藁苯内酯对大鼠蛛网膜下腔出血的神经保护作用及其机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     蛛网膜下腔出血是一种严重的神经外科急症。虽然SAH发病率仅占全部脑卒中发病率的5%~10%,但总体死亡率却占整个卒中患者群死亡率的25%。近年来,对SAH的发病机制和病理生理过程的研究日趋深入,各种预防和治疗措施在临床上的广泛开展,使其预后有了一定改观,但其病死率和致残率依旧居高不下。许多患者遗留永久性神经功能缺损和/或认知障碍,临床疗效并不尽如人意。研究证实:SAH后继发性脑损伤是造成患者预后不良的主要原因,因此,有效防治继发性脑损伤可能是改善SAH总体预后的关键环节。
     当归是我国传统中医使用频率最高的药用植物之一,具有上千年的使用历史,藁苯内酯是其最主要的活性成分之一。LIG药理作用广泛,具有良好的临床应用潜力和开发价值。近年来的研究证明,LIG对短暂性前脑缺血、永久性局灶性脑缺血和永久性前脑缺血等模型动物具有神经保护作用。还可以通过抑制钙内流或钙库释放而对大鼠主动脉或肠系膜动脉产生舒血管效应,并能抑制血管平滑肌的增殖和改善微循环。但LIG对蛛网膜下腔出血后继发性脑损伤是否具有保护作用却未见报道。
     本课题旨在证实LIG对SAH后脑损伤是否具有积极的治疗作用,然后从多层次多角度深入探讨其作用机理,找寻其作用靶点。希望能为进一步开发和利用我国丰富的当归资源,为临床治疗SAH提供新的理论与实验依据。
     第一部分藁苯内酯对大鼠蛛网膜下腔出血的神经保护作用
     目的
     建立有明显神经损伤和迟发性脑血管痉挛的蛛网膜下腔出血模型,探讨藁苯内酯对SAH大鼠的神经保护作用。
     方法
     1将雄性Sprague-Dawley(SD)大鼠随机分为:(1)假手术组:Sham-1d、3d、5d、10d、14d组;(2)SAH组:SAH-1d、3d、5d、10d、14d组,采用改良的枕大池二次注血法建立SAH模型。通过检测大鼠的生存率、神经功能学评分、脑组织含水量;光镜观察脑组织和基底动脉组织病理学改变;测量基底动脉血管壁厚度、管腔面积与直径,对模型进行综合评价。
     2将雄性SD大鼠随机分为:(1)假手术组、(2)SAH+vehicle组、(3)SAH+LIG5(LIG 5mg/kg)组、(4)SAH+LIG20(LIG 20mg/kg)组。通过观察实验大鼠的一般生存情况和生存率、检测神经功能学评分、脑组织含水量、血脑屏障通透性,以及脑组织的HE和尼氏染色,综合评价蒿苯内酯对SAH大鼠的保护作用。
     结果
     1与假手术组相比,采用改良的枕大池二次注血法建立SAH大鼠模型的:
     (1)术后生存时间明显缩短,神经功能学评分降低。
     (2)大脑组织含水量在二次注血后1 d和3d明显增加。
     (3)脑组织HE染色显示皮层和海马等处出现缺血性脑损伤的表现,水肿变性或凋亡,神经元数量减少。
     (4)基底动脉管腔面积和直径明显减小,血管壁增厚;出现一定程度的病理组织学改变,内弹力膜皱褶,内皮细胞皱缩,平滑肌细胞收缩等;上述变化于建模后的第5天达高峰。
     2蒿苯内酯(20mg/kg)治疗SAH模型大鼠后,可以:
     (1)改善神经功能学评分,但对死亡率无明显影响。
     (2)减少大脑组织含水量;降低血脑屏障通透性。
     (3)改善皮层和海马等处神经元的病理性损伤。
     结论
     1应用改良的枕大池二次注血法能够成功建立大鼠SAH模型;该模型脑组织损伤明显,脑血管痉挛发生的时间窗典型,是研究SAH所致脑损伤和脑血管痉挛的发病机制和疗效观察的较为理想的动物模型。
     2 LIG对SAH模型大鼠有确切的神经保护作用,可改善神经功能,降低脑水肿和BBB通透性,减轻神经元凋亡和坏死。
     第二部分藁苯内酯对大鼠蛛网膜下腔出血的神经保护作用的机制研究
     目的
     探讨LIG对大鼠蛛网膜下腔出血的神经保护作用的可能机制。
     方法
     1实验分组:将雄性SD大鼠随机分为:(1)假手术组、(2)SAH+vehicle组、(3)SAH+LIG5(LIG 5mg/kg)组、(4)SAH+LIG20(LIG 20mg/kg)组。
     2 LIG对SAH后脑血管痉挛的治疗作用及其机制:
     (1)光镜和电镜观察基底动脉的组织病理学改变。
     (2)光镜下测量基底动脉管腔面积及管壁厚度。
     (3)TUNEL法检测基底动脉内皮细胞的凋亡。
     (4)免疫组织化学法和蛋白印迹法检测基底动脉的p53、Bax、Bcl -2及caspase -3等凋亡通路相关蛋白的表达。
     3 LIG对SAH后血液流变学的影响:
     全自动血液粘度动态分析仪测定血液流变学的改变。
     4 LIG对SAH后大脑皮层自由基清除和神经元凋亡的影响:
     (1)黄嘌呤氧化酶法检测大脑皮层脑组织的超氧化物岐化酶活力。
     (2)硫化巴比妥酸法检测大脑皮层脑组织中丙二醛含量。
     (3)TUNEL法检测大脑皮层神经元的凋亡。
     (4)免疫组织化学法和蛋白印迹法检测大脑皮层神经元的p53、Bax、Bcl -2及caspase -3等凋亡通路相关蛋白的表达。
     结果
     LIG治疗可以:
     1明显改善SAH大鼠基底动脉光镜和电镜下的组织病理学损害。
     2增加基底动脉的管腔面积,降低管壁厚度。
     3减少基底动脉内皮细胞和大脑皮层神经元中的TUNEL阳性细胞;
     4下调基底动脉内皮细胞和大脑皮层神经元中促凋亡蛋白p53和cleaved caspase-3的表达,上调抗凋亡蛋白Bcl-2的表达,但对促凋亡蛋白Bax的表达无明显影响。
     5使SAH大鼠的全血粘度、全血还原粘度、全血高切和低切相对粘度、红细胞聚集指数、红细胞刚性指数和红细胞变形指数等血液流变学指标有所改善,但其差异并无统计学意义。
     6使脑组织SOD活性增加,MDA含量降低。
     结论
     LIG可能主要通过抗内皮细胞凋亡缓解SAH后迟发性CSV、抗自由基损伤和抗神经元凋亡等途径减轻SAH所致的继发性脑缺血损伤。
Background
     Subarachnoid hemorrhage is a severe neurosurgical emergency. Although SAH comprises about 5%–10% of all strokes, it is responsible for 25% of all stroke deaths. Numerous intensive researches on mechanisms and pathophysiology of SAH were performed recently. Although various preventative and therapeutic interventions have been applied in clinic practice to improve the outcome of SAH, its mortality and disability still remain at a relatively high level. A considerable percentage of patients still experience permanent neurologic and/or cognitive impairments. The overall prognosis of patients harboring SAH remains poor. Previous studies have demonstrated that secondary brain damage as a result of SAH is one of the leading causes of poor outcome. Thus, prevention and management of secondary brain damage is critical for improving the overall outcome of patients with SAH.
     Radix Angelica sinensis is one of most popular medicinal plants in traditional Chinese Medicine, which has been used in clinic for thousands of years. Z-Ligustilide, one of the main active ingredients of Radix Angelica sinensis, has various pharmacological effects. Recent researches have reported that LIG provided significant neuroprotective effects on transient forebrain ischemia in mice, permanent forebrain ischemia in rats and focal cerebral ischemia in rats. Ligustilide induces vasodilatation in murine aorta and superior mesenteric artery via inhibiting Ca~(2+) influx and release. It also inhibits proliferation of smooth muscle cells and improves microcirculation. However, the protective effects of LIG on the secondary brain injury following SAH have been not yet reported.
     The aim of this study was to evaluate the potential therapeutic use of LIG as a treatment option following a SAH-induced brain injury and explore the mechanisms and targets of the neuroprotection of LIG. The results of the present study may provide new theoretical and experimental data for the management of SAH and development and utilization of Angelica sinensis.
     PART ONE THE NEUROPROTECTIVE EFFECTS OF Z-LIGUSTILIDE AGAINST SUBARACHNOID HEMORRHAGE IN RATS
     Objective
     1 To establish a subarachnoid hemorrhage model with secondary neurological injury and delay cerebral vasospasm.
     2 To assess neuroprotective effects of Z-ligustilide on subarachnoid hemorrhage in rats.
     Methods
     1 The male Sprague-Dawley rats were randomly assigned to ten groups as follows: (1) Sham groups: Sham-1d, 3d, 5d, 10d, 14d groups; (2) SAH groups: SAH-1d, 3d, 5d, 10d, 14d groups.SAH model was established by a modified rat double hemorrhage model. Survival analysis, neurological evaluation, brain water content, histological examination of brains and basilar arteries, and diameter, wall thickness and cross-section area of basilar arteries were investigated to assess this model.
     2 The male SD rats were randomly assigned to the following four groups: (1) Sham group, (2) SAH+vehicle group, (3) SAH+LIG5 group (5mg/kg LIG treatment), and (4) SAH+LIG20 group (20mg/kg LIG treatment). General observations, survival analysis, neurological evaluation, brain water content, and blood brain barrier permeability were measured, and morphologic changes in the brains were observed by Hematoxylin-Eosin staining and Nissl staining to evaluate protective effects of LIG on SAH model rats.
     Results
     1 Compared with the Sham group, the survival time was significantly shortened and neurological scores were reduced in SAH group. The brain water content was increased on 1d and 3d after SAH. The ischemic brain injury was observed in the cortex and hippocampus of SAH group. Edema and typical neural apoptosis were observed and the number of neurons was reduced in the above-mentioned regions. HE staining of basilar artery showed a decrease in diameter and cross-section area, and an increase in wall thickness in SAH group. Some histopathological changes of BA were observed in SAH group, including a corrugated internal elastic lamina, a shrunken endothelium, and contracted smooth muscle cells. The spasm of BA reached its peak on 5d after SAH.
     2 The administration of LIG (20 mg/kg) improved neurological scores, reduced brain edema and BBB permeability. LIG treatment also alleviated histopathological changes in the cortex and hippocampus. LIG treatment had no significant effect on the survival time of SAH rats.
     Conclusion
     1 The rat SAH model established by a modified rat double hemorrhage model could induce obvious secondary brain injury and CSV with a typical time course. It is a reliable model for studying mechanisms of both brain injury and CSV induced by SAH
     2 LIG treatment provided exact neuroprotective effects for SAH model rats via ameliorate neurological deficits, reduce brain edema and BBB permeability, and decrease the neuronal apoptosis and necrosis.
     PART TWO THE MECHANISMS OF NEUROPROTECTION OF Z-LIGUSTILIDE AGAINST SUBARACHNOID HEMORRHAGE IN RATS
     Objective
     To investigate the possible mechanisms of neuroprotection of LIG against SAH.
     Methods
     1 Grouping: The male SD rats were randomly assigned to the following four groups: (1) Sham group, (2) SAH+vehicle group, (3) SAH+LIG5 group (5mg/kg LIG treatment), and (4) SAH+LIG20 group (20mg/kg LIG treatment).
     2 The effect of LIG treatment on CSV following SAH and the possible mechanism was investigated.
     (1) Morphologic changes in the basilar arteries were observed using transmission electron microscopy and light microscopy.
     (2) Morphometric analysis was performed to detect wall thickness and cross-section area of basilar arteries.
     (3) TUNEL staining was used for assessing apoptosis of the endothelial cells of BA.
     (4) The levels of specific apoptosis-associated protein in the BA, including p53, Bax, Bcl-2, and caspase-3, were evaluated using immunohistochemistry and Western blot analysis.
     3 The effect of LIG treatment on hemorrheology in the SAH model rats was evaluated.
     The variables of hemorrheology were measured using an automatic blood viscometer dynamic analysis apparatus.
     4 The effects of LIG treatment on free radical clearance and neural apoptosis in the cortex after SAH was evaluated.
     (1) Superoxide dismutase activity in the cerebral cortex was determined.
     (2) Malondialdehyde content in the cerebral cortex was determined.
     (3) TUNEL staining was used for assessing apoptosis of the neurons in the cortex.
     (4) The levels of specific apoptosis-associated protein in the cortical neurons, including p53,Bax, Bcl-2, and caspase-3, were evaluated using immunohistochemistry and Western blot analysis.
     Results
     1 LIG treatment significantly ameliorated pathological changes of BAs.
     2 LIG enlarged cross-section area, and decreased wall thickness of BAs after SAH.
     3 It also reduced TUNEL-positive endothelial cells of BAs and cerebral neurons.
     4 The levels of pro-apoptotic proteins p53 and cleaved caspase-3 were down-regulated and anti-apoptotic protein Bcl-2 was up-regulated in endothelial cells of BAs and cerebral neurons by LIG treatment, whereas it had no effect on pro-apoptotic protein Bax expression.
     5 Administration of LIG slightly improved whole blood viscosity, whole blood reduced viscosity, erythrocyte aggregation index, e rythrocyte rigidity index, and erythrocyte deformability index, although these findings were not statistically significant.
     6 The activity of SOD was enhanced and the level of MDA was reduced by LIG treatment.
     Conclusion
     LIG could protect the secondary ischemic brain injury induced by SAH. The underlying mechanisms may be partly related to relieving the delay CSV following SAH by anti-endothelial apoptosis, reducing free radical in the brains, and anti-neural apoptosis.
引文
[1]钟小明,陈旭东,余鸿.当归药理作用的研究进展[J].四川解剖学杂志. 2007,15(1):44-46,51
    [2] Peng HY, Du JR, Zhang GY, et al. Neuroprotective effect of Z-Ligustilide against permanent focal ischemic damage in rats[J]. Biol Pharm Bull. 2007,30(2):309-312
    [3] Kuang X, Du JR, Liu YX, et al. Postischemic administration of Z-Ligustilide ameliorates cognitive dysfunction and brain damage induced by permanent forebrain ischemia in rats[J]. Pharmacol Biochem Behav. 2008,88(3):213-221
    [4] Kuang X, Yao Y, Du JR, et al. Neuroprotective role of Z-ligustilide against forebrain ischemic injury in ICR mice[J]. Brain Res. 2006,1102(1):145-153
    [5] Chan SS, Cheng TY, Lin G. Relaxation effects of ligustilide and senkyunolide A, two main constituents of Ligusticum chuanxiong, in rat isolated aorta[J]. J Ethnopharmacol. 2007,111(3):677-680
    [6] Cao YX, Zhang W, He JY, et al. Ligustilide induces vasodilatation via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release[J]. Vascul Pharmacol 2006,45(3):171-176
    [7] [7] Lu Q, Qiu TQ, Yang H. Ligustilide inhibits vascular smooth muscle cells proliferation[J]. Eur J Pharmacol. 2006,542(1-3):136-140
    [8] Zhang L, Du JR, Wang J, et al. Z-ligustilide extracted from Radix Angelica Sinensis decreased platelet aggregation induced by ADP ex vivo and arterio-venous shunt thrombosis in vivo in rats[J]. Yakugaku Zasshi. 2009,129(7):855-859
    [9] Garcia JH, Wagner S, Liu KF, et al. Neurological deficit and extent of neuronal necrosis attributable to middle cerebral artery occlusion in rats. Statistical validation[J]. Stroke. 1995,26(4):627-635
    [10] Gules I, Satoh M, Clower BR, et al. Comparison of three rat models of cerebral vasospasm[J]. Am J Physiol Heart Circ Physiol. 2002,283(6):H2551–H2559
    [11] Megyesi JF,Vollrath B,Cook DA,et al. In vivo animal models of cerebral vasospasm:a review[J].Neurosurgery. 2000,46(2):448-461
    [12] Meguro T,Clower BR,Carpenter R,et a1.Improved rat model for cerebral vasospasm studies[J].Neurol Res. 2001,23(7):761-766
    [13] Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusionpressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat[J].Stroke.1995,26(6):1086-1092
    [14] Veelken JA,Laing RJ,Jakubowski J. The Sheffield model of subarachnoid hemorrhage in rats[J].Stroke.1995,26(7):1279-1284
    [15]季鹰,吴建中,赵雅度,等.一种新的蛛网膜下腔出血(SAH)动物模型的建立[J].中华神经外科杂志. 1991,7(1):11-13
    [16] Piepgras A, ThoméC, Schmiedek P. Characterization of an anterior circulation rat subarachnoid hemorrhage model[J]. Stroke. 1995,26(12):2347-2352
    [17] Weir B, Erasmo R, Miller J, et al. Vasospasm in response to repeated subarachnoid hemorrhages in the monkey[J]. J Neurosurg. 1970,33(4):395-406
    [18] Shih HC,Lin CL,Wu SC,et a1.Upregulation of estrogen receptor alpha and mediation of 17beta-estradiol vasoprotective effects via estrogen receptor alpha in basilar arteries in rats after experimental subarachnoid hemorrhage[J].J Neurosurg. 2008,109(1):92-99
    [19] Delgado TJ, Brismar J, Svendgaard NA. Subarachnoid haemorrhage in the rat: angiography and fluorescence microscopy of the major cerebral arteries[J]. Stroke. 1985,16(4):595-602
    [20] Mizuno T, Hamada J, Kai Y, et al.Single blood injection into the ventral cisterna magna through a microcatheter for the production of delayed cerebral vasospasm: experimental study in dogs[J]. AJNR Am J Neuroradiol. 2003,24(4):608-612
    [21] Miller CA, Lombard FW, Wu CT, et al. Role of vascular mitogens in subarachnoid hemorrhage-associated cerebral vasculopathy[J]. Neurocrit Care. 2006,5(3):215-221
    [22] Titova E,Ostrowski RP,Zhang JH,el a1.Experimental models of subarachnoid hemorrhage for studies of cerebral vasospasm[J]. Neurol Res. 2009,31(6):568-581
    [23] Ono S, Date I, Onoda K, et al. Time course of the diameter of the major cerebral arteries after subarachnoid hemorrhage using corrosion cast technique[J]. Neurol Res. 2003,25(4):383-389
    [24] Pluta RM, Afshar JK, Boock RJ, et al.Temporal changes in perivascular concentrations of oxyhemoglobin, deoxyhemoglobin, and methemoglobin after subarachnoid hemorrhage[J]. J Neurosurg. 1998,88(3):557-561
    [25] Sabri M, Kawashima A, Ai J, et al. Neuronal and astrocytic apoptosis aftersubarachnoid hemorrhage: a possible cause for poor prognosis[J]. Brain Res. 2008,1238:163-171
    [26] Güresir E, Raabe A, Jaiimsin A, et al. Histological evidence of delayed ischemic brain tissue damage in the rat double-hemorrhage model[J]. J Neurol Sci. 2010,293(1-2):18-22
    [27] Mikawa S, Kinouchi H, Kamii H, et al. Attenuation of acute and chronic damage following traumatic brain injury in copper, zinc-superoxide dismutase transgenic mice[J]. J Neurosurg. 1996,85(5):885-891
    [28] Roos YB, de Haan RJ, Beenen LF, et al. Complications and outcome in patients with aneurysmal subarachnoid haemorrhage: a prospective hospital based cohort study in the Netherlands[J]. J Neurol Neurosurg Psychiatry. 2000,68(3):337-341
    [29] Bederson JB, Connolly ES Jr, Batjer HH, et al. Guidelines for the management of aneurysmal subarachnoid hemorrhage: a statement for healthcare professionals from a special writing group of the Stroke Council, American Heart Association[J]. Stroke. 2009,40(3):994-1025
    [30] Suarez JI, Tarr RW, Selman WR. Aneurysmal subarachnoid hemorrhage[J]. N Engl J Med. 2006,26;354(4):387-396
    [31]倪竹南,吕圭源,楼招欢,等.当归挥发油化学成分和药理作用研究进展[J].中国中医药信息杂志. 2007,14(7):93-95
    [32]万晓青,张伟.当归对血液系统的药理作用研究进展[J].中草药. 2009,40(12):附6-附8.
    [33]陈慧珍.当归的研究进展[J].海峡药学. 2008,20(8):83-85
    [34]孟慧玲,魏道武.当归多糖的药理学研究新进展[J].甘肃中医. 2007,20(1):44-46
    [35]邓永健,郭志伟,王萌.当归的化学成份及其药理作用研究进展[J].新疆中医药2006;24(5):109-113
    [36]汪程远,杜俊蓉,钱忠明.藁本内酯的研究进展[J].中国药学杂志2006,41(12):889-891
    [37] GermanòA, d'Avella D, Imperatore C, et al. Time-course of blood-brain barrier permeability changes after experimental subarachnoid haemorrhage[J]. Acta Neurochir (Wien). 2000,142(5):575-581
    [1] Bederson JB, Germano IM, Guarino L. Cortical blood flow and cerebral perfusion pressure in a new noncraniotomy model of subarachnoid hemorrhage in the rat [J]. Stroke. 1995,26(6):1086–1092
    [2] Broderick JP, Brott TG, Duldner JE, et al. Initial and recurrent bleeding are the major causes of death following subarachnoid hemorrhage[J]. Stroke. 1994,25(7):1342–1347
    [3] Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab. 2006,26(11), 1341–1353
    [4] Ostrowski RP, Colohan AR, Zhang JH. Molecular mechanisms of early brain injury after subarachnoid hemorrhage[J]. Neurol Res. 2006,28(4):399-414
    [5] Sehba FA, Bederson JB. Mechanisms of acute brain injury after subarachnoid hemorrhage[J]. Neurol Res. 2006,28(4):381-398
    [6] Mayberg MR. Cerebral vasospasm. Neurosurg Clin N Am. 1998,9(3):615-627
    [7] Clower BR, Yamamoto Y, Cain L, et al. Endothelial injury following experimental subarachnoid hemorrhage in rats: effects on brain blood flow[J]. Anat Rec. 1994,240(1):104-114
    [8] Sobey CG, Faraci FM. Subarachnoid haemorrhage: what happens to the cerebral arteries?[J] Clin Exp Pharmacol Physiol. 1998,25(11):867-876
    [9] Zhang J, Lewis A, Bernanke D, et al. Stroke: anatomy of a catastrophic event[J]. Anat Rec. 1998,253(2):58-63
    [10] Zubkov AY, Ogihara K, Tumu P, et al. Bloody cerebrospinal fluid alters contractility of cultured arteries[J]. Neurol Res. 1999,21(6):553-558
    [11] Ishiguro M, Puryear CB, Bisson E, et al. Enhanced myogenic tone in cerebral arteries from a rabbit model of subarachnoid hemorrhage[J]. Am J Physiol Heart Circ Physiol. 2002,283(6):H2217–H2225
    [12] Cambj-Sapunar L, Yu M, Harder DR, et al. Contribution of 5-hydroxytryptamine1B receptors and 20-hydroxyeiscosatetraenoic acid to fall in cerebral blood flow after subarachnoid hemorrhage [J]. Stroke. 2003,34(5):1269–1275
    [13] Zubkov AY, Ogihara K, Bernanke DH, et al. Apoptosis of endothelial cells in vessels affected by cerebral vasospasm[J].Surg Neurol. 2002,53(3):260-266
    [14] Ogihara K,Zubkov AY,Bernanke DH, et al. Oxyhemoglobin-induced apoptosisi incultured endothelial cells[J]. J Neurosurg. 1999,91(3):459-465
    [15] Zhou C, Yamaguchi M, Kusaka G, et al. Caspase inhibitors prevent endothelial apoptosis and cerebral vasospasm in dog model of experimental subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab. 2004,24(4): 419-431
    [16] Zhou C, Yamaguchi M, Colohan AR, et al. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab. 2005,25(5):572-582
    [17] Oltvai ZN, Milliman CL, Korsmeyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, Bax, that accelerates programmed cell death[J]. Cell. 1993, 74(4):609-619
    [18] Perfettini JL, Reed JC, Isra(e|¨)l N, et al. Role of Bcl-2 family members in caspase-independent apoptosis during Chlamydia infection[J]. Infect Immun. 2002,70(1):55-61
    [19] Tsujimoto Y. Cell death regulation by the Bcl-2 protein family in the mitochondria[J]. J Cell Physiol. 2003,195(2):l58-167
    [20] Ishiguro M, Wellman TL, Honda A,et al. Emergence of a R-type Ca2+ channel (CaV 2.3) contributes to cerebral artery constriction after subarachnoid hemorrhage[J]. Circ Res. 2005,96(4):419-426
    [21] Cao YX, Zhang W, He JY, et al. Ligustilide induces vasodilatation via inhibiting voltage dependent calcium channel and receptor-mediated Ca2+ influx and release[J]. Vascul Pharmacol. 2006,45(3):171-176
    [22] Lu Q, Qiu TQ, Yang H. Ligustilide inhibits vascular smooth muscle cells proliferation[J]. Eur J Pharmacol. 2006,542(1-3):136-140
    [23] Loch Macdonald R. Management of cerebral vasospasm[J]. Neurosurg Rev. 2006,29(3):179-193
    [24] Weyer GW, Nolan CP, Macdonald RL. Evidence-based cerebral vasospasm management[J]. Neurosurg Focus. 2006,21(3):E8
    [25] Van Gijn J, Rinkel GJ. Subarachnoid haemorrhage: diagnosis, causes and management[J]. Brain. 2001,124(Pt 2):249-278
    [26] Al-Tamimi YZ, Orsi NM, Quinn AC, et al. A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology[J]. World Neurosurg. 2010,73(6):654-667.
    [27] Dorhout Mees SM, van den Bergh WM, Algra A, et al. Antiplatelet therapy in aneurysmal subarachnoid hemorrhage[J]. Stroke. 2008,39:2186-2187
    [28] Hirashima Y, Hamada H, Kurimoto M, et al. Decrease in platelet count as an independent risk factor for symptomatic vasospasm following aneurysmal subarachnoid hemorrhage[J]. J Neurosurg. 2005,102(5):882-887
    [29] Ilveskero S, Juvela S, Siironen J, et al. D-dimer predicts outcome after aneurysmal subarachnoid hemorrhage: no effect of thromboprophylaxis on coagulation activity[J]. Neurosurgery. 2005,57(1):16-24
    [30] Peltonen S, Juvela S, Kaste M, et al. Hemostasis and fibrinolysis activation after subarachnoid hemorrhage[J]. J Neurosurg. 1997,87(2):207-214
    [31] Zhang L, Du JR, Wang J, et al.Z-ligustilide extracted from Radix Angelica Sinensis decreased platelet aggregation induced by ADP ex vivo and arterio-venous shunt thrombosis in vivo in rats[J]. Yakugaku Zasshi. 2009,129(7):855-859.
    [32] Wang L, Shi JX, Yin HX, et al The influence of subarachnoid hemorrhage on neurons: an animal model[J]. Ann Clin Lab Sci. 2005,35:79-85
    [33] Saito A, Kamii H, Kato I, et al. Transgenic CuZn-superoxide dismutase inhibits NO synthase induction in experimental subarachnoid hemorrhage[J]. Stroke. 2001,32(7):1652-1657
    [34] Cosar M, Eser O, Fidan H, et al. The neuroprotective effect of dexmedetomidine in the hippocampus of rabbits after subarachnoid hemorrhage[J]. Surg Neurol. 2009,71(1):54-59
    [35] Karaoglan A, Akdemir O, Barut S, et al. The effects of resveratrol on vasospasm after experimental subarachnoidal hemorrhage in rats[J]. Surg Neurol. 2008,70(4):337-343.
    [36] Aladag MA, Turkoz Y, Sahna E, et al. The attenuation of vasospasm by using a SOD mimetic after experimental subarachnoidal haemorrhage in rats[J]. Acta Neurochir (Wien). 2003,145(8):673-677
    [37] Ayer RE, Zhang JH. Oxidative stress in subarachnoid haemorrhage: significance in acute brain injury and vasospasm[J]. Acta Neurochir Suppl. 2008,104:33-41
    [38] Matz PG, Copin JC, Chan PH. Cell death after exposure to subarachnoid hemolysate correlates inversely with expression of CuZn-superoxide dismutase[J]. Stroke. 2000 ,31(10):2450-2459
    [39] Cahill J, Calvert JW, Solaroglu I, et al. Vasospasm and p53-induced apoptosis in anexperimental model of subarachnoid hemorrhage[J]. Stroke. 2006,37(7):1868-1874
    [40] Gao C, Liu X, Liu W, et al. Anti-apoptotic and neuroprotective effects of Tetramethylpyrazine following subarachnoid hemorrhage in rats[J]. Auton Neurosci. 2008,141(1-2):22-30
    [1] Al-Tamimi YZ, Orsi NM, Quinn AC, et al. A review of delayed ischemic neurologic deficit following aneurysmal subarachnoid hemorrhage: historical overview, current treatment, and pathophysiology[J]. World Neurosurg. 2010,73(6):654-667.
    [2] Woszczyk A, Deinsberger W, Boker DK. Nitric oxide metabolites in cisternal CSF correlate with cerebral vasospasm in patients with a subarachnoid haemorrhage[J]. Acta Neurochir (Wien). 2003,145:257-264
    [3] Ng WH, Moochhala S, Yeo TT, et al. Nitric oxide and subarachnoid hemorrhage: elevated level in cerebrospinal fluid and their implications[J]. Neurosurgery. 2001,49:622-627
    [4] Pluta RM, Oldfield EH. Analysis of nitric oxide (NO) in cerebral vasospasm after aneurismal bleeding[J]. Rev Recent Clin Trials 2007,2:59-67
    [5] Suzuki M, Asahara H, Endo S, et al. Increased levels of nitrite/nitrate in the cerebrospinal fluid of patients with subarachnoid hemorrhage[J]. Neurosurg Rev. 1999,22:96-98
    [6] Raabe A, Zimmermann M, Setzer M, et al. Effect of intraventricular sodium nitroprusside on cerebral hemodynamics and oxygenation in poor-grade aneurysm patients with severe, medically refractory vasospasm[J]. Neurosurgery. 2002,50:1006-1014
    [7] Thomas JE, Rosenwasser RH, Armonda RA, et al. Safety of intrathecal sodium nitroprusside for the treatment and prevention of refractory cerebral vasospasm and ischemia in humans[J]. Stroke. 1999,30:1409-1416.
    [8] Chow M, Dumont AS, Kassell NF. Endothelin receptor antagonists and cerebral vasospasm: an update[J]. Neurosurgery. 2002,51:1333-1342
    [9] Fujimori A, Yanagisawa M, Saito A, et al. Endothelin in plasma and cerebrospinal fluid of patients with subarachnoid haemorrhage[J]. Lancet. 1990,336:633
    [10] Kastner S, Oertel MF, Scharbrodt W, et al. Endothelin-1 in plasma, cisternal CSF and microdialysate following aneurismal SAH[J]. Acta Neurochir (Wien). 2005,147:1271-1279
    [11] Kessler IM, Pacheco YG, Lozzi SP, et al. Endothelin-1 levels in plasma and cerebrospinal fluid of patients with cerebral vasospasm after aneurysmalsubarachnoid hemorrhage[J]. Surgical neurology. 2005,64:2-5
    [12] Macdonald RL, Kassell NF, Mayer S, et al. Clazosentan to overcome neurological ischemia and infarction occurring after subarachnoid hemorrhage (CONSCIOUS-1): randomized, double- blind, placebo-controlled phase 2 dose-finding trial[J]. Stroke. 2008,39:3015-3021
    [13] Pilitsis JG, Coplin WM, O’Regan MH, et al. Free fatty acids in human cerebrospinal fluid following subarachnoid hemorrhage and their potential role in vasospasm: a preliminary observation[J]. J Neurosurg. 2002,97:272-279
    [14] Asaeda M, Sakamoto M, Kurosaki M, et al. A non-enzymatic derived arachidonyl peroxide, 8-iso-prostaglandin F2 alpha, in cerebrospinal fluid of patients with aneurysmal subarachnoid hemorrhage participates in the pathogenesis of delayed cerebral vasospasm[J]. Neurosci Lett. 2005,373:222-225
    [15] Jang YG, Ilodigwe D, Macdonald RL: Metaanalysis of tirilazad mesylate in patients with aneurismal subarachnoid hemorrhage[J]. Neurocrit Care. 2009,10:141-147
    [16] Clark JF, Sharp FR. Bilirubin oxidation products (BOXes) and their role in cerebral vasospasm after subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab. 2006,26:1223-1233
    [17] Pyne-Geithman GJ, Morgan CJ, Wagner K, et al. Bilirubin production and oxidation in CSF of patients with cerebral vasospasm after subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab. 2005,25:1070-1077
    [18] Clark JF, Reilly M, Sharp FR. Oxidation of bilirubin produces compounds that cause prolonged vasospasm of rat cerebral vessels: a contributor to subarachnoid hemorrhage-induced vasospasm[J]. J Cereb Blood Flow Metab. 2002,22:472-478
    [19] Perkins E, Kimura H, Parent AD, et al. Evaluation of the microvasculature and cerebral ischemia after experimental subarachnoid hemorrhage in dogs[J]. J Neurosurg. 2002,97:896-890
    [20]王新德.神经系统血管性疾病[M].北京:人民卫生出版社,2001.19-29
    [21] Dietrich HH, Kajita Y, Dacey RG Jr. Local and conducted vasomotor response in isolated rat cerebral arterioles[J]. Am J Physiol. 1996,271:H1109-H1116.
    [22] Ohkuma H, Manabe H, Tanaka M, et al. Impact of cerebral microcirculatory changes on cerebral blood flow during cerebral vasospasm after aneurysmal subarachnoid hemorrhage[J]. Stroke. 2000,31:1621-1627
    [23] Stein SC, Levine JM, Nagpal S, et al. Vasospasm as the sole cause of cerebral ischemia: how strong is the evidence? [J] Neurosurg Focus. 2006,21:E2
    [24] Heistad DD. What’s new in the cerebral microcirculation? Landis Award lecture[J]. Microcirculation. 2001,8:365-375
    [25] Rowe JG, Soper N, Ouwerkerk R, et al. Delayed ischaemia after subarachnoid haemorrhage: a role for small vessel changes[J]. J Neurol Neurosurg Psychiatry. 1995,59:451-452
    [26] Weidauer S, Vatter H, Beck J, et al. Focal laminar cortical infarcts following aneurysmal subarachnoid haemorrhage[J]. Neuroradiology. 2008,50:1-8
    [27] Rabinstein AA, Friedman JA, Weigand SD, et al. Predictors of cerebral infarction in aneurysmal subarachnoid hemorrhage[J]. Stroke. 2004,35: 1862-1866
    [28] Neil-Dwyer G, Lang DA, Doshi B, et al. Delayed cerebral ischaemia: the pathological substrate[J]. Acta Neurochir (Wien). 1994,131:137-145
    [29] Hino A, Mizukawa N, Tenjin H, et al. Postoperative hemodynamic and metabolic changes in patients with subarachnoid hemorrhage[J]. Stroke.1989,20:1504-1510
    [30] Yundt KD, Grubb RL Jr, Diringer MN, et al. Autoregulatory vasodilation of parenchymal vessels is impaired during cerebral vasospasm[J]. J Cereb Blood Flow Metab. 1998,18:419-424
    [31] Jaeger M, Schuhmann MU, Soehle M, et al. Continuous monitoring of cerebrovascular autoregulation after subarachnoid hemorrhage by brain tissue oxygen pressure reactivity and its relation to delayed cerebral infarction[J]. Stroke. 2007,38:981-986
    [32] Hirashima Y, Hamada H, Kurimoto M, et al. Decrease in platelet count as an independent risk factor for symptomatic vasospasm following aneurysmal subarachnoid hemorrhage[J]. J Neurosurg. 2005,102:882-887
    [33] Schebesch KM, Woertgen C, Brawanski A, et al. A study of possible correlation between subarachnoid haemorrhage related vasospasm and the post-bleed blood platelet count chart in a Caucasian population[J]. Acta Neurochir (Wien). 2007,149: 387-391
    [34] Dorhout Mees SM, van den Bergh WM, Algra A, et al. Antiplatelet therapy in aneurysmal subarachnoid hemorrhage[J]. Stroke. 2008,39:2186-2187.
    [35] Ilveskero S, Juvela S, Siironen J, et al. D-dimer predicts outcome after aneurysmal subarachnoid hemorrhage: no effect of thromboprophylaxis on coagulationactivity[J]. Neurosurgery. 2005,57:16-24
    [36] Juvela S, Siironen J: D-dimer as an independent predictor for poor outcome after aneurysmal subarachnoid hemorrhage[J]. Stroke. 2006,37:1451-1456
    [37] Nina P, Schisano G, Chiappetta F, et al. A study of blood coagulation and fibrinolytic system in spontaneous subarachnoid hemorrhage. Correlation with hunt-hess grade and outcome[J]. Surg Neurol. 2001,55:197-203
    [38] Cahill J, Calvert JW, Zhang JH. Mechanisms of early brain injury after subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab. 2006,26, 1341–1353
    [39] Chen B,Friedman B,Cheng Q, et al. Severe blood-brain barrier disruption and surrounding tissue injury[J]. Stroke,2009,40: e666-e674
    [40] Dreier JP, Major S, Manning A, et al. Cortical spreading ischaemia is a novel process involved in ischaemic damage in patients with aneurysmal subarachnoid haemorrhage[J]. Brain. 2009,132:1866-1881
    [41]刘海洋,韩如泉.蛛网膜下腔出血后迟发缺血性神经功能损害的研究进展[J].中华临床医师杂志(电子版). 2010,4(8):1310-1312
    [42] Clatterbuck RE, Oshiro EM, Hoffman PA, et al. Inhibition of vasospasm with lymphocyte function-associated antigen-1 monoclonal antibody in a femoral artery model in rats[J]. J Neurosurg. 2002,97:676-682
    [43] Fassbender K, Hodapp B, Rossol S, et al. Inflammatory cytokines in subarachnoid haemorrhage: association with abnormal blood flow velocities in basal cerebral arteries[J]. J Neurol Neurosurg Psychiatry. 2001,70:534-537
    [44] Schoch B, Regel JP, WichertM, et al. Analysis of intrathecal interleukin-6 as a potential predictive factor for vasospasm in subarachnoid hemorrhage[J]. Neurosurgery 2007,60:828-836
    [45] Kwon KY, Jeon BC: Cytokine levels in cerebrospinal fluid and delayed ischemic deficits in patients with aneurysmal subarachnoid hemorrhage[J]. J Korean Med Sci. 2001,16:774-780
    [46] Lindsberg PJ, Ohman J, Lehto T, et al. Complement activation in the central nervous system following blood-brain barrier damage in man[J]. Ann Neurol. 1996,40:587-596
    [47] Mack WJ, Ducruet AF, Hickman ZL, et al. Early plasma complement C3a levels correlate with functional outcome after aneurysmal subarachnoid hemorrhage[J].Neurosurgery. 2007,61:255-26
    [48] Park S, Yamaguchi M, Zhou C, et al. Neurovascular protection reduces early brain injury after subarachnoid hemorrhage[J]. Stroke. 2004,35:2412-2417
    [49] Cahill J, Calvert JW, Solaroglu I, et al. Vasospasm and p53-induced apoptosis in an experimental model of subarachnoid hemorrhage[J]. Stroke. 2006,37:1868-1874
    [50] Gao C, Liu X, Liu W, et al. Anti-apoptotic and neuroprotective effects of Tetramethylpyrazine following subarachnoid hemorrhage in rats[J]. Auton Neurosci. 2008,141:22-30
    [51] Iseda K, Ono S, Onoda K, et al. Antivasospastic and antiinflammatory effects of caspase inhibitor in experimental subarachnoid hemorrhage[J]. J Neurosurg. 2007,107:128-135
    [52] Zhou C, Yamaguchi M, Colohan AR, et al. Role of p53 and apoptosis in cerebral vasospasm after experimental subarachnoid hemorrhage[J]. J Cereb Blood Flow Metab. 2005,25:572-582

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700