et al. Hexachlorocyclohexanes in the north American atmosphere[J]. Environmental Science & Technology 2004,38, (4):965-975
    [48]Baumard, P., Budzinski, H., Garrigue, P.,Polycyclic aromatic hydrocarbons in sediments and mussels of the western Mediterranean Sea[J]. Environ. Toxicol. Chem.1998,17:765-776.
    [49]Budzinski H, Jones I, Bellocq C, et al. Evaluation of sediment contamination by polycyclic aromatic hydrocarbons in the Gironde estuary[J].Mar.Chem.1997,58:85-97.
    [50]Yunker MB, Macdonald RW, Vingarzan R, et al. PAHs in the Fraser River basin:a critical appraisal of PAH ratios as indicators of PAH source and composition[J]. Org. Geochem.2002,33:489-515.
    [51]汤国才.气溶胶中多环芳烃的污染源识别方法[J].环境科学研究,1993,6(3):37-41.
    [52]McKenzie CH, Godwin AA, Lidia M. Characterization of elemental and polycyclic aromatic hydrocarbon compositions of urban air in Brisbane[J]. Atmospheric Environment, 2005,39:463-476.
    [53]Doong R, Lin YT. Characterization and distribution of polycyclic aromatic hydrocarbon contaminations in surface sediment and water from Gao-ping River, Taiwan[J]. Water Research,2004,38:1733-1744.
    [54]Wania F, Mackay D.Global fractionation and cold condensation of low volatility organochlorine compounds in polar regions[J]. Ambio.1993,22:10-18.
    [55]Sladen W, Menzie C, Reichel W. DDT residues in adelie penguins and crabeater seal from Antarctica[J].Nature,1966,210 (5037):670-673.
    [56]Dewailly E, Nantel J, Weber J, et al. High levels of PCBs in breast milk of Inuit women from Arctic Quebec[J].Bull Environmental Contaminant Toxicology,1989,43(5):641-646.
    [57]Harner T, Pozo K, Gouin T, et al. Global pilot study for persistent organic pollutants (POPs) using PUF disk passive air sampler[J]. Environmental Pollution,2006,144(2):445-452.
    [58]Hung H, Lee SC,Wania F, et al. Measuring and simulating atmospheric concentration trends of polychlorinated biphenyls in the Northern Hemisphere[J]. Atmospheric Environment,2005,39 (35):6502-6512.
    [59]Jaward F, Farrar N, Harner T, et al. Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe [J].Environmental Science and Technology,2004, 38(1):34-41.
    [60]Environment Canada, http://www.msc.ec.gc.ca/iadn/overview/Index-e. html, 2003-01-02.
    [61]Wang XP,Yao TD,Cong ZY, et al.Gradient distribution of persistent organic contaminants along northerns lope of Central Himalayas China[J] The Science of the Total Environment, 2006,372(1):193-202.
    [62]Li J, Zhu T, Wang F, et al. Observation of organochlorine pesticides in the air of the Mt. Everest region[J].Ecotox Environment Safety,2006,63(1):33-41.
    [63]刘文杰,谢文明,陈大舟,郑晓燕,刘咸德,朱晓华,杨永亮.卧龙自然保护区土壤中有机氯农药的来源分析[J].环境科学研究,2007,20(6):81-86.
    [64]王峰,朱彤,徐柏青,康世昌.珠穆朗玛峰东绒布冰川新降雪中有机氯农药[J].科学通报,2007,37(5):670-675.
    [65]李全莲,王宁练,武小波,等.祁连山七一冰川区表层沉积物中生物标志化合物的组成特征及来源研究[J]地球化学,2008,37(6):533-541.
    [66]孙娜,陆晨刚,高翔,李春雷,陈立民.青藏高原东部土壤中多环芳烃的污染特征及来源解析[J].环境科学,2007,28(3):664-668.
    [67]潘静,杨永亮,陈大舟,等.卧龙巴郎山地区夏、冬两季土壤中有机氯农药和低氯代多氯联苯的海拔高度分布[J].环境化学,2009,28(5):728-733.
    [68]张伟玲,张干,祁士华,等.西藏错鄂湖和羊卓雍湖水体及沉积物中有机氯农药的初步研究[J].地球化学,2003,32(4):364-367.
    [69]袁道先,曹建华.岩溶动力学的理论和实践[M].北京:科学出版社,2008,106-107.
    [70]FERNANDEZ P, VILANOVA RM, GRIMALT JO.Sediment fluxes of polycyclic aromatic hydrocarbons in European high altitude mountain lakes [J].Environmental Science and Technology,1999,33:3716-3722.
    [71]李阳兵,王世杰,李瑞玲.岩溶生态系统的土壤[J].生态环境,2004,13(3):434-438.
    [72]袁道先等.岩溶学词典[M].北京:科学出版社,2008,106-107.
    [73]章典.贵州喀斯特洞穴的气象特征和气候分带研究[J].中国岩溶,1983,4(Z1):146-154.
    [74]Simonich SL, Hites RA. Importance of vegetation in removing polycyclic aromatic hydrocarbons from the atmosphere[J].Nature,1994,370:49-51.
    [75]Hinkel M, Reischl A, Schramm K-W, et al. Concentration levels of nitrated phenolsin conifer needles[J].Chemosphere,1989,18:2433-2439.
    [76]Horstmann M, Bopp U, McLachlan MS. Comparison of thebulk deposition of PCDDrF in a spruce forest and anadjacent clearing[J].Chemosphere,1997,34:1245-1254.
    [77]McLachlan MS, Horstmann M. Forest as filters of airborne organic pollutants:a model[J]. Environmental Science and Technology,1998,32:413-420.
    [78]Wenzel KD, Manz M, Hubert A, et al. Fate of POPs(DDX, HCHs, PCBs) in upper soil layers of pine forests[J]. The Science of the Total Environment,2001,286:143-154.
    [79]缪钟灵.喀斯特区域地下水污染问题初步探讨[J].中国地质,1983,01:18-21.
    [80]Simmleit NR, Herrmann. The Behavior of Hydrophobic, Organic Micrpollutants indifferent Karst water systems[J].Water, Air, and Soil Pollution,1987,(34):79-95.
    [81]Simmleit N. Bayreuth. Variation of Inorganic and Organic composition of bulk precipitation, percolation water and Groundwater in small, rural Karst Catchments[J].Catena,1988, (15):195-204.
    [82]Dorothy J. Vesper, Caroline M. Loop & William B. White. Contaminant transport in karst aquifers [J].Theoretical and Applied Karstology,2000,(13):63-73.
    [83]Mehmet E.Pesticide and nutrient contamination in the Kestel polje-Kirkgoz karst springs, Southern Turkey [J].Environmental Geology,2005,(49):19-29.
    [84]戚爱萍等.济南地区岩溶地下水有机物污染状况调查[J].预防医学文献信息,2001,12(6):736-737.
    [85]徐建国,朱恒华,徐华,等.济南泉域岩溶地下水有机污染特征研究[J].中国岩溶,2009(9):249-254.
    [86]杨梅,蒲俊兵,张俊鹏,等.重庆典型岩溶区地下河表层沉积物OCPs初步研究[J].环境工程学报,2009,3(7):1340-1344.
    [87]杨梅,张俊鹏,蒲俊兵,等.重庆典型岩溶区地下河水体有机氯农药污染初步研究[J].中国岩溶,2009,28(2):144-148.
    [88]王英辉.喀斯特洞穴中持久性有机污染物分布与传输动力学研究[学位论文].中国地质大学,武汉,2007年.
    [89]王英辉,祁士华,李杰,等.广西桂林大岩洞岩溶洞穴中土壤有机氯农药的分布特征[J].地质通报,2007,26(11):1470-1475.
    [90]王英辉,祁士华,李杰,等.广西岩溶洞穴大气中有机氯农药分布与传输[J].环境科学,2010,31(3):586-590.
    [91]王英辉,祁士华,袁道先,等.广西岩溶洞穴土壤中多环芳烃污染特征与解析[J].环境科学,2009,30(5):1255-1259.
    [92]Oramah I. Theodore, Shihua Qi, Xiangsheng Kong, et al. Distribution of polycyclic aromatic hydrocarbons in Datuo karst Tiankeng of South China[J].Environmental Geochemistry and Health,2008,30:423-429.
    [93]Theodore IO. Distribution of Polycyclic aromatic Hydrocarbons in Dashiwei Karst Tiankeng of South China[J].Division of Environmental Geoscience,2008,15(2):75-83.
    [94]朱学稳,朱德浩,黄保健,等.喀斯特天坑略论[J].中国岩溶,2003,22(1):51-55.
    [95]朱学稳,黄保健等.广西乐业大石围天坑群发现探测定义与研究[M].第1版,南宁:广西科学技术出版社,2003:1-50.
    [96]Garban HB, Blanchoud A, Motelay-Massei, et al. Atmospheric bulk deposition of PAHs ontoFrance:trends from urban to remote sites[J]. AtmosphericEnvironment,2002,36(34): 5395-5403.
    [97]Moon H-B, Kannan K, Lee S-J, et al. Atmospheric Deposition of Polycyclic Aromatic Hydrocarbons in an Urban and a Suburban Area of Korea from 2002 to 2004[J]. Archives of Environmental Contamination and Toxicology,2006,51:494-502.
    [98]Hung H TP, Blancharda CJ, Halsallb TF, et al. Temporal and spatial variabilities of atmospheric polychlorinated biphenyls (PCBs), organochlorine (OC) pesticides and polycyclic aromatic hydrocarbons (PAHs) in the Canadian Arctic:Results from a decade of monitoring[J]. Science of the Total Environment,2005,342:119-144.
    [99]Ce'sar CM, Ma'rcia CB, Neil LR, et al. Historical record of polycyclic aromatic hydrocarbons (PAHs) and spheroidal carbonaceous particles (SCPs) in marine sediment cores from Admiralty Bay, King George Island, Antarctica[J], Environmental Pollution, 2010,158:192-200.
    [100]祁士华,张干,刘建华,等.拉萨市城区大气和拉鲁湿地土壤中的多环芳烃[J].中国环境科学,2003,23(4):349~352.
    [101]Xiao PW, Bai QX, Shi CK, et al.The historical residue trends of DDT, hexachlorocyclohexanes and polycyclic aromatic hydrocarbons in an ice core from Mt.Everest,central Himalayas,ChinaJ].Atmospheric Environment,2008,42:6669-6709.
    [102]Oramah Ikenna Theodore. Distribution,sources and transportation of polycyclic aromatic hydrocarbons and organochlorine pesticides in Tiankeng group,south China[D]. Wuhan: China university of geoscience Wuhan,2007.
    [103]Jones KC,Voogt P de. Persistent organic pollutants (POPs):state of the science [J]. Environmental pollution,1999,100:209-221.
    [104]GB15618-1995《土壤环境质量标准》[S].第1版,北京.
    [105]刘文杰,谢文明,陈大舟,等.卧龙自然保护区土壤中有机氯农药的来源分析[J].环境科学研究,2007,20(6):81-86.
    [106]王向琴,祁士华,邢新丽,李杰,等.川西北至重庆土壤剖面中有机氯农药的组成特征[J].中国环境科学,2008,28(6):548-551.
    [107]Francesca B,Joan OG, Juan C, et al. Organochlorine compounds in soils and sediments of the mountain Andean Lakes[J].Environmental Pollution,2005,136:253-266
    [108]Grimalt J O,Van Drooge B L,Ribes A et al.Persistent organochlorine compounds in soils and sediments of European high altitude mountain lakes[J]. Chemosphere,2004,54:1549-1561.
    [109]Jana K, Nina M, Zdene M, et al. Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica[J].Environmental Pollution,2008,152:416-423.
    [110]Fu S,Ch S,Xu X. Organochlorine pesticide residue in soils from Tibet, China[J]. Bull Environmental contaminate Toxicology,2001,66:171-177.
    [111]刘汉林,张明时,叶锋,等.贵州遵义地区土壤中有机氯农药残留调查[J].环境监测管理与技术,2009,21(3):28-30.
    [112]刘建华,祁士华,张干,等.拉萨市拉鲁湿地多环芳烃污染及其来源[J].物探与化探,2003,27(6):193-195.
    [113]Klanova J, Matykiewiczova N, Macka Z,et al. Persistent organic pollutants in soils and sediments from James Ross Island, Antarctica[J].Environmental Pollution, 2008,152:416-423.
    [114]Grimalt JO,Van Drooge BL,Ribes A, et al. Polycyclic aromatic hydrocarbon composition in soils and sediments of high altitude lakes[J]. Environmental Pollution,2004,131:13-24.
    [115]陈椽,张明时,杨加文,等.黔南州土壤中多环芳烃的污染现状及来源分析[J].生态环境学报,2009,18(3):929-933.
    [116]Chen BL, Xuan XD, Zhu LZ, et al. Distributions of polycyclic aromatic hydrocarbons in surface waters, sediments and soils of Hangzhou City, China[J]. Water Research,2004,38 (16):3558-3568.
    [117]余莉莉,李军,刘国卿,等.珠江三角洲表层土壤中的多环芳烃[J].生态环境,2007,16(6):1683-1687.
    [118]TRAPIDO M. Polycyclic Aromatic hydrocarbons in Estonian soil:contamination and profiles[J]. Environmental Pollution,1999,105(1):67-74.
    [119]蒙远文,蒋伯仁,韦相轩,等.广西天气及其预报[M].第1版,北京:气象出版社,1989:1-10.
    [120]Wong F, Harner T, Liu QT, et al. Using experimental and forest soils to investigate the uptake of polycyclic aromatic hydrocarbons (PAHs) along an urban-rural gradient[J].Environmental Pollution,2004,129:387-398.
    [121]何才华,王宗艳.洞穴环境与洞穴旅游[C].//:陈伟海,朱德浩,朱学稳.洞穴探险、研究、开发与保护——全国洞穴学术会议论文选集.北京:地质出版社,2008.320-322.
    [122]张伟玲,张干,祁士华,等.西藏错鄂湖和羊卓雍湖水体及沉积物中有机氯农药的初步研究[J].地球化学,2003,32(4):364-367.
    [123]张菲娜,祁士华,苏秋克,等.福建兴化湾水体有机氯农药污染状况[J].地质科技情报,2006,25(4):77-81.
    [124]蒋新,许士奋, Martens D,等.长江南京段水、悬浮物及沉积物中多氯有毒有机污染物[J].中国环境科学,2000,20(3):193-197.
    [125]Fernandez MA, Alonso C, Gonzalez MJ, et al. Occurrence of organochlorine insecticides, PCBs and PCB congeners in waters and sediments of the Ebro River (Spain) [J]. Chemosphere,1999,38:33-43.
    [126]杨清书,麦碧娴,傅家谟,等.珠江干流河口水体有机氯农药的研究[J].中国环境科学,2005,25(Suppl.):47-51
    [127]Simcik MF. Atmospheric fate and behaviour.Persistent organic pollutants:environmental behavior and pathways for human exposure[M].Kluwer academic publishers,2001:29-49.
    [128]田蕴,郑天凌,王新红.厦门西港表层海水中多环芳烃(PAHs)的含量、组成及来源[J].环境科学学报,2004,24(1):50-55.
    [129]Mohamad PZ, Hideshige T, Shinobu T, et al. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia:A widespread input of petrogenic PAHs[J]. Environmental Science and Technology,2002,36 (9):1907-1918.
    [130]Shi Z, Tao S, Pan B,et al. Contamination of rivers in Tianjin, China by polycyclic aromatic hydrocarbons [J]. Environmental Pollution,2005,134 (1):97-111.
    [131]Mitra S, Bianchi TS.A Preliminary assessment of polycyclic aromatic hydrocarbon distributions in the lower Mississippi River and Gulf of Mexico [J]. Marine Chemistry, 2003,82:273-288.
    [132]Zhang ZL, Hong HS, Zhou JL et al. Phase association of polycyclic aromatic hydrocarbons in the Min jiang River Estuary, China [J]. The Science of the Total Environment,2004,323 (1-3):71-86.
    [133]Mai BX, Luo XJ, Yang QS, et al. Polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides in water columns from the Pearl River and the Macao harbor in the Pearl River Delta in South China [J]. Marine Pollution Bulletin,2004,48 (11-12):1102-1115.
    [134]Maskaouia K, Zhou JL, Honga HS, et al. Contamination by polycyclic aromatic hydrocarbons in the Jiulong River Estuary and Western Xiamen Sea, China [J]. Environmental Pollution,2002,118 (1):109-122.
    [135]冯承莲,夏星辉,周追,等.长江武汉段水体中多环芳烃的分布及来源分析[J].环境科学学报,2007,27(11):1900-1908.
    [136]崔学慧,李炳华,陈鸿汉.太湖平原城近郊区浅层地下水多环芳烃污染特征及污染源分析[J].环境科学,2008,29(7):48-52.
    [137]Manoli E, Samara C, Konstantinou AT. Polycyclic aromatic hydrocarbons in the bulk precipitation and surface waters of Northern Greece [J]. Chemosphere,2000,41 (12):1845-1855.
    [138]Barron MG, Podrabsky T, Ogle S, et al.Are aromatic hydrocarbons the primary determinant of petroleum toxicity to aquatic organisms[J].Aquatic Toxicology,1999,46:253-268.
    [139]袁旭音,王禹,陈骏,等.太湖沉积物中有机氯农药的残留特征及风险评估[J].环境科学,2003,24(1):122-125.
    [140]Zhou JL, Maskaoui K, Qiu W, et al. Polychlorinated biphenyl congeners and organochlorine insecticides in the water column and sediments of DayaBay[J]. China.Environmental Pollution,2001,113:373-384.
    [141]许士奋,蒋新,冯建,等.气相色谱法测定长江水体悬浮物和沉积物有机氯农药的残留量[J].环境科学学报,2000,20(4):494-498.
    [142]Rawn DFK, Lackhart WL,Wilkinson P.Historical contamination of Yukon lake sediments by PCBs and organochlorine pesticides:influence of local sources and watershed characteristic [J]. Science of the Total Environment,2001,280(1-3):17-37
    [143]Long ER,Macdonald DD,Smith SL, et al. Incidence of adverse biological effects with ranges of chemical concentrations in marine and estuarine sediments [J].Environmental Management,1995,19 (1):81-97.
    [144]Long ED, Field LJ, MacDonald DD. Predicting toxicity marine sediments with numerical sediment quality guidelines[J].Environmental Toxicological Chemistry,1998,17(4):714-727.
    [145]Ingersoll CG.Calculation and evaluation of sediment effect concentrations for the amphipod Hyalella azteca and the midge Chironomus riparius [J].Great Lakes Research, 1996,22:602-623.
    [146]Li GC, Xia XH, Yang ZF.Distribution and sources of polycyclic aromatic hydrocarbons in the middle and lower reaches of the Yellow River,China[J]. Environmental Pollution, 2006,144:985-993
    [147]Forster GD, Wrighrt DA. Unsubstituted polycyclic aromatic hydrocarbons in sediments, clams, and clam worms from Chesapeake Bay[J]. Marine Pollution Bulletin,.1988,19: 459-465.
    [148]刘敏,侯立军,邹惠仙,等.长江口潮滩表层沉积物中多环芳烃分布特征[J].中国环境科 学,2001,21(4):343-346
    [149]麦碧娴,林峥,张干,等.珠江三角洲河流和珠江口表层沉积物中有机污染物研究—多环芳烃和有机氯农药的分布及特征[J].环境科学学报,2000,20(2):391-396.
    [150]Hong H, Xu L, Zhang L, et al.Environmental fate chemistry of organic pollutions in the sediment of Xiamen and Victoria Harbours[J]. Marian Pollution Bulletin,1995,31: 229-236.
    [151]Simpson CD, Mosi AA, Cullen WR, et al. Composition anddistribution of polycyclic in surficial marine sediments from Kitimat Harbour, Canada [J]. Science of The Total Environment,1996,181:265-278.
    [152]JOSEPH JP,EBERA AB. Temperature-dependent sorption of naphthalene phenanthrene and pyrene to iow organic carbon aquifer sediment[J].Environmental Science and Technology, 1996,30(3):751-760.
    [153]展惠英,袁建梅,蒋语峰,等.菲和萘在黄土上的吸附等温线和吸附热力学[J].安全与环境学报,2004,4(4):49-52
    [154]MACDONALD D D, CARR R S, CALDER F D, et al. Development and evaluation of sediment quality guidelines for Florida coastal waters[J]. Ecotoxicology,1996,5:253-278
    [155]康跃惠,盛国英,傅家谟,等.珠江澳门河口沉积物柱样中有机氯农药的垂直分布特征[J].环境科学,2001,22(1):81-85.
    [156]刘国卿,林海涛,张干,等.太湖沉积物中有机氯农药的污染历史[J].中国环境科学,2007,27(4):441-444.
    [157]龚香宜,祁士华,吕春玲,等.泉州湾沉积物柱状样中有机氯农药的垂直分布特征[J].海洋环境科学,2007,26(4):369-372.
    [158]彭韬,杨涛,王世杰,等.喀斯特坡地土壤流失监测结果简报[J].地球与环境,2009,37(2):126-130.
    [159]Mark DM, Steve JG. The relationship between land use and organochlorine compounds in streambed sediments and fish in the central Columbia Plateau,Washington and Idaho,USA[J].Environmental Toxicology,1997,16 (9):1877-1887.
    [160]Bergquist P-A, Stradberg B, Ekelund R, et al. Temporal monitoring of organochlorine compounds in seawater by semipermeable memberanes following episode in Western Europe [J]. Environmental Science and Technology,1998,32:3887-3892.
    [161]蒋忠诚,李先琨,曾馥平,等.岩溶峰丛洼地生态重建[M].第1版,北京:地质出版社,2007,1-8.
    [162]任树梅,朱仲元,张文萍,等.工程水文学[M].第1版,北京:中国农业大学出版社,2001,231-235.
    [163]Zhang G, Parker A, House A, et al. Sedimentary records of DDT and HCH in the Pearl River Delta, South China [J]. Environmental Science and Technology,2002,36(17):3671-3677.
    [164]BAILEYR D. Global hexachlorobenzene emissions [J].Chemosphere,2001,143:167-182.
    [165]叶传永,陈素华,焦杏春.鄱阳湖龙口地区沉积物中有机氯农药的垂向分布特征[J].岩矿 测试,2009,28(4):342-346.
    [166]李红莉,李国刚,杨帆,等.南四湖沉积物中有机氯农药和多氯联苯垂直分布特征[J].环境科学,2007,28(7):1591-1594.
    [167]Karickhoff S W, Brown D S, Scott T A. Sorption of hydrophobic pollutants on nature sediments[J]. Water Resource,1979,13:241-248.
    [168]刘国卿,张干,李军,等.多环芳烃在珠江口的百年沉积记录[J].环境科学,2005,26(3):141-145.
    [169]康跃惠,盛国英等.珠江口现代沉积物柱芯样多环芳烃高分辨沉积记录[J].环境科学学报,2005,25(1):63-69.
    [170]Wania F, Haugenb J-E. Long term measurements of wet deposition and precipitation scavenging of hexachlorocyclohexanes in Southern Norway [J]. Environmental Pollution,1999,105:381-386.
    [171]VILLA S,VIGHI M, MAGGI V, et al.Historical Trends of Organochlorine Pesticides in an Alpine Glacier[J]. Journal of Atmospheric Chemistry,2003,46:295-311.
    [172]Carrera G, Fernandez P, Vilanova RM, et al.Persistent organic pollutants in snow from European high mountain areas[J]. Atmospheric Environment,2001,35:245-254.
    [173]Li PJ, Gene JZ,Tu BM, et al. Persistent toxic substances in remote lake and coastal sediments from Svalbard, Norwegian Arctic:Levels, sources and fluxes[J]. Environmental Pollution,2009,157:1342-1351.
    [174]Borghini F, Grimalt JO,Sanchez-Hernandez JC et al. Organochlorine compounds in soils and sediments of the mountain Andean Lakes[J]. Environmental Pollution,2005, 136(2):253.
    [175]JIA H L,SUN Y Q,LI Y F,et al. Endosulfan in China:emissions and residues [J]. Environ Sci Pollut Res,2009,16:302-311.
    [176]WANG X,REN NQ,QI H, et al. Levels, distributions and source-acceptor relationship of organochlorine pesticides in the topsoils in Northeastern China[J]. Journal of Environmental Sciences,2009,21(10):1541-1546.
    [178]杨丹,祁士华,邢新丽,等.成都经济区有机氯农药异常区大气影响推断[J].环境科学,2010,33(9):6-9.
    [179]Yeo HG, Choi M, Chun MY, et al. Concentration distribution of polychlorinated biphenyls and organochlorine pesticides and their relationship with temperature in rural air of Korea. Atmospheric Environment 2003,37 (27),3831-3839.
    [180]Cortes DR, Basu I, Sweet CW, et al. Temporal trends in gas-phase concentrations of chlorinated pesticides measured at the shores of the Great Lakes. Environmental Science & Technology 1998,32(13),1920-1927.
    [181]何星存,陈孟林,杨崇毅,等.柳州市大气颗粒物中多环芳烃的种类和时空分布特征及来源[J].中国环境监测,2005,21(3):73-75.
    [182]叶兆贤,张干,邹世春,等.珠江三角大气多环芳烃(PAHs)的干湿沉降[J].中山大学学报(自然科学版),2005,44(1):4-7.
    [183]张树才,王开颜,沈亚婷,等.北京东南郊大气降尘中的多环芳烃[J].农业环境科学学报,2007,26(4):1568-1574.
    [184]赵靖宇,王文涛,王伟,等.华北地区城镇多环芳烃干沉降特征[J].环境科学学报,2009,29(7):1358-1362.
    [185]B Garban H, Blanchoud A, Motelay-Massei, et al. Atmospheric bulk deposition of PAHs onto France:trends from urban to remote sites[J]. Atmospheric Environment, 2002,36(34):5395-5403.
    [186]Li PJ, Gene JZ, Tu BM et al.Persistent toxic substances in remote lake and coastal sediments from Svalbard, Norwegian Arctic:Levels, sources and fluxes[J]. Environmental Pollution,2009,157:1342-1351.
    [187]Fernandez P, Vilanova RM, Grimalt JO, et al. Sediment fluxes of polycyclic aromatic hydrocarbons in European high altitude mountain lakes [J]. Environmental Science and Technology,1999,33:3716-3722.
    [188]Simcik MF, Eisenreich SJ, Golden KA et al. Atmospheric loading of polycyclic aromatic hydrocarbons to Lake Michigan as recorded in the sediments[J]. Environmental Science and Technology,1996,30:3039-3046.
    [189]Heike K, Michael SM. Distribution of PCDD/F and PAHs within the full size range of atmosphere particulates[J].Atmosphere Environment,2000,34:73-84.
    [190]李军,张干,祁士华.广州市大气中多环芳烃分布特征、季节变化及其影响因素[J].环境科学,2004,25(3):7-13.
    [191]Blais JM, Schindler DW, Muir DCG et al. Accumulation of persistent organochlorine compounds in mountains of western Canada[J]. Nature,1998,395:585-588.
    [192]张水铭,安琼,马杏法.γ-六六六在土壤中异构化的初步研究[J].环境化学,1983,2(3):26-30.
    [193]张水铭,马杏法,安琼.六六六在土壤中持留和降解[J].土壤学报,1988,25(1):81-87.
    [194]李阳兵,王世杰,李瑞玲.岩溶生态系统的土壤[J].生态环境,2004,13(3):434-438.
    [195]Ribes A.,et al.Temperature and organic matter dependence of the distribution of organochlorine compounds in mountain soils from the subtropical Atlantic(Teide,Tenerife island)[J]. Environmental Science and Technology,2002,36:821.
    [196]陈迪云,黄伟林.不同土壤有机质组分对憎水有机物的吸附机理研究[J].地球化学,2003,32(4):368-374.
    [197]Marti N JJ, Wargent KC, Jones ND, et al. Domingo. Influence of UV-B Radiation and Temperature on Photodegradation of PAHs:Preliminary Results[J]. Journal of Atmospheric Chemistry,2006,55:241-252.
    [198]毕新慧,盛国英,谭吉华,等.多环芳烃(PAHs)在大气中的相分布[J].环境科学学报,2004,24(1):200-206.
    [199]Ma LL, Chu SG, Wang XT, et al. Polycyclic aromatic hydrocarbons in the surface soils from outskirts of Beijing,China[J]. Chemosphere,2005,58 (10):1355-1363.
    [200]Kleivane L, Skaare JU, Bjrge A, et al. Organochlorine pesticide residue and PCBs in harbour porpoise Phocoena phocoena incidentally caught in Scandinavian waters[J]. Environmental Pollution,1995,89:137-146
    [201]Aguillar A. Relationship of DDE/DDT in marine mammals to the chronology of DDT input to the ecosystem[J]. Can J Fish Aquat Sci,1984,41:840-844
    [202]Liu M, Xu SY. Environmental Biogeochemical Processes and Ecological Risk of POPs in the Yangtze Estuarine Tidal Flat Ecosystem. Beijing:China Environmental Science Press, 2005.
    [203]Bidleman TF, Jantumen LLM, Helm PA, et al. Chlordane enantiomers and temporal trends of chlordane isomers in Arctic air[J].Environ. Sci. Technol,2000,36:539-544.
    [204]刘向,张干,李军,等.利用PUF大气被动采样技术监测中国城市大气中的多环芳烃[J].环境科学,2007,28(1):28-33.
    [205]Khalili N R, Scheff P A, Holsen T M. PAH source finger prints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions[J].Atmospheric Environment, 1995,29(4):533-542..
    [206]Li J, Zhang G, Li X D, et al. Source seasonality of polycyclic aromatic hydrocarbons (PAHs) in a subtropical city, Guangzhou, South China[J].Science of the Total Environment,2006,355(123):145-155.
    [207]Wania F, Hau gen JE, Lei YD, et al.Temperature dependence of atmospheric concentrations of semi-volatile organic compounds[J]. Environmental Science and Technology,1998,32:1013-102.
    [208]Pankow JF, Storey JME, Yamasaki H. Effect of relative humidity on gas/particle partitioning of semi-volatile organic compounds to urben particulate matter[J]. Environmental Science and Technology,1993,27:2220-2226.
    [209]Evans WC, Fernley HN, Griffths F. Oxidative metabolism of phenanthrene and anthracene by soils psuedomonads. The ring Fission mechanism [J]. Biochemistry,1965,95:819-831.
    [210]王连生.有机污染化学[M].第1版,北京:科学出版社,1991:5-20.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700