平板网架结构十字形板—焊接空心球连接疲劳性能的理论与试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
鉴于平板网架结构的众多优势,在我国不论其应用的规模还是数量上,均稳居世界前列。在平板网架结构上设置悬挂吊车,悬挂吊车所产生的反复交变荷载给网架结构带来疲劳问题。平板网架结构的疲劳主要包括杆件、焊接空心球及悬挂吊点连接的疲劳,而悬挂吊点连接的疲劳是平板网架结构疲劳破坏的关键部位。十字形板一焊接空心球连接作为悬挂吊点的主要方式之一,相关的疲劳理论研究及疲劳试验研究进展较为缓慢,且相关悬挂吊点的疲劳设计计算方法在我国现行的规范和规程中属于空白。上述种种因素给悬挂吊车在平板网架结构中的推广应用造成了很大的制约。
     在两项国家自然科学基金项目(50678109,51178286)的大力资助下,本文重点针对焊接空心球节点平板网架结构中十字形板—焊接空心球悬挂吊点的疲劳性能进行理论与试验研究。其相关的工作及结论总结如下:
     1、采用ANSYS有限元软件,以不同规格匹配而成的25个十字形板—焊接空心球节点(材质均为Q235B)为研究对象进行单因素分析,重点讨论了节点相关尺寸的五个因素,即焊接空心球直径D、焊接空心球壁厚tx、十字形板宽度B、十字形板厚度tp和板球连接焊缝焊脚尺寸hf对节点应力的影响。基于分析结果,建立了十字形板—焊接空心球节点的热点应力集中系数的计算公式,其取值区间为3.176~5.365。研究结论揭示了应力集中和疲劳破坏源的关系,解释了十字形板—焊接空心球节点疲劳强度相对较低的原因,为建立以热点应力幅为参量的疲劳设计方法奠定了一定的理论基础。
     2、设计了与本次疲劳试件相匹配的加荷装置,采用Amsler疲劳试验机(瑞士),顺利完成了25个十字形板—焊接空心球节点的常幅疲劳性能试验,得到了25个疲劳试验数据(6个异常)。收集了国内已有的9个常幅疲劳试验数据。将本文与国内共有的28个疲劳试验数据回归统计分析,得到了s-N曲线。
     3、基于得到的常幅S-N曲线,以热点应力和热点应力幅为设计参量,建立了平板网架结构十字形板—焊接空心球节点两种表达形式的常幅疲劳设计方法;若以N=2×106为基准期,则[△σ]2×106=19.66Mpa,[△σh]2×106=62.44Mpa;上述常幅疲劳设计方法的建立为国家相关规范或规程提供了有益的补充,扩大了节点疲劳设计方法的的类别。
     4、为了揭示十字形板—焊接空心球节点的变幅疲劳性能,采用代表性的加载模式对14个节点疲劳试件进行变幅试验,试验共取得14个有效的疲劳试验数据。通过对上述试验数据进行处理,采用线性累积损伤理论Miner法则和(?)Corten-Dolan非线性累积损伤理论分别对其变幅疲劳试件进行寿命估算,结果表明:采用Corten-Dolan理论对十字形板—焊接空心球节点进行疲劳寿命估算较为合理。
     5、借助于电子显微镜和放大镜,进行了4个常幅和4个变幅典型疲劳试件疲劳断口的金相分析;揭示了十字形板—焊接空心球节点常幅和变幅疲劳破坏机理及断口特征,常幅疲劳断口的随机性远小于变幅疲劳断口;结合理论分析和金相分析,得出十字形板—焊接空心球节点中板肋端部是疲劳源的主要起始部位。
     6、采用断裂力学对十字形板—焊接空心球节点进行疲劳寿命估算是可行的。理论估算值与试验结果的规律基本一致,但理论估算值与试验结果两者数值存在一定的误差,最大相差为30%;节点所含的先天性缺陷或类裂纹的大小对裂纹扩展寿命影响很大,但材料的断裂韧性对疲劳寿命影响较小。
In view of the many advantages of plate-type grid structure, application in our country, regardless of the scale or quantity, ranks front of the world. Suspending crane is set up in plate-type grid structure. Alternating load produced by suspending crane brings fatigue problem to the plate-type grid structure. Plate-type grid structure fatigue mainly includes the fatigue of bar, welded hollow sphere and hanging point connection. And the fatigue of the hanging point connection is the key part of plate-type grid structure fatigue damage. Crossed plate-welded hollow spherical connection as one of the main hanging point form, its theoretical and experimental study is less, and relevant fatigue design method is not established in the current national rules and regulations. As a result,it seriously restricts the extensive use of suspending crane in industrial buildings.
     In this thesis, based on the National Scientific and Natural funds (50678109,51178286), the fatigue performance of crossed plate-welded hollow spherical node in plate-type grid structure was analysed in theory and experiment. The related work and conclusion are as follows:
     (1) By means of the software ANSYS,25different crossed plate-welded hollow spherical nodes (sourced for Q235B) were analysed with20nodes of SOLID95entity model. And the influence of welded hollow ball diameter-D, welded hollow ball thickness-ts、cross-shaped board width-B, crossed plate thickness-tp and weld leg size-hf are discussed detailedly. Calculation formular of the stress concentration factor of crossed plate-welded hollow spherical node is established and the value ranges in3.176~5.365. Research result reveals the relationship between stress concentration and fatigue damage source, explains that why the crossed plate-welded hollow spherical node fatigue strength is extremely low, and sets up a theoretical foundation for fatigue design method on the basis of hot stress amplitude.
     (2) Designing the loading device that matchs the fatigue specimens, using Amsler fatigue testing machine (Switzerland),we successfully completed the constant amplitude fatigue test of25crossed plate-welded hollow spherical node s, and the fatigue test data were obtained(six data were abnormal). By Collecting the pre-existing domestic nine constant amplitude fatigue test data, the thesis got the S-N curve with regression statistical analysis of a total of28fatigue test data.
     (3) Based on the S-N curve, with hot spot stress and hot spot stress amplitude as design parameters, two kinds of constant amplitude fatigue design method of crossed plate-welded hollow spherical node in plate-type grid structure are established. If N=2×106, it gets [△σ]2×106=19.66MPa and [△σh] 2×106=62.44MPa.The establishment of constant amplitude fatigue design method provides beneficial supplement for relevant national codes or specifications, and expands the categorys of node fatigue design method.
     (4) In order to reveal the variable amplitude fatigue performance of crossed plate-welded hollow spherical node,14node fatigue specimens were tested for variable amplitude by typical load pattern, and14effective fatigue test data were obtained. Through dealing with the test data, using the laws of Miner linear cumulative damage theory and Corten-Dolan nonlinear cumulative damage theory, the life estimation of variable amplitude fatigue specimens were respectively gotten.The result shows that the adopting of Corten-Dolan theory to cross plate-welded hollow spherical node for fatigue life estimation is reasonable.
     (5) By means of magnifier and electron microscopy, metallographic analysis of the4typical constant amplitude and4variable amplitude fracture section were done.It reveals the fatigue failure mechanism of crossed plate-welded hollow spherical node under constant amplitude and variable amplitude and fracture characteristics,and the randomness of constant fatigue fracture is often far less than the variable amplitude fatigue fracture; Combined with the theoretical and metallographic analysis,it gets the result that the end of crossed plate is the main fatigue damage origin.
     (6)The calculation for the fatigue life of crossed plate-welded hollow spherical connection by using fracture mechanics is feasible. Theoretical estimate and experimental result are basically identical, it has a certain error between them.The error is in30%or so. The initial crack length of node has a large influence on the crack development life, and the fracture toughness has a small influence on fatigue life.
引文
[1]王中光.金属疲劳的基本机制,中国科学院金属研究所研究生课程讲义,1991.
    [2]S Suresh著,王中光等译,材料的疲劳[M].北京.国防工业出版社,1993.
    [3]李湘州.德国铁路惨案—金属疲劳[J].材料天地,1999,1: 6-7.
    [4]霍立兴,王东坡,王文先.提高焊接接头疲劳性能的研究进展和最新技术.
    [5]罗丹,原思聪,王晓云.基于ANSYS的塔式起重机疲劳载荷谱的编制[J].建筑机械,2007.04(上半月刊):63-67.
    [6]郑小艳谢基龙.货车车体疲劳载荷谱的编制及验证[J].铁道机车车辆,2008.6(3):11-14.
    [7]肖晓晖,吴功平,李立斌.塔式起重机疲劳载荷谱的编制[J].应用力学学报,2003.12(4):86-88.
    [8]过玉卿、龙靖宇,起重机随机疲劳载荷的统计分析及载荷谱编制[J].武汉钢铁学院学报,1986.1:17-35.
    [9]李鹏,桥式起重机主梁变幅疲劳寿命试验载荷谱[J].机械强度,1991.9:123-135.
    [10]顾明,范祖尧,港口起重机矩形杆件风振疲劳载荷谱编制的分析[J].机械强度,1990.3:133-151
    [11]穆志韬,段成美,直升机动部件疲劳载荷谱的编制方法研究[J].航空学报,1997.5;34-45.
    [12]胡仁伟,刘文珽,直升机动部件断裂谱的编制方法研究[J],北京航空航天大学学报,1996.6:133-139.
    [13]穆志韬,徐可君、段成美,直升机疲劳载荷谱的编制方法研究[J].机械强度,1999.12:73-82.
    [14]高清振,熊峻江等.用于确定疲劳载荷谱的共轴直升机气动力参数数值模拟[J].实验室研究与探索,2007.10:235-239.
    [15]张保法,傅祥炯.战斗机疲劳载荷标准谱试验研究报告[R].航空工业总公司《ASST》系统工程办公室,ASST-0401-94-03,1995.2:122-143.
    [16]张保法,傅祥炯.运输机随机载荷谱试验研究报告[R].航空工业总公司《ASS7》系统工程办公室,AFFD-(8640-27)-9003,1990:176-180.
    [17]张保法,傅祥炯.运输机随机载荷谱的简化和浓缩[J].航空学报,1994.15(1):67-78.
    [18]李天亮,邹仕军等.飞机疲劳载荷谱分析的一种新方法[J].机械科学与技术,2006.6(6):690-692.
    [19]田丁栓,原正庭等.飞机疲劳载荷谱代表起落选取方法研究[J].航空学报,2007.7(4):864-868.
    [20]隋福成等.飞机等幅疲劳试验载荷谱编制技术研究[J].机械强度,2008.30(2):266-269.
    [21]苏清祖,王锦雯.轮式拖拉机前桥载荷谱测取方法的初步研究[J].农业机械学报,1982.6:24-36.
    [22]樊晓燕,吴兹攀.机械零部件疲劳载荷谱编制[J].机电工程,1994.3:26-35.
    [23]冯锡曙,郑松林、李国英.拖拉机疲劳载荷谱规范化的研究[J].机械强度,1990.6:34-51.
    [24]沈先钊.50吨公路运输车中桥壳弯曲载荷及其半轴扭矩工作载荷谱[R].湖北机械研究所,1982.9:44-56.
    [25]明平顺,张智勇,马前祖.汽车部件疲劳载荷谱的计算机统计处理[J].武汉汽车工业大学学报,1997.19(2):6-9.
    [26]朱立平,华国柱,焦宝仁.双参数计数法的随机载荷谱分析[J].农业机械学报,1984.6:111-131.
    [27]肖汉斌、顾必冲、刘刚.抓斗卸桥主梁疲劳寿命的估算[J].起重运输机械,2000.5:77-84.
    [28]王成国、孟广伟、原亮明等,新型高速客车构架的疲劳寿命数值仿真分析[J].中国铁道科学, 2001.22:13-23.
    [29]张瑞亭,崔洪举.提速客车车轴疲劳载荷谱的试验研究[J]铁道车辆,2006.44(6):4-7.
    [30]房小滨,铁路轴承载荷谱分析及车辆垂直振动系统动态模型的建立[D].上海交通大学,1989:27-32.
    [31]李孟源、吴克勤,汽车轮彀轴承受力测试及载荷谱[J].轴承,1998,36(6):25-28
    [32]薛向东、张镇淼、逢增祯,用小试样验证货车车钩载荷谱及评估13号车钩疲劳寿命[J].试验研究,2000.3:66-76.
    [33]张英爽等.工程车辆传动系载荷谱编制方法[J].农业工程学报,2011,27(4):179-182.
    [34]毛星子,石晓辉,邹喜红.摩托车车架疲劳载荷谱的编制[J].重庆工学院学报,2007,21(12):12-15.
    [35]曹学民,王保良,谢里阳.回转窑轮带的应力研究--载荷谱的确定[J].武汉理工大学学报,2004,26(9):67-70.
    [36]盛汉桥.转炉疲劳载荷谱的研究[J].固体力学学报,2008.12:167-171.
    [37]沈磊,张守元,郁强.轮心六分力作用下悬架疲劳载荷谱提取[J].汽车技术,2011.11:48-50.
    [38]雷新军,刘永红等.混凝土泵车臂架疲劳载荷谱研究[J].工程机械,2010.8:18-21.
    [39]H.Neuber.Theory of Concentration for Shear Strained Prismatical Bodies with Arbitrary Nonlinear Stress-Strain Law[J].J.ofApp.Mech., Trans.ASME, vol.28. No.4,1961:231-263.
    [40]] R M.Wetzel.Smooth Specimen Sumulation of Fatigue Behavior of Notches[J].J. of Materials, JMLSA, vol.3, No.3,1968:154-169.
    [41]T.H.Topper, R.M.Wetzel, JoDean Morrow, Neuber Rule Applied to Fatigue of Notched Specimen[J].J. of Materials,1969:23-54.
    [42]傅大钧、杨慧玲.用微型计算机进行随机载荷数据的峰谷值计数法和雨流计数法处理[J].1985.4:123-147.
    [43]过玉卿、龙靖宇.改进雨流计数法及其统计处理程序[J].1986.6:13-19.
    [44]高镇同.《疲劳应用统计学》[M].国防工业出版社,1986.1:23-34.
    [45]平安、王德俊.疲劳载荷谱编制智能方法[J].东北大学学报,1997.4:66-69.
    [46]Bunday B D.Direct Optimization for Calculating Maximum Likelihood Estimates of Parameter of the Weibull Distribution.lEEE Trans Reliability[J].V R-30,1981; (4) 367-369.
    [47]Hobbs J R.Minimum-Distance Estimation of the Parameters of the 3-Parameter Weibull Distribution.IEEE Trans Reliability[J].VR-34,1985; (5)495-496.
    [48]Sakai T/Tanaka T. Parameter Estimation of Weibull-Type Fatigue Life[J].Distributions Induding Non-Failure Probability.Fatigue 84, V.2, Conference Proceedings,1984; 1125-1137.
    [49]凌静、高镇同.母体参数估计x2最小值法[J].航空学报,1991.2:56-76.
    [50]黄建生.复杂载荷下缺口件疲劳寿命估算的研究[DJ.[学位论文],东北工学院,1985:45-60.
    [51]Conover J C.Jaeckal H, Kippola W J.Simulation of field Load-ing on Fatigue Texting[R].SAE, 660102:25-43
    [52]Carse A.M, Crossland B.Accelerated Fatigue Testing[R].SAE 770266.
    [53]Heuler P.Seeger T. A Criterion for Omission of Variable Ampli-tude Loading Histories [J].Int.J.Fatigue,1986:8(4):225-230.
    [55]王德俊、平安、徐灏,疲劳载荷谱编制准则[J].机械强度,1993.12:34-40
    [56]沈先钊.用微型计算机机编制机械零部件多工况疲劳载荷谱[J].机械强度,1985.7(3):76-90.
    [57]凌静,高镇同.多工况机械结构疲劳载荷的统计处理[J].机械强度,1992.6:117-1 32.
    [58]熊峻江,高镇同.雨流回线法及二维疲劳载荷分布假设检验[J].航空学报,1996.5:54-76.
    [59]英国标准学会.钢桥、混凝土桥及结合桥(英国标准BS5400)[S].成都:西南交通大学出版社,1987.
    [60]Laman, J.A. and Nowak, A.S.(1996). Fatigue-Load Models for Girder Bridges[J]. Journal of Structural Engineering, ASCE,122(7):726-733.
    [61]Laman, J.A. Fatigue Load Models for Girder Bridges.(1995).Doctoral Dissertation. Ann Arbor, MI:University of Michigan.
    [62]Harry Cohen, Gong kang Fu.(2003). Predicting Truck Load Spectra Under Weight Limit Changes and Its Application to Steel Bridge Fatigue Assessment[J]. Journal of Bridge Engineering.
    [63]Chotickai Piya.(2004O).Fatigue Reliability-based Analysis Methods for the Rvaluation of Steel Bridge Structures. PhD Dissertation, Purdue University.
    [64]潘际炎,铁路钢桥疲劳[C].中国土木工程学会第八届年会论文集,北京,1998.3;54-76
    [65]童乐为等.城市道路桥梁的疲劳荷载谱[J].土木工程学报.1997,30(5):20-27.
    [66]陈惟珍等.上海市外白渡桥剩余寿命与使用安全[J].桥梁建设.2002,(2):6-10.
    [67]王荣辉等.广州市高架桥疲劳荷载车辆模型研究[J].华南理工大学学报(自然科学版),2004,32(5):94-96.
    [68]GB 50017-2003.钢结构设计规范[S].北京:中国计划出版社,2003.
    [69]李秀川,王文涛.变幅疲劳应力的统计与分析[J].工业建筑,1998.28(3):142-157.
    [70]徐国彬,崔杰.网架结构疲劳及其疲劳寿命计算[J].建筑结构学报,1994.8:25-34.
    [71]董超.螺栓球节点网架设置悬挂吊车疲劳载荷谱的编制[D].[学位论文],太原理工大学,2002.
    [72]毕朝锐.网架结构疲劳载荷谱的可视化研究[D].[学位论文],太原理工大学,2003.
    [73]黄晓阳.基于ANSYS的平板网架结构设置悬挂吊车疲劳载荷谱的编制[D].[学位论文],太原理工大学,2008.
    [74]高峰.螺栓球节点平板网架结构的疲劳载荷谱研究[D].[学位论文],太原理工大学,2008.
    [75]郝贤哲.焊接空心球节点平板网架结构在悬挂吊车作用下疲劳载荷谱的编制[D].[学位论文],太原理工大学,2009.
    [76]徐灏.疲劳强度[M].高等教育出版社,1988.
    [77]Amit Shyam, John E.Allison, Christopher J. Szczepanski etc.Small fatigue crack growth in metallic materials:A model and its application to engineering alloys, Acta Materialia, November 2007,Volume 55,Issue 19,Pages 6606-6616.
    [78]Andre T.Beck,Robert E.Melchers,Overload failure of structural components under random crack propagation and loading-a random process approach, Structural Safety, October 2004, Volume26,Issue4,Pages 471-488.
    [79]J.Zhang, X.D.He, S.Y.Du, Analyses of the fatigue crack propagation process and stress ratio effects using the two parameter method. International Journal of Fatigue, October-December 2005, Volume27 Issue 10-12,Pages 1314-1318.
    [80]D.Leguillon, D.Quesada, C.Putot,E.Martin, Prediction of crack initiation at blunt notches and cavities-size effects, Engineering Fracture Mechanics, October 2004, Volume74, Issue 15, Pages2420-2436.
    [81]曾春华.奇妙的疲劳现象[M].科学出版社,1988.
    [82]Yung J.Y. and Lawrence F.V. Analytical and graphical aids for the fatigue design weldments. Fatigue Fracture and Engineering Material and Structure,1985.8(3):223-241.
    [83]Sih GC, Barthelemy BM.Mixed mode crack growth predictions [J].Engng Fracture Mech 1980:13:439-45.
    [84]Andrews R.M. The effect of misalignment on the fatigue strength of welded cruciform joints. Fatigue and Fracture of Engineering Materials and Structures,1996,19:755-768.
    [85]Pong H.L.J. Analysis of weld toe profiles and weld toe cracks. International Journal of Fatigue,1993, 15(1):31-36.
    [86]张中平等.喷涂层对十字接头焊趾裂纹应力强度因子的影响[J].焊接学报,2007,27(2):85-88
    [87]A.Khodadad Motarjemi, A.H.Kokabi, F.M.Burdekin. Comparison of fatigue life for T and cruciform welded joints with different combinations of geometrical parameters[J]. Engineering Fracture Mechanics.2000:67:313-328.
    [88]张毅等.对接接头焊趾应力集中有限元分析[J].船舶力学,2004,8(5):91-99.
    [89]卢炎麟等.焊趾表面裂纹应力强度因子计算的基本模式法[J].应用力学学报,1998,15(4):73-81.
    [90]Morgan MR. Stress fields in tubular K-joints for fatigue analysis of offshore structures [D].PhD thesis. University of Wales Swansea,1997.
    [91]李义.钢结构焊接残余应力分析[J].武汉理工大学.2007.
    [92]黄小叶.焊接构架侧梁残余应力数值模拟分析[J].西南交通大学.2008.
    [93]黄小平等.压弯载荷下焊趾表面裂纹工程萌生寿命预测[J].海洋工程,2002,20(3):49-53.
    [94]Brennan FP, Dover WD, Kare RF, Hellier AK. Parametric equations for T-butt weld toe stress intensity factors [J]. International Journal of Fatigue.1999;21:1051-1062.
    [95]Baerheim M. Stress concentrations in tubular joints welded from one side [C]. In:Proceedings of ISOPE Conference,1996.
    [96]Baerheim M, Hansen K, Baerheim K, Gudmestad OT. Single sided welded tubular joints stress concentrations at the weld root [C]. In:Proceedings of 17th OMAE Conference,1998.
    [97]Bhuyan G, Vosikovsky O. Prediction of fatigue crack initiation lives for welded plate T joints based on the local stress-strain approach [J]. Int J Fatig 1989:11(3):153-9.
    [98]Guha B. A new fracture mechanics method to predict the fatigue life of MIG welded cruciform joints [J]. Engng Fracture Mech 1995;2:215-229.
    [99]TB1002.2-2006.铁路桥梁钢结构设计规范[J].北京:中国铁道出版社,2005.
    [100]JTJ025-86.公路桥涵钢结构及木结构设计规范[J].北京:天津人民出版社,1986.
    [101]European Committee for Standardisation. Eurocode 3:Design of Steel Structures[S].2003.
    [102]美国州际公路及运输工作者协会.钢结构疲劳设计指导性规范[J].国外桥梁,1992.
    [103]刘锡良,刘毅轩.平板网架设计[J].北京,中国建筑工业出版社,1979,1-21.
    [104]刘锡良.我国平板网架结构的发展现状[J].钢结构,1994,23(9):13-20.
    [105]JGJ7-2010.空间网格结构技术规程[S].北京:中国建筑工业出版社,2010.
    [106]网架结构设计与施工规程编写组.网架结构设计与施工(规程使用指南)[J].北京冲国建筑工业出版社,1995,165-178.
    [107]魏文梅,胡维生.网架空心球容许承载力计算公式[A].第二届空间结构学术会议论文集[C].1984.
    [108]谭玉成等.网架结构空心球节点承载能力的试验研究及合理设计[A].空间结构论文选集[C].北京,科学出版社,1985,135-136.
    [109]刘锡良,陈志华.空间网架焊接球节点破坏机理分析及承载能力试验研究[A].第五届空间结构学术会议论文集[C].1990.
    [110]雷宏刚.焊接空心球节点球面应力分析[J].太原工业大学学报,1994,25(1):10-17.
    [111]刘锡良.十年来中国网架结构的发展[A].第六届空间结构学术会议论文集[C].地震出版社,1992.
    [112]苏明周,顾强,卢晓松.网架焊接窄心球节点受压承载力的有限元分析[J].西安建筑科技大学学报,1998,30(2):119-122.
    [113]姚念亮,董明,杨联萍.焊接空心球节点的承载能力分析[J].建筑结构,2000,30(4):36-38.
    [114]韩庆华,潘延东,刘锡良.焊接空心球节点的拉压极限承载力分析[J].土木工程学报,2003,36(10):1-6.
    [115]董石麟,唐海军,赵阳等.轴力和弯矩共同作用下焊接空心球节点承载力研究和实用计算方法[J].土木工程学报,2005,38(1):21-30.
    [116]秦力一,许德刚,周爱民.空间网架焊接空心球节点承载力研究[J].郑州大学学报(工学版),2006,27(3):25-29.
    [117]袁行飞,彭张立,董石麟.平面内三向轴压和弯矩共同作用下焊接空心球节点承载力[J].浙江大学学报(工学版),2007,41(9):1436-1442.
    [118]薛万里,张其林.圆钢管焊接空心球节点受压破坏机理与试验研究[J].建筑结构学报,2009,30(5):156-160
    [119]纪晗,熊世树,黄丽婷.大型焊接空心球节点的多轴加载有限元分析与足尺试验[J].工程力学,2010,27(4):173-178.
    [120]薛素铎,冯淼,邱林波.焊接空心球节点恒温加载试验[J].北京工业大学学报,2010,36(9):1222-1227
    [121]Uduma K. Suvrey of existing studies on the strength and deformation of spherical joints in steel space tursses[J].Engineering Journal of the American Institute of steel construction,1989, 26(3):102-109.
    [122]Rung Y. Contact dynamics of a spherical joint and a jointed truss-cell system[J].AIAA Journal, 1991(1),29(1):81-88.
    [123]雷宏刚.网架焊接空心球节点的研究现状及动向[A].第六届空间结构学术会议论文集[C].1992,872-876.广州,地震出版社.
    [124]刘冲.受拉空心球节点的几个问题[A].第二届空间结构学术会议论文集[C].1984.
    [125]王志必.网架空心球节点的极限分析[A].第二届空间结构学术会议论文集[C].1984.
    [126]雷宏刚.网架焊接空心球节点静力及疲劳性能研究[J].建筑结构学报,1993,14(1):2-7.
    [127]肖毓恺,秦冬棋,马庆如.拉力作用下十字形板—球节点的受力分析[J].太原工业大学学报,1992,23(2):45-52.
    [128]刘锡良,周学军,丁阳,许立准.网架结构超大直径焊接空心球节点破坏机理分析及其承载能力的试验研究[J].建筑结构学报,1998,19(6):33-38.
    [129]胡维生,黄蓓等.网架焊接空心球承载力计算公式研究[J].建筑科学,1995,3:39-42.
    [130]唐海军.轴力与弯矩共同作用下焊接空心球节点的承载力研究与实用计算方法[D].浙江大学硕士学位论文.2004.
    [131]董石麟,邢丽,赵阳等.方钢管焊接空心球节点的承载力与实用计算方法研究[J].建筑结构学报,2005,26(6):27-37.
    [132]JB/T 2603-1994.电动单梁悬挂起重机[S].北京:机械工业出版社,1994.
    [133]JB/T 2603-2008.电动悬挂起重机[S].北京:机械工业出版社,2008.
    [134]孙世田.悬挂吊车悬挂点的受力特性与合理形式[A].第六届空间结构学术会议论文集[C].1992.12:902-905.
    [135]石彦卿.网架结构中悬挂吊车的设计探讨[J].煤矿设计,1995.11:36-38.
    [136]伍国韬,石彦卿.网架结构在工业厂房中的应用[J].山西建筑,2000.(3):19、55.
    [137]丁芸孙.悬挂吊车轨道与节点的设计探讨[A].第十一届空间结构学术会议论文集[C].2005.6:610-615.
    [138]07SG531.钢网架结构设计[S].中国建筑标准设计研究院,2007.P21.
    [139]裴永忠等.某大跨度总装厂房的结构设计[J].空间结构,2007.13(2):49-52.
    [140]丁芸孙.目前网架(壳)工程中一些技术问题的探讨[J].建筑结构,2001.31(6):30-36.
    [141]丁芸孙、朱坊云.十年来大跨度机库网架结构的应用与发展[A].第六届空间结构学术会议论文集[C],地震出版社,1992.
    [142]常海山.大跨空间结构发展与对策[J].建材世界,2012.33(2):111-113.
    [143]朱丹.北京AMECO机库结构设计的若干问题[A].第六届海峡两岸及香港钢及组合结构技术研讨会论文集[C].2010.11:285-297.
    [144]岑伟,翁恩豪,刘福祺.风机荷载下平板网架的整体疲劳分析[J].空间结构,2006.12(4):36-40.
    [145]徐国彬等.网架结构疲劳及其疲劳寿命计算[J].建筑结构学报,1994;(8):25-33.
    [146]冯秀娟,林醒山等.在悬挂吊车作用下螺栓球节点网架的疲劳性能[J].建筑结构学报,1995,16(4):3-11.
    [147]邓军.BP神经网络在高强度螺栓疲劳试验设计中的应用[J].机械设计与制造,2004,No.1:4-5.
    [148]雷宏刚.螺栓球节点网架结构高强度螺栓连接疲劳性能的理论与试验研究[J].太原理工大学博士学位论文.2008.
    [149]五机部六院.网架钢管焊接球节点单向疲劳试验报告[R].北京:五机部六院,1979,2-6.
    [150]肖毓恺,秦东祺,马庆如.十字形板-球节点的疲劳强度[A].第六届空间结构学术会议论文集[C],地震出版社,1992.
    [151]徐国彬,崔杰.网架结构疲劳及其疲劳寿命计算[J].建筑结构学报,1994,15(2):25-33.
    [152]Jiao jinfeng, Lei honggangetc. Constant amplitude fatigue calculative method of welded hollow spherical joint with cross-board in steel plate-type grid structure. Applied Mechanics and Materials, v 166-169, p180-186,2012, Progress in Structures.
    [153]JGT11-2009.钢网架焊接空心球节点[S].北京:中国标准出版社,2009.
    [154]肖毓恺,秦东祺,马庆如.拉力作用下十字形板一球节点的受力分析[J].太原工业大学学报,992,23(2):45-52.
    [155]GB/T 13682-92.螺纹紧固件轴向载荷疲劳试验方法[S].北京:中国标准出版社,1992.
    [156]T.R.格内尔[英]著.焊接结构的疲劳[M].机械工业出版社,1988.
    [157]GB700-2006.碳素结构钢[S].北京:中国标准出版社,2007.
    [158]GB/T5117-1995.碳钢焊条[S].北京:中国标准出版社,1995.
    [159]Li, A. Fatemi. An experimental investigation of deformation and fatigue behavior of coach peel riveted joints[J]. International Journal of Fatigue,2006,28 (1):9-18.
    [160]G. H. Majzoobi, G. H. Farrahi, N. Habibi. Experimental evaluation of the effect of thread pitch on fatigue life of bolts[J]. International Journal of Fatigue,2005,27 (2):189-196.
    [161]何文汇,缪兆杰.疲劳裂缝扩展规律及随机荷载作用下的计算机模拟[J].土木工程学报,1982.15(4):19-30.
    [162]赵章焰,雷新华,孙国正.Q235钢裂纹扩展参数的实验测定[J].武汉理工大学学报,2003.25(1):49-51.
    [163]赵章焰,孙国正.用柔度标定法测量Q235钢断裂韧性[J].武汉理工大学学报,2002.26(4):441-443.
    [164]张安哥,朱成九,陈梦成编著.疲劳、断裂与损伤[M].西南交通大学出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700