肠道微生态环境与儿童过敏性疾病的关系以及参芪健脾方对肠粘膜屏障功能修复和免疫功能调整的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去20年里,大量研究证实世界范围内过敏性疾病的发病率逐年增加,其原因不十分清楚。“卫生假说”为儿童在生命早期缺乏微生物的暴露导致今后过敏性疾病的发生进行了解释,由于缺乏微生物刺激导致Th1/Th2平衡紊乱和调节性T细胞功能低下。越来越多研究认为,儿童早期缺乏微生物接触导致的过敏与今后发生哮喘和过敏性疾病的风险密切相关。虽然过敏和哮喘具有遗传倾向性,但基因与环境的相互作用更能解释发病机制。环境因素如感染、接触过敏原以及产前因素如母亲吸烟、孕期营养、产妇精神压力、分娩方式和新生儿期应用抗生素等均会影响小儿今后过敏性疾病和支气管哮喘的发生。通过基因与环境的相互作用、表观遗传学以及分子生物学深入研究,力图解开假定风险与过敏性疾病和支气管哮喘发生的关联。有关哮喘和过敏性紫癜的流行病学资料、危险因素调查以及病理机制有待进一步解释,了解这些机理对减少哮喘发生风险及寻找切实有效的药物干预微生态生境,调整免疫功能对过敏性疾病的预防是十分必要的。
     第一部分:肠道微生态学变化、CD4+T细胞亚群及相应转录因子在儿童支气管哮喘病理机制中的调控作用
     目的:探讨肠道微生态环境变化以及免疫网络结构中CD4+T亚群及相应细胞因子和上游转录因子在支气管哮喘病理机制中的相互调控作用。
     方法:采用流式细胞术(Flow cytometry,FCM)对47例支气管哮喘患儿和32例健康对照组儿童外周血单个核细胞(Peripheral blood mononuclear cell , PBMC )测定CD3+CD8-INF-γ+ IL-4- ( Th1 )、CD3+CD8-INF-γ- IL-4(+Th2)、CD4+CD25+T细胞(Treg)和CD3+CD8-IL-17+( Th17)细胞百分比;采用酶联免疫吸附试验( Enzyme linked immunosorbent assay,ELISA)测定血浆中细胞因子INF-γ、IL-4、TGF-β1和IL-17水平;T-bet是调控Th1细胞分化、GATA3是调控Th2细胞分化、Foxp3是调控调节性T细胞分化、ROR-γt是Th17分化的关键性转录因子,采用逆转录聚合酶链反应( Reverse transcription-polymerase chain reaction ,RT-PCR)检测外周血单个核细胞内T-bet、GATA3、Foxp3和ROR-γt mRNA的表达;采用细菌16S rDNA方法测定粪便中双歧杆菌、乳酸杆菌、大肠杆菌和肠球菌含量。
     结果:支气管哮喘患儿在急性发作期时发生肠道菌群失调,表现在双歧杆菌和乳酸杆菌为代表的厌氧菌数量下降,大肠杆菌和肠球菌为代表的需氧菌数量变化不大,双大肠杆菌歧杆菌/(Bifidobacteria/ escherichia coli, B/E)值下降。随着治疗和症状改善,恢复期时双歧杆菌数量上升较其他细菌为快,但整体菌群结构并未扶正。对于免疫学指标的观察发现,支气管哮喘患儿在急性发作期时外周血PBMC中Th2和Th17细胞百分比以及血浆中Th2和Th17细胞因子IL-4和IL-17浓度均高于健康对照组;Th1和Treg细胞百分比以及血浆中Th1和Treg细胞因子INF-γ和TGF-β1浓度均低于健康对照组,出现Th1/Th2和Treg/Th17失衡。缓解期Th2和Th17细胞百分比及血浆相应细胞因子浓度随疾病的回复而降低,但仍高于健康对照组,仍存在免疫紊乱。支气管哮喘患儿Th1细胞与血浆中INF-γ浓度和外周血PBMC中T-bet表达呈正相关;Th2细胞与血浆中IL-4浓度和外周血PBMC中GATA3表达呈正相关;Treg细胞与血浆中TGF-β1浓度和外周血PBMC中Foxp3表达呈正相关;Th17细胞与血浆中IL-17浓度和外周血PBMC中ROR-γt表达呈正相关,表明Th1/Th2和Treg/Th17主要受其特异性转录因子调控。肠道菌群中B/E值与Th1/Th2和Tregs/Th17之间均呈正相关关系。
     结论:Th1/Th2细胞分化失衡在支气管哮喘发病机制中发挥重要作用,除了Th2细胞免疫应答活跃外,调节性T细胞以及Th17细胞也参与了在支气管哮喘的发病过程中,表明除了经典的Th1/Th2免疫失衡外,还存在Treg/Th17免疫失调。肠道共生菌刺激机体免疫系统的发育,在支气管哮喘中通过下调Th2应答,纠正Th1/Th2失衡。肠道菌群结构和功能的完整性对维系CD4+CD25+T细胞功能发重要作用,支气管哮喘患儿肠道菌群失调损伤了CD4+CD25+T细胞的免疫抑制功能,导致免疫耐受被打破是支气管哮喘病理过程的重要机制。其研究结论为今后药品的开发和应用,并在早期及时恢复肠道微生态平衡,阻断异常免疫的某个环节,防治支气管哮喘提供了重要理论依据。
     第二部分:肠粘膜屏障功能、CD4+T细胞亚群及相应转录因子在儿童过敏性紫癜病理机制中的调控作用
     目的:探讨肠粘膜屏障功能变化及其免疫网络中CD4+T亚群及相应细胞因子和特异性转录因子在过敏性紫癜病理机制中的相互调控作用。
     方法:采用流氏细胞术测定41例过敏性紫癜患儿和30例健康儿童外周血单个核细胞CD3+CD8-INF-γ+ IL-4(-Th1), CD3+CD8-INF-γ- IL-4+(Th2),CD4+CD25+T细胞(Treg)和CD3+CD8-IL-17+(Th17)细胞百分比;采用酶联免疫吸附试验(ELISA)测定血浆中INF-γ、IL-4、TGF-β1、IL-9和IL- 17细胞因子水平;T-bet是调控Th1细胞分化,GATA3是调控Th2细胞分化,Foxp3是调控调节性T细胞分化,ROR-γt是控制Th17分化的特异性转录因子,由逆转录聚合酶链反应(RT-PCR)检测外周血PBMC内T-bet、GATA3、Foxp3和ROR-γt mRNA表达;采用细菌16S rDNA方法测定粪便中双歧杆菌、乳酸杆菌、大肠杆菌和肠球菌含量。采用液相色谱仪测定尿中乳果糖(lactulose, L)与甘露醇(mannito, M)水平,计算L/M值评价肠粘膜通透性。
     结果:过敏性紫癜患儿在急性期即发生肠道菌群失调,表现为肠道中双歧杆菌和乳酸杆菌下降,大肠杆菌和肠球菌减少不明显,以乳酸杆菌数量下降为显著。治疗后随着临床症状的改善,恢复期时双歧杆菌数量上升较乳酸杆菌为快,肠道仍处于微生态紊乱状态,并且肠道中乳酸杆菌数量和B/E值和尿L/M值呈负相关。在过敏性紫癜急性期时,外周血PBMC中Th2和Th17细胞亚群百分比以及血浆中IL-4、IL-17水平和特异性转录因子GATA3、ROR-γt mRNA表达均高于健康对照组;Th1和Treg细胞百分比以及血浆中INF-γ、TGF-β1水平和特异性转录因子T-bet、Foxp3 mRNA表达均低于健康对照组,出现Th1/Th2和Treg/Th17免疫失衡。恢复期时Th2和Th17细胞百分比及IL-4、IL-17水平和特异性转录因子GATA3和ROR-γt表达有所下降,但仍存在Th1/Th2、Treg/Th17免疫失衡。过敏性紫癜患儿血浆中INF-γ与外周血PBMC中Th1细胞百分比、T-bet表达呈正相关;IL-4与外周血PBMC中Th2细胞百分比、GATA3表达呈正相关;TGF-β1与外周血PBMC中Treg细胞百分比、Foxp3表达呈正相关;IL-17与外周血PBMC中Th17细胞百分比、ROR-γt表达呈正相关。肠道菌群中B/E值和乳酸杆菌数量分别与Th1/Th2和Tregs/Th17呈正相关,与尿L/M比值呈负相关。
     结论:过敏性紫癜患儿在急性期出现肠道微生态失衡,表现在肠道菌群B/E值下降,乳酸杆菌数量下降尤为显著,肠粘膜通透性下降,肠粘膜屏障功能遭到损坏,肠道共生菌所诱导的免疫耐受机制被打破,表现在外周血PBMC中CD4+CD25+T细胞百分比降低及其血浆TGF-β1水平降低,转录因子Foxp3表达下降,对以往经典的Th1/Th2细胞免疫失衡的发病理论进行了修订,认为过敏性紫癜的发病机制除了有Th1/Th2免疫失衡外,也存在Treg/Th17的免疫失调,并参与了疾病的病理过程。肠道乳酸杆菌和双歧杆菌在恢复机体免疫自稳状态,诱导免疫耐受方面发挥重要作用。研究结论从微生态学和免疫学角度阐明了过敏性紫癜的发病机制,探讨了肠道共生菌、免疫细胞、细胞因子以及转录因子在疾病发生发展中的调控作用,为今后药品的开发不仅限于调整宿主的免疫功能,更要放眼于改善肠道微生态环境,为过敏性紫癜的临床治疗提供前期的理论依据。
     第三部分参芪健脾方对肠道菌群失调大鼠肠粘膜屏障功能修复及免疫功能调整作用机制的实验研究
     目的:前两部分研究已表明儿童过敏性疾病如支气管哮喘和过敏性紫癜的病理过程均发生肠道微生态失调和免疫调控机能失衡,故寻求改善微生态生境,调节免疫功能的药物,早期阻断疾病的恶性循环,防治过敏性疾病十分重要。本实验探讨参芪健脾方对肠道菌群失调大鼠修复肠粘膜屏障功能、抑制肠道细菌移位和调整免疫功能的作用机制研究,对开发中药方剂防治过敏性疾病具有重要临床价值。
     方法:采用细菌培养法动态测定大鼠肠道菌群结构变化及肠系膜淋巴结、肝脏、脾脏和结肠组织的移位细菌量;应用光镜和电子显微镜观察大鼠肠粘膜组织超微结构变化;采用逆转录聚合酶链反应(RT-PCR)动态测定大鼠肠系膜淋巴结、肝脏、脾脏和肠粘膜组织中Toll样受体mRNA转录水平。
     结果:肠道菌群失调模型建立,大鼠肠道中双歧杆菌、乳酸杆菌和肠杆菌数量均较对照组下降。肠粘膜组织受损,表现在肠绒毛、肠上皮细胞以及紧密连接的受损。大鼠体内Toll样受体mRNA转录水平早期受抑制,肠系膜淋巴结、肠粘膜、肝脏和脾脏组织出现肠道细菌移位情况。大肠杆菌攻击可加重肠道菌群失调和肠粘膜损伤程度,上调Toll样受体mRNA转录水平,加剧细菌移位程度。参芪健脾方和乳酸杆菌可减轻由肠道菌群失调引起的Toll样受体mRNA转录受抑及细菌移位程度,扶正肠菌群结构,修复损伤的肠粘膜屏障功能。
     结论:阐明了肠道菌群、肠粘膜屏障功能和肠道细菌移位以及免疫功能之间的互为因果,相互影响的关系。肠道菌群失调改变了肠道微生态生境,损伤了肠粘膜上皮细胞结构,促发肠道细菌移位,致使Toll样受体mRNA转录受抑。参芪健脾方在维护机体微生态平衡、修复肠粘膜屏障功能和抑制肠道细菌移位方面相同于乳酸杆菌制剂,参芪健脾方可调整机体免疫功能,尤其是天然免疫的模式识别受体,对于过敏性疾病的早期防治具有临床价值。
Many studies have confirmed increases in the incidence and prevalence of allergic diseases over the past 2 decades in the worldwide, but much remains unknown. These observations support the hygiene hypothesis, i.e. the lack of microbial exposure during infancy or early childhood leading to allergic diseases. Moreover, the lack of microbial stimulation also results in the imbalance of Th1/Th2 and hypofunction of regulatory T cells. There is growing evidence that early-life allergy is significantly related to the development of asthma and other allergic diseases. Although genetic predisposition is clearly evident, gene-by-environment interaction probably explains much of the international variation in prevalence rates for asthma and other allergic diseases. Environmental factors such as infections and exposure to endotoxins,some prenatal risk factors, including maternal smoking, diet and nutrition, stress, use of antibiotics and mode of delivery may also affect the early development of asthma and other allergic diseases. It is likely that detailed studies of gene-by-environment interactions, molecular biology and epigenetics will eventually untangle the inconsistencies among the many putative exposures and outcomes. Much of the epidemiology, many of environment risk factors and pathophysiological mechanisms in asthma and Henoch-Schonlein purpura remain to be adequately explained. A better understanding of these mechanisms may reduce the risk factors for asthma and find effective drugs to regulate gut microecology and immune function, which will eventually lead to opportunities for primary prevention of allergic diseases.
     Part one: Alteration of gut microecology and regulation of the CD4+T cell subsets and their cytokines and master transcription factors in immune networks in bronchial asthma pathogenesis
     Objective: To study alteration of gut microecology and mutual regulation of the CD4+ T cell subsets and their cytokines and master transcription factors in immune networks in bronchial asthma pathogenesis.
     Methods: Forty-seven children with asthma and thirty healthy children as control group were enrolled into this study. Flow cytometrie (FCM) analysis was performed to detect the percentage of CD3+CD8-INF-γ+ IL-4-(Th1),CD3+CD8-INF-γ-IL-4+(Th2),CD4+CD25+T cell(Treg)and CD3+CD8-IL-17+(Th17)cell; Enzyme linked immunosorbent assay (ELISA) was used to detect the levels of INF-γ,IL -4,TGF-β1 and IL- 17 in plasma ; The specific master transcription factors for Th1, Th2, Treg and Th17 cells, T-bet, GATA3, Foxp3 and ROR-γt, are respectively involved in their differentiation. Reverse transcription-polymerase chain reaction(RT-PCR) was used to analyze the mRNA expression of T-bet, GATA3, Foxp3 and ROR-γt in peripheral blood mononuclear cell (PBMC).16SrDNA fluorescent quantitative PCR was applied in determining the content of bifidobacterium, lactobacillus,escherichia coli and enterococcus in feces.
     Results: The amount of anaerobes represented by the bifidobacterium and lactobacillus declined. Howere, the amount of aerobes represented by escherichia coli and enterococcus did not change obviously, Bifidobacteria / Escherichia coli (B/E) which indicated a balance of intestinal flora declined. The results showed the intestinal dysbacteriosis occured in children with acute stage of asthma. With treatment and the improvement of symptoms, the amount of bifidobacteria increased faster than other bacteria, but the overall flora structure did not restore to its normal levels in recovery stage. Based on the immunological indexes in children with acute stage of asthma, the percentage of Th2 and Th17 cells and the concentrations of their related cytokines in plasma increased, and the percentage of Th1 and Treg cells and the concentrations of their related cytokines decreased as compared to that in the control group, indicating that there were immune imbalances of Treg/Th17 and Th1/Th2. Though the percentage of Th2 and Th17 cell and the concentrations of cytokines in plasma decreased in remission of asthma, they were still higher than that in healthy control group, and there was still the imbalance of Treg/Th17 and Th1/Th2. Analysis of the correlation between the level of cytokines in blood plasma and the expression of specific master transcription factors in PBMC showed that positive correlations between INF-γand T-bet, IL-4 and GATA3, TGF-β1 and Foxp3, and IL-17 and ROR-γt in children with bronchial asthma, indicating that the balances of Th1/Th2 and Treg/Th17 was mainly regulated by their master transcription factors. Th1/Th2 ratio and Tregs/Th17 ratio had positive correlation with B / E ratio.
     Conclusions: The imbalance of Th1/Th2 cells is critical in the pathogenetic mechanisms of bronchial asthma. Besides its importance for Th2 cell development, Treg cell and Th17 cell play significant roles in the process. Thus, besides the imbalance of Th1/Th2 cells, the imbalance of Treg/Th17 cells also involved in the pathogenetic mechanisms of bronchial asthma. Commensal intestinal bacteria are crucial in providing immune stimulation for normal immune system development, and can correct the imbalance of Th1/Th2 by downregulating Th2 responses. The integrity of intestinal flora structure and their function are important to maintain the function of CD4+CD25+ Treg cell. Intestinal dysbacteriosis in children with bronchial asthma compromises the ability of CD4+CD25+Treg cell to suppress responses, the process leading to the disturbance of immune tolerance which is important in asthma pathogenesis. Our study have provided an important theoretical basis for future development and application of medicines, and prevention and treatment of bronchial asthma through timely restoring the balance of gut microecology and abrogating any component element of abnormal immune responses at early stages.
     Part two: Alteration of gut microecology and regulation of the CD4+ T cell subsets and their cytokines and master transcription factors in immune networks in pathogenesis of Henoch-Schonle in purpura in children
     Objective: To study alteration of gut microecology and mutual regulation of the CD4+ T cell subsets and their cytokines and master transcription factors in immune networks in pathogenesis of Henoch-Schonlein purpura in children.
     Methods: Forty-one children with Henoch-Schonlein purpura and thirty healthy children as control were enrolled into this study. Flow cytometrie (FCM) analysis was performed to detect the percentage of CD3+CD8-INF-γ+ IL-4-(Th1), CD3+CD8-INF-γ- IL-4+(Th2), CD4+CD25+T cell(Treg)and CD3+CD8-IL-17+(Th17)cell; enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of INF-γ, IL -4,TGF-β1, IL-9 and IL- 17 in plasma ;the master transcription factors for Th1, Th2, Treg and Th17 cells, T-bet, GATA3, Foxp3 and RORγt, are respectively involved in their differentiation. Reverse transcription-polymerase chain reaction (RT-PCR) was used to analyze the mRNA expression of T-bet, GATA3, Foxp3 and ROR-γt in peripheral blood mononuclear cell (PBMC). 16S rDNA fluorescent quantitative PCR was applied in determining the bacterial content of bifidobacterium, lactobacillus, escherichia coli and enterococcus in feces. Urine samples were collected before and after the test solution administrated ( lactulose, L and mannitol, M) and analyzed by high performance liquid chromatography (HPLC) and the intestinal permeability can be evaluated by L/M ratio.
     Results: The amount of the bifidobacterium and lactobacillus declined, especially lactobacillus. However, the amount of escherichia coli and enterococcus did not change obviously. The results showed that intestinal dysbacteriosis occured in children with HSP during acute stage. With clinical treatment and the improvement of symptoms, the amount of bifidobacterium and lactobacillus gradually increased, and the amount of bifidobacterium increased faster than that of lactobacillus, but there was still intestinal dysbacteriosis during the recovery stage of HSP. Moreover, the amount of lactobacillus had negative correlation with B/E and L/M ratio. Based on the other indexes during the acute stage of HSP, the percentage of Th2 and Th17 cells in PBMC, the levels of IL-4 and IL-17 in plasma, the expression of GATA3 and ROR-γt in PBMC increased when compared with that in the control group. The percentage of Th1 and Treg cells, the levels of INF-γand TGF-β1, the expression of T-bet and Foxp3 decreased as compared to that in the control group. The results indicated that there were imbalances of Treg/Th17 and Th1/Th2 during the acute stage of HSP. Though the percentage of Th2 and Th17 cells, the levels of their cytokines in plasma and the expression of their master transcription factors increased during the recovery stage of HSP, there were still the imbalance of Treg/Th17 and Th1/Th2. Analysis of the correlation between the expression of master transcription factors in PBMC, the percentage of cells in PBMC and the levels of cytokines in plasma in children with HSP showed that Th1 and T-bet had positive correlations with INF-γ; Th2 and GATA3 had positive correlations with IL-4; Treg and Foxp3 had positive correlations with TGF-β1; Th17 and ROR-γt had positive correlations with IL-17. Similar to B/E ratio, the amount of the lactobacillus also had positive correlations with Th1/Th2 ratio and Tregs/Th17 ratio and negative correlation with L/M ratio.
     Conclusion: B/E ratio decreased, especially for the amount of lactobacillus, intestinal permeability increased, and intestinal barrier function was damaged, indicating that the intestinal dysbacteriosis occurred in children with HSP in acute stage. The decrease of the percentage of CD4+CD25+T cell, the level of TGF-β1 in plasma and the expression of Foxp3 in PBMC showed that immune tolerance induced by commensal intestinal bacteria was reversed. The finding was a supplement to Th1/Th2 paradigm .In our study, besides Th1/Th2 paradigm, the imbalance of Treg/Th17cells was involved in the pathogenesis of HSP. Bifidobacterium and lactobacillus in gut played significant roles in restoration of the immune homeostasis and tolerance induction. From the ecological and immunological perspective, our study clarified pathogenesis of allergic purpura and investigated the regulation of commensal intestinal bacteria, immune cells, cytokines and transcription factors in the development of the disease, which provided theoretical basis for future development of medicines and clinical treatment of Henoch-Schonlein purpura not only through regulating the host immune function, but also through improving gut microecology.
     Part three : The mechanisms of ShenQiJianPi decoction in restoring gut mucosa barrier function and modulating immune function in SD rats with intestinal dysbacteriosis.
     Object: Based on the studies above, we demonstrated that intestinal dysbacteriosis and immune function disorders were involved in pathogenesis of allergic diseases such as bronchial asthma and allergic purpura in children. Therefore, it is very important to develop new traditional medicines which can improve gut microecology, regulate immune function and break vicious cycle at early stage of allergic diseases. This study investigated the mechanisms of ShenQiJianPi decoction in restoring the gut mucosa barrier function, inhibiting bacterial translocation phenomenon and modulating of immune function in SD rats with intestinal dysbacteriosis, which provided theoretical basis for future development of traditional chinese medicines to treat allergic diseases.
     Methods: The dynamic changes of intestinal flora and the amount of translocated bacteria in mesenteric lymph nodes, liver, spleen and colon in SD rats were observed by bacterial culture after using antibiotic; bowel tissue electronmicroscopic and opticalmicroscopic changes in SD rats were performed; the reverse transcription polymerase chain reaction (RT-PCR)was used for determining Toll-like receptor mRNA expression of intestinal tissues, mesenteric lymph nodes, liver and spleen from SD rats.
     Results: The amount of the bifidobacterium, lactobacillus and escherichia coli decreased as compared to that in the control group, indicating that the intestinal dysbacteriosis occured in SD rats with intestinal dysbacteriosis. Concerning indexes of measuring intestinal barrier function, intestinal epithelial cell, the intestinal villus and intestinal tight junction were damaged, suggesting that intestinal barrier integrity loss occured. The expression of Toll-like receptor mRNA was inhabited in the early of intestinal dysbacteriosis, which leading to bacterial translocation from gastrointestinal tract to mesenteric lymph nodes, liver and spleen. Escherichia coli pathogenic attack may increase the degree of intestinal dysbacteriosis and the damage gut barrier function, while the upregulation of Toll-like receptor mRNA expression may increase the degree of bacterial translocation. ShenQiJianPi decoction and lactobacillus intervention could be applied to reduce the degree of bacterial translocation, lessen the inhibition of Toll-like receptor of mRNA expression, restore the structure of intestinal flora and lessen the damage gut barrier function.
     Conclusion: The correlations among the structure of intestinal flora, gut mucosa barrier function, bacterial translocation phenomenon and immune function have been clarified. Intestinal dysbacteriosis can induce the alteration of gut microecology, damage of intestinal epithelial cells, bacterial translocation phenomenon and inhabition the expression of Toll-like receptor mRNA. Early intervention of ShenQiJianPi decoction provided the protective effect on maintaining the balance in microecosystem, restoring gut barrier function, inhibiting bacterial translocation phenomenon and modulating the immune function , especially on modulating host pattern recognition receptor in innate immunity, which are critical in the prevention of allergic disease.
引文
1 Wiehler S, Proud D. Interleukin - 17A modulates human airway ep ithe2 lial responses to human rhinovirus infection. J Am J Physiol Lung CellM ol Physiol, 2007, 293(2): L505~515
    2中华医学会儿科学分会呼吸学组,《中华儿科杂志》编辑委员会,儿童支气管哮喘诊断与防治指南. J中华儿科杂志,2008, 46(10): 745~753
    3 Liu AH, Zeiger R, SorknessC , et al. Development and cross-sectional Validation of the childhood asthma control test [J]. J Allergy Clin Immunol, 2007, 119( 4): 817~25
    4 International Study of Asthma and Allergies in Childhood (ISAAC) Steering Committee. Worldwide variation in prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and atopic eczema: ISAAC. Lancet, 1998, 351: 1225~32
    5 Asher MI, Montefort S, Bjorksten B, et al. ISAAC Phase Three Study Group. Worldwide time trends in the prevalence of symptoms of asthma, allergic rhinoconjunctivitis, and eczema in childhood: ISAAC Phases One and Three repeat multicountry cross-sectional surveys. Lancet, 2006, 368: 733~43
    6 Zock JP, Heinrich J, Jarvis D, et al. Distribution and determinants of house dust mite allergens in Europe: the European Community Respiratory Health Survey II. J Allergy Clin Immunol, 2006, 118: 682~90
    7 Wang HY, Wong GW, Chen YZ, et al. Prevalence of asthma among Chinese adolescentsliving in Canada and in China. CMAJ, 2008, 179: 1133~42
    8 Burke W, Fesinmeyer M, Reed K, et al. Family history as a predictor of asthma risk. Am J Prev Med, 2003, 24: 160~9
    9 Strachan DP. Family size, infection and atopy: the first decade of the“hygiene hypothesis”. Thorax, 2000, 55: S2~10
    10 Beasley R, Crane J, Lai CK, et al. Prevalence and etiology of asthma. J Allergy Clin Immunol, 2000, 105: S466~S472
    11 Sigurs N, Gustafsson PM, Bjarnason R, et al. Severe respiratory syncytial virus bronchiolitis in infancy and asthma and allergy at age 13. Am J Respir Crit Care Med, 2005, 171: 137~141
    12 Chen Y, Hamati E, Lee PK, et al. Rhinovirus induces airway epithelial gene expression through double-stranded RNA and IFN dependent pathways. Am J Respir Cell Mol Biol, 2006, 34: 192~203
    13 Holtzman MJ, Tyner JW, Kim EY, et al. Acute and chronic airway responses to viral infection: implications for asthma and chronic obstructive pulmonary disease. Proc Am Thorac Soc, 2005, 2: 132~140
    14 Bj?rkstén B, Sepp E, Julge K, et al. Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol, 2001, 108: 516~520
    15 Schmidt WP. Model of the epidemic of childhood atopy. J Med Sci Monit,2004, 10(2): 5~9
    16 Bjorksten B, Naaber P, Sepp E, et al. The intestinal microflora in allergic Estonian and Swedish 2-year-old children. J Clin Exp Allergy, 1999, 29:342~346
    17 Kalliomaki M, Kirjavainen P, Eerola E, et al. Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol, 2001, 107: 129~134
    18 Penders J, Thijs C, van den Brandt PA, et al. Gut microbiota composition and development of atopic manifestations in infancy: the KOALA birth cohort study . J Gut, 2007, 56: 661~667
    19 Stijn L. Verhulst, Carl Vael, et al. A Longitudinal Analysis on the Association Between Antibiotic Use, Intestinal Microflora, and Wheezing During the First Year of Life. J Journal of Asthma, 2008, 45: 828~832
    20刘崇海,杨锡强,刘春花,等.变应性气道反应与抗生素诱导的肠道菌群失调关系研究. J中华儿科杂志, 2007, 45(6):450~454
    21 Mariotti S, Sargentini V, Marcantonio C, et al. T-cell-mediated and antige-dependent differentiation of human monocyte into differentdendritic cell subsets:a feedback control of Th1/Th2 responses. FASEB J 2008, 22: 3370-3379
    22 Wiet he C, Debus A, Mohrs M, et al. Dendritic cell differentiation state and their interaction with NKT cells determine Th1/ Th2 differentiation in the murine model of Leishmania major infection. J Immunol, 2008, 180: 4371-4381
    23 Szabo SJ, Sullivan BM, Stemmann C, et al. Distinct effects of T-bet in TH1 lineage commitment and IFN2 gamma production in CD4 and CD8 T cells. Science, 2002,295: 338-342
    24 Suzuki K, Kaminuma O, Hiroi T, et al. Downregulation of IL213 gene t ranscription by T2bet in human T cells. Int Arch Allergy Immunol, 2008,146(Suppl 1): 33-35
    25 Airik R, Karner M, Karis A, et al. Gene expression analysis of Gata32P2 mice by using cDNA microarray technology. J Life Sci, 2005,76(22): 76(22) 2559-2568
    26 D. A. Kuperman, X. Huang, L. L. Koth, et al. Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nature Medicine, 2002,8(8): 885~889
    27 P. S. Foster, S. P. Hogan, A. J. Ramsay, et al. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. Journal of Experimental Medicine, 1996,183(1): 195-201
    28 T.-J. Huang, P. A. MacAry, P. Eynott ,et al. Allergen-specific Th1 cells counteract efferent Th2 cell-dependent bronchial hyperresponsiveness and eosinophilic inflammation partly via IFN-γ. Journal of Immunology, 2001,166(1): 207-217
    29 A. K. Abbas, K. M. Murphy, and A. Sher, et al. Functional diversity of helper T lymphocytes. Nature, 1996,383(6603): 787-793
    30 M. Afkarian, J. R. Sedy, J. Yang, et al. T-bet is a STAT1- induced regulator of IL-12R expression in na¨?ve CD4+ T cells. Nature Immunology, 2002,3(6): 549-557
    31 J. Cui, S. Pazdziorko, J. S. Miyashiro et al.,“TH1-mediated airway hyperresponsiveness independent of neutrophilic inflammation,”Journal of Allergy and Clinical Immunology 2005,115(2):309-315
    32 J. G. Ford, D. Rennick, D. D. Donaldson, et al. IL-13 and IFN-γ: interactions in lung inflammation. Journal of Immunology, 2001,167(3): 1769-1777
    33 N. Hayashi, T. Yoshimoto, K. Izuhara, et al. T helper 1 cells stimulated with ovalbumin and IL-18 induce airway hyperresponsiveness and lung fibrosis by IFN-γand IL-13 production. Proceedings of the National Academy of Sciences of the United States of America, 2007,104(37): 14765-14770
    34 A. Takaoka, Y. Tanaka, T. Tsuji, et al. A critical role for mouse CXC chemokine(s) in pulmonary neutrophilia during Th type 1-dependent airway inflammation. Journal of Immunology, 2001,167(4): 2349-2353
    35 Coombes JL, Robinson NJ, Maloy KJ, et al. Regulatory T cells and intestinal homeostasis. Immunol Rev, 2005,204(1): 184-194
    36 Fontenot JD, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity, 2005,22: 329-341
    37 K. Presser, D. Schwinge, M.Wegmann, et al. Coexpression of TGF-beta1 and IL-10 enables regulatory T cells to completely suppress airway hyperreactivity. Journal of Immunology, 2008,181(11): 7751-7758
    38 Y.-L. Lin, C.-C. Shieh, and J.-Y. Wang, et al. The functional insufficiency of human CD4+CD25high T-regulatory cells in allergic asthma is subjected to TNF-αmodulation. Allergy, 2008, 63(1): 67-74
    39 X. O. Yang, R. Nurieva, G. J. Martinez , et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity, 2008,29(1): 44-56
    40 K. S. Voo, Y.-H. Wang, F. R. Santori, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proceedings of the National Academy of Sciences of the United States of America, 2009,106(12): 4793-4798
    41 Grindebacke H, Wing K, Andersson AC, et al. Defective suppression of Th2 cytokines by CD4CD25 regulatory T cells in birch allergics during birch pollen season. Clin Exp Allergy, 2004,34:1364-1372
    42 Bellinghausen I, Konig B, Bottcher I, et al. Regulatory activity of human CD4 CD25 T cells depends on allergen concentration, type of allergen and atopy status of the donor. Immunology, 2005,116:103~111
    43 C. A. Murphy, C. L. Langrish, Y. Chen, et al. Divergent Pro- and antiinflammatory roles for IL-23 and IL-12 in joint autoimmune inflammation. Journal of Experimental Medicine, 2003,198(12): 1951~1957
    44 K. Kreymborg, R. Etzensperger, L. Dumoutier, et al. IL-22 is expressed by Th17 cells in an IL-23-dependent fashion, but not required for the development of autoimmune encephalomyelitis. Journal of Immunology, 2007,179(12): 8098~8104
    45 S. Molet, Q. Hamid, F. Davoine, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. Journal of Allergy and Clinical Immunology, 2001,(108)3: 430~438
    46 J. P`ene, S. Chevalier, L. Preisser, et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. Journal of Immunology, 2008,180(11): 7423~7430
    47 D. M. A. Bullens, E. Truyen, L. Coteur, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respiratory Research, 2006,vol. 7, article no. 135
    48 H. Hoshino, M. Laan, M. Sj¨ostrand, et al. Increased elastase and myeloperoxidase activity associated with neutrophil recruitment by IL-17 in airways in vivo. Journal of Allergy and Clinical Immunology, 2000,105(1): 143~149
    49 S. L. Traves and L. E. Donnelly, et al. Th17 cells in airway diseases. Current Molecular Medicine, 2008,8(5): 416~426
    50 P. M. Renzi, J. P. Yang, T. Diamantstein, et al. Effects of depletion of cells bearing the interleukin-2 receptor on immunoglobulin production andallergic airway responses in the rat. American Journal of Respiratory and Critical Care Medicine, 1996,153(4): 1214~1221
    51 L. McKinley, J. F. Alcorn, A. Peterson, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. Journal of Immunology, 2008,181(6): 4089~4097
    52 Barczyk A, Pierzchala W, Sozanska E. Interleukin-17 in sputum correlates with airway hyperresponsiveness to methacholine. Respir. Med. , 2003,97: 726~733
    53 Gibson PG, Simpson JL, Saltos N. Heterogeneity of airway inflammation in persistent asthma: evidence of neutrophilic inflammation and increased sputum interleukin-8. Chest, 2001,119: 1329~1336
    54 Amin K, Ludviksdottir D, Janson C, et al. Inflammation and structural changes in the airways of patients with atopic and nonatopic asthma. BHR Group. Am. J. Respir. Crit. Care Med. 2000,162:2295~2301
    55 Wenzel SE, Schwartz LB, Langmack EL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am. J. Respir. Crit. Care Med. 1999,160:1001~1008
    56 Bullens DM, Truyen E, Coteur L, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respir. Res. 2006,7:135
    57 Chakir J, Shannon J, Molet S, et al. Airway remodelingassociated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. J Allergy Clin Immunol, 2003;111: 1293~1298
    58 Odamaki T, Xiao JZ, Iwabuchi N, et al. Fluctuation of fecal microbiota in individuals with Japanese cedar pollinosis during the pollen season and influence of probiotic intake. J Investig Allergol Clin Immunol, 2007,17: 92~100
    59 Simpson CR, Anderson WJ, Helms PJ, et al. Coincidence of immune mediated diseases driven by Th1 and Th2 subsets suggests a commonaetiology. A population based study using computerized general practice data. J Clin Exp Allergy, 2002,32(1): 37~42
    60 Round JL, Mazmanian SK. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol, 2009,9: 313~323
    61 Tsuji NM, Mizumachi K, Kurisaki J. Antigen-specific, CD4+CD25+ regulatory T cell clones induced in Peyer’s patches. Int Immunol, 200,15: 525~34
    62 Ziegler SF. FOXP3 of mice and men. Annu Rev Immunol, 2006,24: 209~26
    63 Ostman S, Rask C, Wold AE, et al. Impaired regulatory T cell function in germ-free mice. Eur J Immunol, 2006,36: 2336~46
    64 Suzuki H, Kundig TM, Furlonger C, et al. Deregulated T cell activation and autoimmunity in mice lacking interleukin-2 receptor beta. Science, 1995, 268: 1472~6
    65 Wannemuehler MJ, Kiyono H, Babb JL, et al. Lipopolysaccharide (LPS) regulation of the immune response: LPS converts germfree mice to sensitivity to oral tolerance induction. J Immunol, 1982,129: 959~65
    66 Gelman AE, Zhang J, Choi Y, et al. Toll-like receptor ligands directly promote activated CD4+ T cell survival. J Immunol, 2004,172: 6065~73
    67 Bashir ME, Louie S, Shi HN, et al. Toll-like receptor 4 signaling by intestinal microbes influences susceptibility to food allergy. J Immunol, 2004,172: 6978~87
    68 Sutmuller RP, den Brok MH, Kramer M, et al. Toll-like receptor 2 controls expansion and function of regulatory T cells. J Clin Invest, 2006,116: 485~94
    1 Mills JA, Michel BA, Bloch DA, et al. The American College of Rheumatology 1990 criteria for the classification of Henoch-Schon-lein purpura. Arthritis Rheum, 1990, 33: 1114~1121
    2 Shanahan F . The host–microbe interface within the gut. Best Pract Res Clin Gastroenterol, 2002, 16: 915~931
    3 Zoetendal EG, Akkermans ADL, Akkermans-van Vilet WM, et al. The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis, 2001, 13: 129~134
    4 Umesaki Y, Okada Y, Matsumoto S, et al. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-germ-free mouse. Microbiol Immunol, 1995, 39: 555~562
    5 Mazmanian SK, Liu CH, Tzianabos AO, et al. An immunomodulatory molecule of symbiotic bacteria directs maturation ofthe host immune system. Cell, 2005, 122: 107~118
    6 PD, Cebra JJ. The preference for switching to IgA expression by Peyer’s patch germinal center B cells is likely due to the intrinsic influence of their microenvironment. J Immunol, 1991, 147: 4126~4135
    7 Mukherjee S, Vaishnava S, Hooper LV, et al. Multi-layered regulation of intestinal antimicrobial defense. Cell Mol Life Sci, 2008, 65: 3019~3027
    8 Derikx JP, Poeze M, van Bijnen AA, et al. Evidence for intestinal and liverepithelial cell injury in the early phase of sepsis. Shock, 2007, 28: 544~548
    9 Derikx JP, van Waardenburg DA, Thuijls G, et al. New Insight in Loss of Gut Barrier during Major Non-Abdominal Surgery. PLoS One, 2008, 3: 39~54
    10 Zeissig S, Bürgel N, Günzel D, et al. Changes in expression and distribution of claudin 2, 5 and 8 lead to discontinuous tight junctions and barrier dysfunction in active Crohn's disease. Gut, 2007, 56: 61~72
    11 Rengarajan J, Szabo SJ, Glimcher LH, et al. Transcrip tional regulation of Th1 /Th2 polarization. Immunol Today, 2000, 21: 479 ~ 483
    12 Brown JA, Dorfman DM, Ma FR, et al. Blockade of p rogrammed death - 1 ligands on dendritic cells enhances T cell activation and cy2 tokine p roduction. J Immunol, 2003, 170: 1257~1266
    13 Agata Y, Kawasaki A, Nishimura H, et al. Exp ression of the PD - 1 antigen on the surface of stimulated mouse T and B lymphocytes. Int Immunol, 1996, 8: 765~ 772
    14 Szabo SJ, Kim ST, Costa GL, et al. A novel transcrip tion factor, T2 bet, directs Th1 lineage commitment. Cell, 2000, 100: 655 ~669
    15 Lametschwandtner G, Biedermann T, Schwarzler C, et al. Sustained T2bet exp ression confers polarized human TH2 cells with TH1 - like cytokine production andmigratory capacities. J Allergy Clin Immunol, 2004, 113: 987~ 994
    16 Chakir H, Wang H, Lefebvre DE, et al. T2bet/GATA - 3 ratio as measure of the Th1 /Th2 cytokine profile in mixed cell populations: predominant role of GATA - 3. J ImmunolMethods, 2003, 278: 157~ 169
    17 Sakaguchi S. Naturally arising CD4+ regulatory T cells for immunologic self-tolerance and negative control of immune responses. Annu Rev Immunol, 2004, 22:531~562
    18 Singh B, et al. Control of intestinal inflammation by regulatory T cells. Immunol Rev, 2001, 182:190~200
    19 von Boehmer H. Mechanisms of suppression by suppressor T cells. Nat Immunol, 2005, 6:338~344
    20 Khattri R, Cox T, Yasayko SA, et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol, 2003, 4: 337~342
    21 Darrasse-Jeze G, Marodon G, Salomon BL, et al. Ontogeny of CD4+CD25+ regulatory/suppressor T cells in human fetuses. Blood, 2005, 105:4715~4721
    22 Loser K, Hansen W, Apelt J, et al. In vitro-generated regulatory T cells induced by Foxp3-retrovirus infection control murine contact allergy and systemic autoimmunity. Gene Ther, 2005, 12:1294~1304
    23 Fontenot JD, Rasmussen JP, Williams LM, et al. Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity, 2005, 22:329~341
    24 Burchill MA, et al. Distinct effects of STAT5 activation on CD4+ and CD8+ T cell homeostasis: development of CD4+CD25+regulatory T cells versus CD8+ memory T cells. J Immunol, 2003, 171:5853~5864
    25 Almeida A R, Rocha B, Freitas A A, et al. Homeostasis of T cell numbers : from thymus production to peripheral compart mentalization and the index ation of regulatory T cells[J ] . Semin Immunol , 2005, 17 (3) :239~249
    26 Fontenot J D, Gavin M A, Rudensky A Y. Foxp3 programs the development and function of CD4 +CD25 + regulatory T cells[J ] . Nat Immunol, 2003, 4 (4) : 330~336
    27 Hori S, Nomura T, Sakaguchi S. Control of regulatory T cells development by the transcription factor Foxp3[J ] . Science, 2003, 299 (5609) : 1057~1061
    28 Shevach E M. CD4 +CD25 + suppressor T cells :more questions than answers[J ] . Nat Rev Immunol , 2002, 2 (6) :389~400
    29 Bach JF. The effect of infections on susceptibility to autoimmune and allergic diseases. N. Engl. J. Med, 2002, 347:911~920
    30 30 Infante-Duarte C, Horton HF, Byrne MC, et al. Microbial lipopeptides induce the production of IL-17 in Th cells. J. Immunol, 2000, 165: 6107~6115
    31 Nakae S, Komiyama Y, Nambu A, et al. Antigen-specific T cellsensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity, 2002, 17:375~387
    32 Nakae S, Saijo S, Horai R, et al. IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc. Natl. Acad. Sci. U. S. A, 2003, 100:5986~5990
    33 Aggarwal S, Ghilardi N, Xie MH, et al. Interleukin-23 promotes a distinct CD4 T cell activation state characterized by the production of interleukin- 17. J. Biol. Chem, 2003, 278:1910~1914
    34 Nakae S, Nambu A, Sudo K,et al. Suppression of immune induction of collagen-induced arthritis in IL-17- deficient mice. J. Immunol, 2003, 171: 6173~6177
    35 Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J. Exp. Med, 2005, 201:233~240
    36 Harrington LE, Hatton RD, Mangan PR, et al. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nat. Immunol, 2005, 6: 1123~1132
    37 Park H, Li Z, Yang XO, et al. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat. Immunol, 2005, 6: 1133~1141
    38 Ivanov II, McKenzie BS, Zhou L, et al. The orphan nuclear receptor RORγt directs the differentiation program of proinflammatory IL-17+ T helper cells. Cell, 2006, 126:1121~1133
    39 Stumhofer JS, et al. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. Nat Immunol, 2006, 7: 937~945
    40 40 Kleinschek MA, et al. IL-25 regulates Th17 function in autoimmune inflammation. J Exp Med, 2007, 204: 161~170
    41 P. Monteyne, J.-C. Renauld, J. Van Broeck, et al. IL-4-independent regulation of in vivo IL-9 expression. Journal of Immunology, 1997,159( 6): 2616~2623
    42 V. J. Erpenbeck, J. M. Hohlfeld, B. Volkmann, et al. Segmental allergen challenge in patients with atopic asthma leads to increased IL-9 expression in bronchoalveolar lavage fluid lymphocytes. Journal of Allergy and Clinical Immunology, 2003, 111(6): 1319~1327
    43 M. Veldhoen, C. Uyttenhove, J. van Snick, et al. Transforming growth factor-β’reprograms’the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature Immunology,2008, 9(12): 1341~1346
    44 J. Zhu, B.Min, J. Hu-Li, et al. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nature Immunology, 2004, 5(11): 1157~1165
    45 V. Dardalhon, A. Awasthi, H. Kwon, et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3? effector T cells. Nature Immunology, 2008, 9(12): 1347~1355
    46 A. J¨ager, V. Dardalhon, R. A. Sobel, et al. Th1, Th17, and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. Journal of Immunology, 2009, 183(11): 7169~7177
    47 K. F. Hoffmann, A. W. Cheever, T. A. Wynn. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. Journal of Immunology, 2000, 164(12): 6406~6416
    48 D. S. Postma, E. R. Bleecker, P. J. Amelung, et al. Genetic susceptibility to asthma—bronchial hyperresponsiveness coinherited with a major gene for atopy. New England Journal of Medicine, 1995, 333(14): 894~900
    49 L. H¨ultner, S. K¨olsch, M. Stassen, et al. In activated mast cells, IL-1 up-regulates the production of several Th2-related cytokines including IL-9. Journal of Immunology, 2000, 164(11): 5556~5563
    50 A. S. Gounni, E. Nutku, L. Koussih, et al. IL-9 expression by human eosinophils: regulation by IL-1βand TNF-α. Journal of Allergy andClinical Immunology, 2000, 106(3): 460~466
    51 L. Hultner, C. Druez, J. Moeller, et al. Mast cell growthenhancing activity (MEA) is structurally related and functionally identical to the novel mouse T cell growth factor P40/TCGFIII (interleukin 9). European Journal of Immunology, 1990, 20(6): 1413~1416
    52 J. Louahed, A. Kermouni, J. Van Snick, et al. IL-9 induces expression of granzymes and high-affinity IgE receptor in murine T helper clones. Journal of Immunology, 1995, 154(10): 5061~5070
    53 A. Vink, G. Warnier, F. Brombacher, et al. Interleukin 9-induced in vivo expansion of the B-1 lymphocyte population. Journal of Experimental Medicine, 1999, 189(9):1413~1423
    54 A. S. Gounni, B. Gregory, E. Nutku, et al. Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood, 2000, 96(6): 2163~2171
    55 N. C. Nicolaides, K. J. Holroyd, S. L. Ewart, et al. Interleukin 9: a candidate gene for asthma. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(24): 13175~13180
    56 S. G. Abdelilah, K. Latifa, N. Esra, et al. Functional expression of IL-9 receptor by human neutrophils from asthmatic donors: role in IL-8 release. Journal of Immunology, 2001, 166(4): 2768~2774
    57 J. A. Rankin, D. E. Picarella, G. P. Geba, et al. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15):7821~7825
    58 T. A. Doherty, P. Soroosh, D. H. Broide. CD4+cells are required for chronic eosinophilic lung inflammation but not airway remodeling. American Journal of Physiology, 2009, 296( 2): 229~235
    59 Rook GA, Brunet LR. Microbes. immunoregulation and the gut. Gut, 2005, 54: 317~320
    60 Kelly D, Campbell JI, King TP, et al. Commensal anaerobic gut bacteriaattenuate inflammation by regulating nuclear-cytoplasmic shuttling of PPAR-γand RelA. Nat Immunol, 2004, 5: 104~112
    61 Ma D, Forsythe P, Bienenstock J . Live Lactobacillus reuteri is essential for the inhibitory effect on tumor necrosis factorα-induced interleukin-8 expression. Infect Immun,2004, 72: 5308~5314
    62 Jijon H, Backer J, Diaz H, et al. DNA from probiotic bacteria modulates murine and human epithelial and immune function. Gastroenterology , 2004, 126:1358~1373
    63 Shanahan F. The host–microbe interface within the gut. Best Pract Res Clin Gastroenterol, 2002, 16: 915~931
    1 Le Shen, Liping, Jerrold R.Turner. Mechanisms and functional implications of intestinal barrier defects. Dig Dis, 2009, 27:443~449
    2 Zhang W, Gu Y, Chen Y, et al. Intestinal flora imbalance results in altered bacterial translocation and liver function in rats with experimental cirrhosis. Eur J Gastroenterol Hepatol. 2010, 22(12):1481~1486
    3 Menozzi A, Ossiprandi MC. Assessment of enteral bacteria. Curr Protoc Toxicol, 2010, 21: 21~23
    4 Berg BD. Bacterial translocation from the gastrointestinal trace of athymic mice. Infect Immu, 1980, 27:461~467
    5 Wells C L, Maddaus M A, Reynolds C M, et al. Role of anaerobic flora in the translocation of aerobic and facultatively anaerobic intestinal bacteria. Infect Immun, 1987, 55:2689~2694
    6 Culic O,Erakovic V,Parnham M J. Anti-inflammatery effects of macro lide antibiotics. Eur J Pharm acol,2001, 429(13):209
    7 Jerrold.R Turner. Molecular basis of epithelial barrier regulation from basic mechanisms to clinical application. The American Journal of Pathology, 2006, 169(6):1901~1909
    8 Tsukahara T, Iwasaki Y, Nakayama K,et al. Microscopic structure of the large intestinal mucosa in piglets during an antibiotic-associated diarrhea.Anatomy. J Vet Med Sci, 2003, 65(3): 301~306
    9 McClane BA.The complex interactions between Clostridium perfringensenterotoxin and epithelial tight junctions. Toxicon, 2001, 39(11): 1781~1791
    10 Ohland CL, Macnaughton WK. Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol, 2010, 298(6):807~819
    11 Kailasapathy K, Chin J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol, 2000,78(1): 80~88
    12 Arvola T. Prophylactic lactobacillus GG reduces antibiotic–associated diarrhea in children with respiratory infctions: a randomized study. Pediatrics, 1999,104(5): 64
    13 Ramakrishna BS. Probiotic-induced changes in the intestinal epithelium: implications in gastrointestinal disease. Trop Gastroenterol, 2009, 30(2):76~85
    14 Lu L, Walker W A. Pathologic and physiologic interactions of bacteria with The gastrointestinal epithelium. Am J Clin Nutr, 2001, 73:11245~11305
    15 Fang Yan and D. Brent. Polk. Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells Biolog Chem, 2002, 277 (52): 50959 ~50965
    16 Kailasapathy K, Chin J. Survival and therapeutic potential of probiotic organisms with reference to Lactobacillus acidophilus and Bifidobacterium spp. Immunol Cell Biol, 2000,78(1): 80~88
    17王广,马淑霞,胡新俊,等。党参多糖对双歧杆菌和大肠埃希菌体外生长的影响。中国微生态学杂志,2010,22(3):199~201
    18王茉琳,王建杰,张涛,等。菌群失调在多器官功能障碍综合征(MODS)发生、发展中的作用。黑龙江医药科学,2010,2(33)
    19陈亚丹.党参多糖对铅中毒小鼠记忆障碍及免疫功能低下的影响[D].吉林大学硕士学位论文,2009
    20严梅祯,宋红月,谢念祥.衰老动物肠道菌群的变化及黄芪的拮抗作用[J].中国中药杂志1995,20(10):624~626
    21刘晓梅.山药的药理研究及临床新用[J].光明中医2010,25 (6):1087~1088
    22徐增莱,汪琼,赵猛.淮山药多糖的免疫调节作用研究[J].时珍国医国药2007,18(5):1040~1041
    23杨翠平,劳业兴,吴凤薇.白术的研究进展[J].中药材2002,25(3):206~208
    24常云亭,孙吉兰,邱世翠等.白术对小白鼠免疫功能的影响[J].滨州医学院学报,2003(5):32~33.
    25鞠宝玲,宋宝辉等.四君子汤对肠道菌群失调小鼠的调整作用及机制研究[J]牡丹江医学院学报,2007,28(5):20~23
    1 J. Bousquet, P. K. Jeffery, W. W. Busse, et al. Asthma. From bronchoconstriction to airways inflammation and remodeling. American Journal of Respiratory and Critical Care Medicine, 2000, 161(5): 1720~1745
    2 M. Wegmann. Th2 cells as targets for therapeutic intervention in allergic bronchial asthma. Expert Review of Molecular Diagnostics, 2009, 9(1): 85~100
    3 M. Messi, I. Giacchetto, K. Nagata, et al. Memory and flexibility of cytokine gene expression as separable properties of human TH1 and TH2 lymphocytes. Nature Immunology, 2003, 4(1): 78~86
    4 L. B. Bacharier and R. S. Geha. Molecular mechanisms of IgE regulation. Journal of Allergy and Clinical Immunology, 2000, 105(2): 547~558
    5 H. F. Rosenberg, S. Phipps, and P. S. Foster. Eosinophil trafficking in allergy and asthma. Journal of Allergy and Clinical Immunology, 2007, 119( 6): 1303~1310
    6 M. Wills-Karp. Interleukin-13 in asthma pathogenesis. Immunological Reviews,2004, 202: 175~190
    7 M. Wegmann and H. P. Hauber. Experimental approaches towards allergic asthma therapy-murine asthma models. Recent Patents on Inflammation and Allergy Drug Discovery, 2010, 4( 1): 37~53
    8 M. J. Leckie, A. Ten Brinke, J. Khan, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet, 2000, 356: 2144~2148
    9 S. Wenzel, D. Wilbraham, R. Fuller, et al. Effect of an interleukin-4 variant on late phase asthmatic response to allergen challenge in asthmatic patients: results of two phase 2a studies. Lancet, 2007, 370(9596): 1422~1431
    10 S. Sel, M.Wegmann, S. Sel, et al. Immunomodulatory effects of viral TLR ligands on experimental asthma depend on the additive effects of IL-12 andIL-10. Journal of Immunology, 2007, 178(12): 7805~7813
    11 T. Shirakawa, T. Enomoto, S.-I. Shimazu, et al. The inverse association between tuberculin responses andatopic disorder. Science, 1997, 275(5296): 77~79
    12 P. S. Foster, S. P. Hogan, A. J. Ramsay, et al. Interleukin 5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. Journal of Experimental Medicine, 1996, 183(1) : 195~201
    13 T.-J. Huang, P. A. MacAry, P. Eynott, et al. Allergen-specific Th1 cells counteract efferent Th2 cell-dependent bronchial hyperresponsiveness and eosinophilic inflammation partly via IFN-γ. Journal of Immunology, 2001, 166(1): 207~217
    14 A. K. Abbas, K. M. Murphy and A. Sher. Functional diversity of helper T lymphocytes. Nature, 1996, 383( 6603): 787~793
    15 M. Afkarian, J. R. Sedy, J. Yang, et al. T-bet is a STAT1-induced regulator of IL-12R expression in na¨?ve CD4+Tcells. Nature Immunology, 2002, 3(6): 549~557
    16 D. A. Randolph, C. J. L. Carruthers, S. J. Szabo, et al. Modulation of airway inflammation by passive transfer of allergen-specific Th1 and Th2 cells in a mouse model of asthma. Journal of Immunology, 1999, 162(4): 2375~2383
    17 J. G. Ford, D. Rennick, D. D. Donaldson, et al. IL-13and IFN-γ: interactions in lung inflammation. Journal ofImmunology. Journal of Allergy, 2001,167(3): 1769~1777
    18 A. Shimbara, P. Christodoulopoulos, A. Soussi-Gounni, et al. IL-9 and its receptor in allergic and nonallergic lung disease: increased expression in asthma. Journal of Allergyand Clinical Immunology, 2000, 105(1): 108~115
    19 A. Takaoka, Y. Tanaka, T. Tsuji, et al. A critical role for mouse CXC chemokine(s) in pulmonary neutrophilia during Th type 1-dependent airway inflammation. Journalof Immunology, 2001, 167(4): 2349~2353
    20 C. A. Akdis and M. Akdis. Mechanisms and treatment of allergic disease in the big picture of regulatory T cells. Journal of Allergy and Clinical Immunology, 2009, 123(4): 735~746
    21 D. S. Robinson. Regulatory T cells and asthma. Clinical and Experimental Allergy, 2009, 39(9): 1314~1323
    22 K. Presser, D. Schwinge, M.Wegmann, et al. Coexpression of TGF-beta1 and IL-10 enables regulatory T cells to completely suppress airway hyperreactivity. Journal of Immunology, 2008, 181(11): 7751~7758
    23 Y.-L. Lin, C.-C. Shieh and J.-Y. Wang. The functional insufficiency of human CD4+CD25high T-regulatory cells in allergic asthma is subjected to TNF-αmodulation. Allergy, 2008, 63( 1): 67~74
    24 X. O. Yang, R. Nurieva, G. J. Martinez, et al. Molecular antagonism and plasticity of regulatory and inflammatory T cell programs. Immunity, 2008, 29( 1): 44~56
    25 L. Xu, A. Kitani, I. Fuss, et al. Cutting edge: regulatory T cells induce CD4+CD25 -Foxp3- T cells or are self-induced to become Th17 cells in the absence of exogenous TGF-β. Journal of Immunology, 2007, 178(11): 6725~6729
    26 K. S. Voo, Y.-H. Wang, F. R. Santori, et al. Identification of IL-17-producing FOXP3+ regulatory T cells in humans. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106(12): 4793~4798
    27 N. Komatsu, M. E.Mariotti-Ferrandiz, Y.Wang, et al. Heterogeneity of naturalFoxp3+ T cells: a committed regulatory T-cell lineage andan uncommitted minor population retaining plasticity. Proceedings of the National Academy of Sciences of the United States of America, 2009 106(6): 1903~1908
    28 A. Vogelzang, H. M.McGuire, D. Yu, J. Sprent, et al. A fundamental role for interleukin-21 in the generation of T follicular helper cells. Immunity, 2008, 29(1): 127~137
    29 R. I. Nurieva, Y. Chung, D. Hwang, et al. Generation of T follicular helpercells is mediated by interleukin-21 butindependent of T helper 1, 2, or 17 cell lineages. Immunity, 2008, 29( 1): 138~149
    30 M. Tsuji, N. Komatsu, S. Kawamoto, et al. Preferential generation of follicular B helper T cells from Foxp3+ T cells in gut Peyer’s patches. Science, 2009, 323(5920): 1488~1492
    31 L. Steinman. A brief history of TH17 , the first major revision in the TH1-TH2 hypothesis of T cell-mediated tissue damage. Nature Medicine, 2007, 13(2): 139~145
    32 S. Molet, Q. Hamid, F. Davoine, et al. IL-17 is increased in asthmatic airways and induces human bronchial fibroblasts to produce cytokines. Journal of Allergy and Clinical Immunology, 2001, 108(3): 430~438
    33 J. P`ene, S. Chevalier, L. Preisser, et al. Chronically inflamed human tissues are infiltrated by highly differentiated Th17 lymphocytes. Journal of Immunology, 2008, 180(11): 7423~7430
    34 D. M. A. Bullens, E. Truyen, L. Coteur, et al. IL-17 mRNA in sputum of asthmatic patients: linking T cell driven inflammation and granulocytic influx? Respiratory Research, 2006, 7, article no. 135
    35 S. Henness, C. K. Johnson, Q. Ge, C. L. Armour, et al. IL-17A augments TNF-α-induced IL-6 expression in airway smooth muscle by enhancingmRNA stability. Journal of Allergy and Clinical Immunology, 2004, 114(4): 958~964
    36 H. Hoshino, M. Laan, M. Sj¨ostrand, et al. Increased elastase and myeloperoxidase activity associated with neutrophil recruitment by IL-17 inairways in vivo. Journal of Allergy and Clinical Immunology, 2000, 105(1) : 143~149
    37 S. L. Traves and L. E. Donnelly. Th17 cells in airway diseases. Current Molecular Medicine, 2008, 8(5): 416~426
    38 P. M. Renzi, J. P. Yang, T. Diamantstein, et al. Effects of depletion of cells bearing the interleukin-2 receptor on immunoglobulin production and allergic airway responses in the rat. American Journal of Respiratory and Critical Care Medicine, 1996, 153(4): 1214~1221
    39 L. McKinley, J. F. Alcorn, A. Peterson, et al. TH17 cells mediate steroid-resistant airway inflammation and airway hyperresponsiveness in mice. Journal of Immunology, 2008, 181(6): 4089~4097
    40 N. Oda, P. B. Canelos, D. M. Essayan, et al. Interleukin-17F induces pulmonary neutrophilia and amplifies antigen-induced allergicresponse. American Journal of Respiratory and Critical CareMedicine, 2005, 171(1): 12~18
    41 J. Chakir, J. Shannon, S. Molet, et al. Airway remodeling associated mediators in moderate to severe asthma: effect of steroids on TGF-β, IL-11, IL-17, and type I and type III collagen expression. Journal of Allergy and ClinicalImmunology, 2003, 111(6): 1293~1298
    42 L. Cosmi, L. Maggi, V. Santarlasci, et al. Identification of a novel subset of human circulating memory CD4+ T cells that produce both IL-17A and IL-4. Journal of Allergy and Clinical Immunology, 2010, 125(1) : 222~230
    43 C. T.Weaver, R. D. Hatton, P. R. Mangan, et al. IL-17 family cytokines and the expanding diversity ofeffector T cell lineages. Annual Review of Immunology, 2007, 25: 821~852
    44 C. Song, L. Luo, Z. Lei, et al. IL-17-producing alveolar macrophages mediate allergic lung inflammation related to asthma. Journal of Immunology, 2008, 181( 9): 6117~6124
    45 M. A. Stark, Y. Huo, T. L. Burcin, et al. Phagocytosis of apoptotic neutrophils regulates granulopoiesis via IL-23 and IL-17. Immunity, 2005, 22(3): 285~294.
    46 C. Brightling, M. Berry and Y. Amrani. Targeting TNF-α:a novel therapeutic approach for asthma. Journal of Allergyand Clinical Immunology, 2008, 121(1): 5~10
    47 T. Starnes, M. J. Robertson, G. Sledge, et al. Cutting edge:IL-17F, a novel cytokine selectively expressed in activated Tcells and monocytes, regulates angiogenesis and endothelialcell cytokine production. Journal of Immunology, 2001, 167(8): 4137~ 4140
    48 M. Kawaguchi, F. Kokubu, S. Matsukura, et al. Induction of C-X-Cchemokines, growth-related oncogeneαexpression, and epithelial cell-derived neutrophil-activating protein-78 by ML-1 (interleukin-17F) involves activation of raf1-mitogen-activated protein kinase kinase-extracellular signalregulated kinase 1/2 pathway. Journal of Pharmacology and Experimental Therapeutics, 2003, 307(3): 1213~1220
    49 C. K. Wong, S. W. M. Lun, F. W. S. Ko, et al. Activation of peripheral Th17 lymphocytes in patients with asthma. Immunological Investigations, 2009, 38( 7): 652~664
    50 T. Korn, E. Bettelli, W. Gao, et al. IL-21 initiates an alternative pathway to induce proinflammatory TH17 cells. Nature, 2007, 448(7152): 484~487
    51 R. Nurieva, X. O. Yang, G. Martinez, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature, 2007, 448(7152): 480~483
    52 L. Zhou, I. I. Ivanov, R. Spolski, et al. IL-6 programs TH-17 cell differentiation by promoting sequential engagement of the IL-21 and IL-23 pathways. Nature Immunology, 2007, 8(9): 967~974
    53 D. T. Avery, C. S. Ma, V. L. Bryant, et al. STAT3 is required for IL-21 induced secretion of IgE from human naive B cells. Blood, 2008, 112(5): 1784~1793
    54 S. J. Aujla, Y. R. Chan, M. Zheng, et al. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nature Medicine, 2008, 14(3): 275~281
    55 Y. Zheng, P. A. Valdez, D. M. Danilenko, et al. Interleukin-22 mediates early host defense against attaching and effacing bacterial pathogens. NatureMedicine, 2008, 14(3): 282~289
    56 T. Duhen, R. Geiger, D. Jarrossay, et al. Production of interleukin 22 but not interleukin 17 by a subset of human skin-homing memory T cells. NatureImmunology, 2009, 10(8): 857~863
    57 A. Knappe, S.H¨or, S.Wittmann, et al. Inductionof a novel cellular homolog of interleukin-10, AK155, bytransformation of T lymphocytes with herpesvirus saimiri. Journal of Virology, 2000, 74(8): 3881~3887
    58 H. Wakashin, K. Hirose, Y. Maezawa, et al. IL-23 and Th17 cells enhance Th2-cell-mediated eosinophilic airwayinflammation in mice. American Journal of Respiratory and Critical CareMedicine,2008, 178(10): 1023~1032
    59 V. J. Erpenbeck, J. M. Hohlfeld, B. Volkmann, et al. Segmental allergen challenge in patients with atopic asthma leads to increased IL-9 expression in bronchoalveolar lavage fluid lymphocytes. Journal of Allergy and Clinical Immunology, 2003, 111( 6): 1319~1327
    60 M. Veldhoen, C. Uyttenhove, J. van Snick, et al. Transforming growth factor-β’reprograms’the differentiation of T helper 2 cells and promotes an interleukin 9-producing subset. Nature Immunology, 2008, 9(12): 1341~1346
    61 V. Dardalhon, A. Awasthi, H. Kwon, et al. IL-4 inhibits TGF-β-induced Foxp3+ T cells and, together with TGF-β, generates IL-9+ IL-10+ Foxp3? effector T cells. Nature Immunology, 2008, 9(12): 1347~1355
    62 J. Zhu, B.Min, J. Hu-Li, et al. Conditional deletion of Gata3 shows its essential function in TH1-TH2 responses. Nature Immunology, 2004, 5(11): 1157~1165
    63 A. J¨ager, V. Dardalhon, R. A. Sobel, et al. Th1, Th17 and Th9 effector cells induce experimental autoimmune encephalomyelitis with different pathological phenotypes. Journal of Immunology, 2009, 183(11): 7169~7177
    64 K. F. Hoffmann, A. W. Cheever and T. A. Wynn. IL-10 and the dangers of immune polarization: excessive type 1 and type 2 cytokine responses induce distinct forms of lethal immunopathology in murine schistosomiasis. Journal of Immunology, 2000, 164(12): 6406~6416
    65 B. H. Van Leeuwen, M. E. Martinson, G. C. Webb, et al. Molecular organization of the cytokine gene cluster, involving the human IL-3, IL-4, IL-5, and GM-CSF genes, on human chromosome 5. Blood, 1989, 73(5): 1142~1148
    66 L. H¨ultner, S. K¨olsch, M. Stassen, et al. In activated mast cells, IL-1up-regulates the production of several Th2-related cytokines including IL-9. Journal of Immunology, 2000, 164(11): 5556~5563
    67 J. Louahed, A. Kermouni, J. Van Snick, et al. IL-9 induces expression of granzymes and high-affinity IgE receptor in murine T helper clones. Journal of Immunology, 1995, 154(10): 5061~5070
    68 A. Gessner, H. Blum, and M. Rollinghoff. Differential regulation of IL-9-expression after infection with Leishmania major in susceptible and resistant mice. Immunobiology, 1993, 189(5): 419~435
    69 A. S. Gounni, B. Gregory, E. Nutku, et al. Interleukin-9 enhances interleukin-5 receptor expression, differentiation, and survival of human eosinophils. Blood, 2000, 96( 6): 2163~2171
    70 N. C. Nicolaides, K. J. Holroyd, S. L. Ewart, et al. Interleukin 9: a candidate gene for asthma. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(24): 13175~13180
    71 S. G. Abdelilah, K. Latifa, N. Esra, et al. Functional expression of IL-9 receptor by human neutrophils from asthmatic donors: role in IL-8 release. Journal of Immunology, 2001, 166(4): 2768~2774
    72 J. A. Rankin, D. E. Picarella, G. P. Geba, et al. Phenotypic and physiologic characterization of transgenic mice expressing interleukin 4 in the lung: lymphocytic and eosinophilic inflammation without airway hyperreactivity. Proceedings of the National Academy of Sciences of the United States of America, 1996, 93(15): 7821~7825
    73 J. R. Reader, D. M. Hyde, E. S. Schelegle, et al. Interleukin-9 induces mucous cell metaplasia independent of inflammation. American Journal of Respiratory Cell and MolecularBiology, 2003, 28(6): 664~672
    74 T. A. Doherty, P. Soroosh, D. H. Broide, et al. CD4+cells are required for chronic eosinophilic lung inflammation but not airway remodeling. American Journal of Physiology, 2009, 296(2): 229~235
    75 C. M. Tato, A. Laurence and J. J. O’Shea. Helper T cell differentiation enters a new era: le roi est mort; vive le roi! Journal of Experimental Medicine, 2006, 203(4): 809~812
    76 M. R. Kim, R. Manoukian, R. Yeh, et al. Transgenic overexpression of human IL-17E results in eosinophilia, Blymphocyte hyperplasia, and altered antibody production. Blood, 2002, 100(7): 2330~2340
    77 S. D. Hurst, T. Muchamuel, D. M. Gorman, et al. New IL-17 family members promote Th1 or Th2 responses in the lung: in vivo function of the novel cytokine IL-25. Journalof Immunology, 2002, 169(1): 443~453
    78 A. M. Owyang, C. Zaph, E. H. Wilson, et al. Interleukin25 regulates type 2 cytokine-dependent immunity and limits chronic inflammation in the gastrointestinal tract. Journal of Experimental Medicine, 2006, 203(4): 843~849
    79 S. J. Ballantyne, J. L. Barlow, H. E. Jolin, et al. Blocking IL-25 prevents airway hyperresponsiveness in allergic asthma. Journal of Allergy and Clinical Immunology, 2007, 120(6): 1324~1331
    80 T. Tamachi, Y. Maezawa, K. Ikeda, et al. IL-25 enhances allergic airway inflammation by amplifying a TH2 celldependent pathway in mice. Journal of Allergy and Clinical Immunology, 2006, 118(3): 606~614
    81 D. E. Smith. IL-33: a tissue derived cytokine pathway involved in allergic inflammation and asthma. Clinical and Experimental Allergy, 2010, 40(2): 200~208
    82 F. Y. Liew, N. I. Pitman and I. B. McInnes. Disease associated functions of IL-33: the new kid in the IL-1 family. Nature Reviews in Immunology, 2010, 10(2): 103~110
    83 M. Kronenberg. Toward an understanding of NKT cell biology:progress and paradoxes. Annual Review of Immunology, 2005, 23: 877~900
    84 D. I. Godfrey, H. R. MacDonald, M. Kronenberg, et al. NKT cells: what’s in a name? Nature Reviews Immunology, 2004, 4(3): 231~237
    85 O. Akbari, P. Stock, E. Meyer, et al. Essential role of NKT cells producing IL-4 and IL-13 in the development of allergen-induced airway hyperreactivity. Nature Medicine, 2003, 9(5): 582~588
    86 Y. Sen, B. Yongyi, H. Yuling, et al. V alpha 24-invariant NKT cells from patients with allergic asthma express CCR9 at high frequency and induceTh2 bias of CD3+ T cells upon CD226 engagement. Journal of Immunology, 2005, 175(8): 4914~4926
    87 O. Akbari, J. L. Faul, E. G. Hoyte, et al. CD4+ invariant Tcell-receptor+ natural killer T cells in bronchial asthma. NewEngland Journal of Medicine, 2006, 354( 11): 1117~1129

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700