人参皂苷Rg1延缓神经干细胞衰老作用及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
干细胞衰老学说是迄今解释机体衰老机制的最新学说。随着对干细胞研究的深入,人们认识到干细胞并非是“长生不老”的细胞,所有衰老现象都反映出成体干细胞衰老的水平。研究证明,随着年龄的增长,人或动物大脑内的神经发生率呈指数下降,其原因可能与神经干细胞(Neural stem cells, NSCs)衰老导致的自我更新和多向分化能力衰退有关。因此,深入研究NSCs衰老和延缓NSCs衰老的现代生物学机理,寻找重新激活NSCs的方法和调控它靶向分化对预防和治疗老年退行性疾病有不可估量的社会价值。
     人参作为中医临床“补气”要药已有2000多年的应用历史,现代药理学研究证明,人参皂苷是人参的主要药效成分,具有广泛的药理作用,人参皂苷Rg1是重要的人参单体皂苷。近年研究认为,人参皂苷Rg1对中枢神经系统有明确的调节作用,具促智和益智功效。也有学者的工作证明,人参皂苷Rg1能够提高体内外神经前体细胞的增殖能力,但其作用机制尚不清楚。本课题前期研究发现人参皂苷Rg1能延缓造血干细胞衰老,其机制与调控p16~INK4a-Rb、p19~Arf-p53-p21~Cip1/Waf1信号转导通路以及延缓端粒长度缩短、提高端粒酶活性有关。迄今还未见关于人参皂苷Rg1对体、内外NSCs衰老相关生物学特征的影响及机制报道。本课题将干细胞最新的研究技术与祖国传统医学的抗衰老理论和对干细胞的认识紧密结合起来,摸索复制NSCs体外衰老模型方法及复制D-半乳糖脑衰老动物模型,并在此基础上从体内和体外两条途径系统探讨人参皂苷单体Rg1延缓NSCs衰老的作用及其可能的生物学调控机制。旨在为探寻延缓NSCs衰老以及重新激活衰老NSCs的途径提供理论及实验依据。
     1材料和方法
     1.1从新生SD大鼠海马组织内分离提取细胞进行原代培养,并通过以下检测鉴定培养细胞是NSCs:
     1)NSCs标志物——Nestin免疫细胞化学染色;
     2)根据NSCs多向分化特性,诱导培养的NSCs分化并进行神经元特异性核蛋白NeuN、星形胶质细胞标志物GFAP、少突胶质细胞标志物Gal-C免疫细胞化学检测;
     3)根据NSCs自我更新特性,进行BrdU掺入实验和BrdU免疫细胞化学染色。
     1.2采用不同浓度的D-gal(4、8、10、12、16 mg/mL)分别作用第3代NSCs 24、48、72 h或t-BHP(50、100、150μmol/L)分别作用第
     3代NSCs 1 h、2 h、3 h进行如下检测:
     1)MTT检测各组NSCs的增殖能力;
     2)每毫升培养体系接种3000个NSCs,计数NSCs增殖形成的NSCs克隆球数量;
     3)体外诱导分化培养检测NSCs多向分化能力,采用体视学方法对分化形成的神经元样细胞进行计数估计其数密度(单位面积内的细胞数量);
     4)衰老特异性β-半乳糖苷酶染色显示衰老神经球,采用体视学方法计数阳性及阴性神经球的数量,以阳性神经球的数量除以两者之和即为SA-β-Gal阳性神经球百分比。
     通过以上检测选择诱导NSCs衰老的最佳体外模型。1.3将第3代NSCs分为对照组、衰老组(100μmol/L t-BHP作用2 h)、Rg1组(10μg/ml Rg1作用2 h),Rg1抗衰老组(100μmol/L t-BHP和10μg/ml Rg1共同作用2 h)和Rg1治疗衰老组(按衰老组处理后,再用10μg/ml Rg1作用2 h),通过以下检测探讨人参皂苷Rg1延缓NSCs衰老的体外作用及机制:
     1)同方法2 1)- 3)检测指标;
     2)体外诱导分化培养检测NSCs多向分化能力,采用体视学方法对分化形成的神经元样细胞、星形胶质细胞样细胞和少突胶质细胞样细胞分别进行计数并分别估计这三种细胞的数密度; 3)检测各组NSCs衰老相关基因p16~INK4a、p21~Cip1/Waf1mRNA的表
     达水平。
     1.4将30只3月龄雄性SD大鼠随机分组。脑衰老组:大鼠颈背部皮下连续注射D-半乳糖42 d(120 mg.kg~-1/d);Rg1抗脑衰老组:同衰老模型组处理,并从模型复制的第15 d起腹腔注射Rg1(20 mg.kg~-1 /d) ,连续注射28 d;对照组:正常大鼠颈背部皮下连续注射等时和等量生理盐水。各组大鼠在处死前1 d每4 h腹腔注射BrdU 50 mg.kg~-1/次,共注射3次。并进行以下几方面检测:
     1)Morris水迷宫评估各组大鼠的空间学习记忆能力;
     2)比色法测定脑皮质内的SOD活性及MDA含量;
     3)实时荧光定量RT-PCR检测海马组织内p16~INK4a、p21~Cip1/Waf1 mRNA的表达水平;
     4)Western blotting检测衰老相关基因P16~INK4a、P21~Cip1/Waf1蛋白的表达水平;
     5)各组动物制作海马及SVZ区的脑组织石蜡切片,分别用NeuN、BrdU免疫组织化学显色显示神经元细胞核和脑组织内的增殖细胞,镜下观察各组动物海马及SVZ区形态学特征,采用体视学新技术——光学体视框估计SVZ区BrdU阳性细胞的数密度(单位体积SVZ区内的细胞数量)。
     2结果
     2.1体外培养的NSCs呈Nestin免疫细胞化学染色阳性反应;诱导分化形成的细胞呈NeuN(显示神经元)、GFAP(显示星形胶质细胞)和Gal-C(显示少突胶质细胞)免疫细胞化学染色阳性反应;BrdU掺入实验呈BrdU免疫细胞化学染色阳性反应。
     2.2不同浓度的D-gal或t-BHP作用于体外培养的NSCs,均可引起NSCs的增殖能力、NSCs克隆球形成率和分化形成的神经元数密度显著下降,β-半乳糖苷酶染色阳性神经球比率显著升高。
     2.3与衰老组(t-BHP 100μmol/L作用NSCs 2 h)比较,抗衰老组(10μg/ml Rg1作用NSCs 2 h)及治疗衰老组(100μmol/L t-BHP作用2 h ,再用10μg/ml Rg1作用NSCs 2 h)的NSCs MTT吸光度值分别升高了35%和78%;NSCs克隆球形成数分别显著增加了29%和35%;衰老特异性SA-β-Gal染色阳性神经球百分比显著降低了40%和58%;衰老相关基因p16~INK4a、p2~1Cip1/Waf1mRNA表达水平显著下降。与衰老组比较,Rg1抗衰老组的神经元样细胞、星形胶质细胞样细胞和少突胶质细胞样细胞的数密度显著增加,分别是衰老组的2.2倍、1.9倍和1.7倍; Rg1治疗衰老组的三种细胞的数密度显著增加,分别是衰老组的2.7倍、6.3倍和2.7倍。
     2.4与D-半乳糖脑衰老组相比,Rg1抗脑衰老组大鼠学习记忆能力显著提高;脑组织内SOD活性显著升高,MDA含量显著降低;p16~INK4a、p21~ Cip1/Waf1 mRNA及蛋白的表达水平显著降低;NeuN免疫组织化学切片显示齿状回区神经元大小较一致,排列较紧密,细胞核着色较均匀、轮廓较清楚;SVZ区BrdU圆形和椭圆形阳性细胞的数量显著增加到脑衰老组的10.4倍和10.8倍。
     3结论3.1本研究体外培养的细胞经鉴定为NSCs。3.2 D-半乳糖或t-BHP均能在体外诱导NSCs衰老,以D-gal 10 mg/ml作用48 h和t-BHP 100μmol/L作用2 h为衰老模型的较好选择。3.3人参皂苷Rg1可以增强已经衰老NSCs的增殖和分化能力,减少NSCs溶酶体的数量,提示其具有抗衰老和治疗衰老的作用,其机制可能与下调衰老相关基因p16~INK4a、p21~Cip1/Waf1 mRNA的表达有关。3.4 Rg1具有延缓D-半乳糖所致大鼠脑衰老作用,表现为能提高脑衰老大鼠的空间学习记忆能力、促进SVZ区的NSCs增殖。其机制可能与增强脑组织的抗氧化能力,下调脑组织内p16~INK4a、p21~Cip1/Waf1 mRNA及蛋白的表达水平有关。
The stem cell aging theory is the latest theory to explain aging mechanism. With the greater depth of research in stem cell, it is recognized that stem cells are not“immortal”cells, all aging phenomena reflects the aging level of adult stem cell. Studies have shown that the neurogenesis declined rapidly in human or animal brain with inceased age. The reason may be related to the degeneration of self-renewal and multi-directional differentiation activity of neural stem cells (NSCs) related with NSCs aging. Therefore, it has an immeasurable social value for the prevention and treatment of chronic diseases to in-depth study of the modern biology mechanism of aging and delay aging in NSCs, to explorate ways to re-activate and regulate the directional differentiation of NSCs.
     Ginseng has more than 2,000 years history used in Chinese medicine clinical as replenish qi. Modern pharmacological studies found that ginsenoside has wide effects as main pharmaceutical component of Ginseng. Rg1 has some regulatory effects and nootropic effect on the central nervous system. Shen et al showed that ginsenoside Rg1 can improve the reproductive activity of in vivo or in vitro neural precursor cell though it’s mechanism was unclear. Our previous studies showed that ginsenoside Rg1 can delay the aging of hematopoietic stem cells, the underlying mechanism may be the regulation of p16~INK4a-Rb and p19Arf-p53-p21~Cip1/Waf1 signal transduction pathways, the telomere length and telomerase activity. However, the regulative effects and mechanisms of ginsenoside Rg1 on the age-related biological characteristics of aging NSCs in vivo or in vitro have not been reported so far. In this study, we take the latest techniques of stem cell closely integrated with the anti-aging theory and the stem cell knowledge of traditional medicine to build NSCs aging model in vivo and in vitro respectively, to explorate the possible mechanisms of Rg1 to delay NSCs senescence, for providing the guidance in theory and experiment to search the methods delaying NSCs senescence.
     1. Materials and methods
     1.1 Primary cultured Neural stem cells (NSCs) were isolated from hippocampus of neonatal Sprague-Dawley (SD) rat. To assess the types of the cells present in culture, the expressions of the specific markers-Nestin in the NSCs, NeuN in the neurons, GEAP in the astrocytes and Gal-C in the oligodendrocytes were evaluated by using immunocytochemistry. Proliferation of NSCs was measured by using BrdU (5-bromo-2-deoxyuridine, Bromodeoxyuridine) incorporation and immunocytochemistry. 1.2 To determine the viability of cells and choose the optimal aging model induced in vitro, the MTT assay, neurospheres counting, differentiated neurons counting and senescence-associatedβ-Galactosidase(SA-β-Gal) staining were used after the third generation of NSCs were treated with different concentration of D-gal (4,8,10,12,16 mg/ml) or t-BHP (50,100,150μmol/L) respectively for 24, 48, 72 h or 1 h, 2 h, 3 h.
     1.3 To explore the anti- aging effects and the underlying mechanisms of Ginsenoside Rg1 on aging model of NSCs in vitro, the third generation of NSCs were divided into 5 groups: control group, aging group (treated with 100μmol/L t-BHP for 2 h), Rg1 group (treated with 10μg/ml Rg1 for 2 h), Rg1 anti-aging group (co-treated with 100μmol/L t-BHP and 10μg/ml Rg1 for 2 h) and Rg1 treat-aging group (treated with 10μg/ml Rg1 for 2 h after treated with 100μmol/L t-BHP for 2 h). Then the MTT assay, neurospheres counting were used to evaluate the reproductive activity of NSCs. Neurons, astrocytes and oligodendrocytes differentiated from NSCs were counted to evaluate the ability of multi-directional differentiation ability of NSCs. The expressions of senescence associated p16~INK4a and p21~Cip1/Waf1mRNA in each group were examined by RT-PCR.
     1.4 Thirty 12-wk-old male SD rats were randomly divided into control group, aging group and Rg1 anti-aging group. In the aging group and the Rg1 anti-aging group, D-galactose (120 mg/kg/day) was given to rats for 42 days by subcutaneous injection at the nape of the neck. The rats in latter group were additionally administered with Ginsenoside Rg1 (20 mg/kg/day) by intraperitoneal injection for 28 days after 2 weeks. The rats in control group were injected with saline. Twenty-four hours before sacrifice, each rat in three groups was received BrdU (50 mg/kg) by intraperitoneal injection at intervals of 4 hours for 3 times. Learning and memory abilities were measured by a Morris water maze test 42 days after modeling. The activities of SOD and the amounts of MDA in brain were quantified by chromatometry. The changes in the expressions of p16INK4a and p21Cip1/Waf1 mRNA or protein in brain were determined by real time quantitative RT-PCR or Western blotting respectively.
     1.5 Paraffin sections of hippocampus and subventricular zone (SVZ) of rats from each group were used for immunohistochemistry to detect the proliferating cells which are BrdU -positive cells within the brain tissue. The morphological characteristics of the cells in each group were observed under the microscope. With the new stereological technology, optical frame counting method, we evaluated the density of BrdU -positive cells within SVZ (the number of cells per unit volume of SVZ).
     2. Results
     2.1 Hippocampus-derived cells in culture proliferated and formed floating neurospheres. Immunocytochemistry analysis of cultured cells revealed that the NSCs specific protein nestin was found. Immunocytochemistry analysis also showed that induction of differentiation in the primary cultured cells, NSCs can differentiate into the appropriate expression of specific markers of terminal cells, namely, the NeuN expression in neurons, the GFAP expression in astrocytes, and the Gal-C expression in oligodendrocytes; the same time, the proliferating cells were stained with the immunocytochemical reaction for BrdU.
     2.2 The absorbance of MTT assay, the proliferation rate of neurospheres and the density of neurons differentiated from NSCs in cultured cells were significantly reduced with NSCs exposed to various concentrations of D-gal or t-BHP, while the ratio of the neurospheres found to beβ-galactosidase positive is significantly increased.
     2.3 Compared to aging group (treated with 100μmol/L t-BHP for 2 h), the absorbances of MTT assay in cultured NSCs from Rg1 group (treated with 10μg/ml Rg1 for 2 h) and Rg1 treat - aging group (treated with 10μg/ml Rg1 for 2 h after treated with 100μmol/L t-BHP for 2 h) were increased by 35% and 78% respectively, the numbers of forming colony of NSCs were significantly increased by 29% and 35% respectively, the percentage of senescence-associated SA-β-Gal positive neurospheres was significantly decreased by 40% and 58% respectively and the expressions of p16INK4a and p21Cip1/Waf1 mRNA were significantly reduced. In the meantime, the number of neurons, astrocytes and oligodendrocytes of Rg1 group was 2.2 times, 1.9 times and 1.7 times larger respectively than that of aging group and the same of Rg1 treat - aging group was 2.7 times, 6.3 times and 2.7 times respectively as many as that of aging group.
     2.4 Compared with the aging group, the spatial learning and memory capacities were significantly enhanced; the SOD activities were significantly increased while the MDA level was significantly reduced and the expressions of the P16~INK4a or P21~Cip1/Waf1 mRNA and protein in brain were reduced in the Rg1 anti-aging group. Immunohistochemical staining for NeuN in the dentate gyrus showed the neurons are more consistent and the arrangement of these cells are closely. The number of round and oval BrdU positive cells in SVZ of Rg1 anti-aging group significantly increased 10.4 and 10.8 folds, respectively, compared with that of aging group.
     3 Conclusion
     3.1 In this study, cultured cells were identified as NSCs.
     3.2 The NSCs can be induced aging by D-galactose or t-BHP in vitro. The optimal option for aging is established by culturing the NSCs with 10 mg/ml D-galactose or 100μmol/L t-BHP for 2 h.
     3.3 Ginsenoside Rg1 can delay the aging process of NSCs, restore the ability of proliferation and differentiation in aging NSCs and reduce the number of lysosome in NSCs which indicate that Rg1 is capable of anti-aging and treating aging. The underlying mechanisms maybe relevant to the down-regulation of senescence-associated gene, such as the down-regulation of expressions of the p16~INK4a and p21~Cip1/Waf1 mRNA.
     3.4 Rg1 could delay the aging effects in rat brain induced by D-galactose. It can promote the spatial learning and memory capacities , the proliferation of NSCs in SVZ of brain aging rats. The underlying mechanisms maybe relevant to enhancing the antioxidant capacity of brain tissue and down-regulation of expressions of the senescence-associated p16~INK4a and p21~Cip1/Waf1 mRNA.
引文
[1]邹承鲁主编.当代生物学[M].北京:中国致公出版社. 2000: 394~396.
    [2]童坦君.衰老机制及其学说[J].生命科学进展, 2007, 38(1):14-18.
    [3]王亚平,吴宏,王建伟,等.干细胞衰老与疾病[M].北京:科学出版社, 2009:1-22.
    [4] Rossi DJ, Bryder D, Weissman IL. Hematopoietic stem cell aging: mechanism and consequence[J]. Experimental Gerontology, 2007, 42(5):385-390.
    [5] Gazit R, Weissman H, Rossi DJ. Hematopoietic stem cells and the aging hematopoietic system[J]. Semin Hematol, 2008, 45(4):218-224.
    [6] Reynolds BA,Weiss S. Generation of neurons and astrocytes from isolated cells of the adult mammalian central nervous system[J]. Science, 1992, 255(5056): 1707-1710.
    [7] McKay R. Stem cells in the central nervous system[ J]. Science, 1997, 276(5309): 66-71.
    [8] Morrison SJ,White PM, Zock C, et al. Prospective identification, isolation by flow cytometry, and in vivo self-renewal ofmultipotent mammalian neural crest stem cells [ J]. Cell 1999, 96 ( 5 ):737-749.
    [9] Johansson CB, Momma S, Dlarke DT, et al. Identification of a neural stem cell in the adult mammalian central nervous system[J]. Cell, 1999, 96 (1) : 25 - 34.
    [10]Gage HF. Mammalian neural stem cells[J].Science, 2000, 287(5457):1433-1438.
    [11]Singec I,Knoth R,Meyer RP,et al. Defining the actual sensitivity and specificityof the neurosphere assay in stem cell biology. Nat-Methods,2006, 3:801-806.
    [12]Batista CM, kippin TE, Willaime-Morawek S, et al. Aprogressive and cell non-autonomous increase in striatal neural stem cells in the Huntington’s disease R6/2 mouse[J]. Neurosei, 2006, 26:10452一10460.
    [13]扎桑,多吉卓玛.成人神经干细胞的研究进展[J].四川解剖学杂志, 2008, 16(3):37-39.
    [14]Olariu A, Cleaver KM, Cameron HA. Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle[J]. J. Comp. Neurol. 2007, 501(4): 659–667.
    [15]Rao MS, Hattiangady B, Shetty AK. The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus[J]. Aging Cell, 2006, 5 (6):545–558.
    [16]崔巍,赵洪艳,王燕嬉.人参皂甙抗衰老的研究进展[J].中国老年学杂志,2006,26(17):1578-1581.
    [17]张均田.人参皂苷Rg1促智作用及机制——对神经可塑性和神经发生的影响[J].药学学报, 2005,40(5):385-388.
    [18]王卫霞,王巍,陈可冀.人参皂苷对动物脑神经保护作用及其机理研究进展[J].中国中西医结合杂志, 2005, 25(1):89-93.
    [19]Shen LH, Zhang JT. Ginsenoside Rg1 promotes proliferation of hippocampal progenitor cells[J]. Neurol Res 2004, 26(4): 422–428.
    [20]石永江,刘宏亮,姚忠祥,等.人参皂甙Rgl、Rb l对SVZa—NSCs增殖的影响及其与STAT3的关系[J].中国康复, 2007, 22(2):75-78.
    [21]Zhou Y, Yang B, Yao X, et al. Establishment of an aging model of Sca-1+ hematopoietic stem cell and studies on its relative biological mechanisms[J]. In Vitro Cell Dev Biol-Animal. 2010, 47(2):149-153.
    [22]周玥,杨斌,姜蓉,姚欣,王亚平.人参皂苷Rg1延缓造血干细胞衰老及其相关机制[J].中华医学杂志,2010,90(48):3421-3425.
    [1] Cataudella T, Conti L, Cattaneo E. Neural stem and progenitor cells :choosing the right Shc[J]. Prog Brain Res, 2004, 146 (2):127 - 133.
    [2] Milosevic J, Storch A, Schwarz J. Spontaneous apoptosis in murine flee-floating neurospheres[J]. Exp Cell Res, 2004, 294(1): 9-l7.
    [3]郑可.不同培养方式长期扩增神经干细胞的比较[D].大连:大连理工大学化学工程,2005.
    [4] Yang Q, Zeng Zl ,Xie P, et al. Isolation and differentiation of neuraI stem cells from neonatal rats in vitro[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2008, 12(38):7595-7598.
    [5]赵志英,胡海涛,师社会,等.新生大鼠脑源性神经干细胞培养方法的优化[J].中国修复重建外科杂志, 2005, 19(7 ):544-547.
    [6]李敏杰,刘勇,吕海侠,等.新生大鼠神经干细胞的分离培养与观察[J].细胞与分子免疫学杂志, 2002, 18 (4) : 316-319.
    [7] Hockfield S,Mckay RDIdentification of major cell classes in the developing mammalian nervous system[J]. Neuroscience,1985;5(12):3310-3328.
    [8] Dahlstrand J, Lardelli M, Lendhal U. Nestin mRNA expression correlates with the central nervous system progenitor eell state in many, but not all, regions of developing eentral nevruos system[J]. Dev. Brain Res, 1995, 84(1), 109-129.
    [9] McKay R. Stem cells in the central nervous system[J]. Science, 1997, 276(5309): 66-71.
    [10]Fred HG. Mammalian neural stem cells[J]. Science, 2000, 287 (25): 1433-1438.
    [1]王亚平,吴宏,王建伟,等.干细胞衰老与疾病[M].北京:科学出版社, 2009:1-22.
    [2] Rossi DJ, Bryder D, Weissman IL. Hematopoietic stem cell aging: mechanism and consequence[J]. Experimental Gerontology, 2007, 42(5):385-390.
    [3] Gazit R, Weissman H, Rossi DJ. Hematopoietic stem cells and the aging hematopoietic system[J]. Semin Hematol. 2008, 45(4):218-224.
    [4]余资江.脑衰老与神经干细胞移植治疗研究进展[J].中国实用医药, 2008, 3(28):180-183.
    [5] Johnston MV. Brain plasticity in paediatric neurology[J]. Eur J paediatric neurol, 2003,7(3):105-113.
    [6] Olariu A, Cleaver KM, Cameron HA. Decreased neurogenesis in aged rats resultsfrom loss of granule cell precursors without lengthening of the cell cycle[J]. J. Comp. Neurol. 2007, 501(4): 659–667.
    [7] Rao MS, Hattiangady B, Shetty AK. The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus[J]. Aging Cell, 2006, 5 (6):545–558.
    [8] Cutler RG. Human longevity and aging: Possible role of reactive oxygen species[J]. Annals NY Acad sci, 1994, 634:1-28.
    [9]邢玉芝,杨玲麟,林洪,胡火珍,王有为. D-半乳糖对大鼠骨髓间充质干细胞拟衰老作用的实验研究[J].中国修复重建外科杂志, 2006, 20(4):475-479.
    [10]周玥,杨斌,姚欣,王亚平.小鼠造血干细胞体外衰老模型的构建及其相关生物学[J].解剖学报,2010,41(5):699-705.
    [11]Song X, Bao M, L i D, et al. A dvanced glycation in D2galacto seinduced mouse aging model[J]. Mech Ageing Dev, 1999, 108(3):239-251.
    [12]王晶,姬志娟,赵志炜,等. A PP17肽对D2半乳糖性老化模型小鼠学习、记忆力功能和海马神经元NT23、NGF表达的影响[J].中国病理生理杂志, 2000, 16 (6):545-548.
    [13]周德山,蔡文琴.干细胞研基础与应用研究的一些进展[J].第三军医大学学报, 2003, 25(1):1-3.
    [14]Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo[J]. Proc Natl Acad Sci U SA , 1995, 92 (20): 9363 - 9367.
    [15]Pendergrass WR, Lane MA , Bodkin NL , et al. Cellular proliferation potential during aging and caloric restriction in rhesus monkeys (M acaca mulatta) [J]. J Cell Physio l, 1999, 180 ( 1) : 123-130.
    [16] Wang Y, Schulte BA, LaRue AC, et al. Total body irradiation selectively induces murine hematopoietic stem cell senescence[J]. Blood. 2006, 107(1):358-366.
    [17] Meng A, Wang Y, Brown SA, et al.Ionizing radiation and busulfan inhibit murine bone marrow cell hematopoietic function via apoptosis-dependent and independent mechanisms[J].Experimental Hematology 2003,31(12):1348–1356.
    [1]王亚平,吴宏,王建伟,等.干细胞衰老与疾病[M].北京:科学出版社, 2009:1-22.
    [2] Rossi DJ, Bryder D, Weissman IL. Hematopoietic stem cell aging: mechanism and consequence[J]. Experimental Gerontology[J], 2007, 42(5):385-390.
    [3] Gazit R, Weissman H, Rossi DJ. Hematopoietic stem cells and the aging hematopoietic system[J]. Semin Hematol, 2008, 45(4):218-224.
    [4]余资江.脑衰老与神经干细胞移植治疗研究进展[J].中国实用医药, 2008, 3(28):180-183.
    [5]张均田.人参皂苷Rg1促智作用及机制——对神经可塑性和神经发生的影响[J].药学学报, 2005,40(5):385-388.
    [6]崔巍,赵洪艳,王燕嬉.人参皂甙抗衰老的研究进展[J].中国老年学杂志,2006,26(17):1578-1581.
    [7] Gong YS, Zhang JT. Effect of 17-beta-estradiol and ginsenoside Rg1 on reactive microglial induced by beta-amyloid peptide[J]. J Asian Nat Prod Res, 1999, 1(3):153-161.
    [8]石永江,刘宏亮,姚忠祥,等.人参皂甙Rgl、Rb l对SVZa-NSCs增殖的影响及其与STAT3的关系[J].中国康复, 2007, 22(2):75-78.
    [9] Li J, Zhang J. Inhibition of apoptosis by ginsenoside Rg1 in cultured cortical neurons[J]. Chin Med J (Engl), 1997, 110(7):535-539.
    [10]Gould E. Tanapat P, McEwen BS, et al. Proliferation of granule cell precursors in the dentate gyrus of adult monkeys is diminished by stress[J]. Proc natl acad sci USA,1998, 95(6):3168-3171.
    [11]童坦君.衰老机制及其学说[J].生命科学进展, 2007, 38(1):14-18.
    [12]Sinclair DA, Guarente L. Unlocking the secrets of longevity genes[J]. Sci Am, 2006, 294(3): 48-51, 54-57.
    [13]Olshansky SJ, Rattan SIS. The biology of aging[J]. Mount Sinai J Med, 2003, 70:3~22.
    [14]Carnes BA, Holden LR, Olshansky SJ, et al. Mortality partitions and their relevance to research on senescence[J]. Biogerontology. 2006, 7(4):183-198.
    [15]周德山,蔡文琴.干细胞研基础与应用研究的一些进展[J].第三军医大学学报, 2003, 25(1):1-3.
    [16]Dimri GP, Lee X, Basile G, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo[J]. Proc Natl Acad Sci USA , 1995, 92 (20): 9363 - 9367.
    [17]Pendergrass WR, Lane MA , Bodkin NL, et al. Cellular proliferation potential during aging and caloric restriction in rhesus monkeys (Macaca mulatta)[J]. J Cell Physiol, 1999, 180 ( 1) : 123-130.
    [18]郑文婕,童坦君,张宗玉.细胞衰老的重要通路:p16INK/ Rb和p19ARF/ p53/ p21Cip1信号途径[J].生命的化学, 2002, 22 (4) :314– 316.
    [19]Duan J, Zhang Z, Tong T. Senescence delay of human diploid fibroblast induced by antisense p16INK4a expression[J]. J. Bio Chem, 2001, 276(51): 48325– 48331.
    [20]Shilkaitis A, Green A, Punj V, Steele V, Lubet R, Christov K. Dehydroepiandrosterone inhibits the progression phase of mammary carcinogenesis by inducing celhlar senescence via a p16– dependent but p53– independent[J]. Breast Cancer Res, 2005, 7(6):R1132-1140.
    [21]Molofsky AV, Slutsky SG, Joseph NM, He S, Pardal R, Krishnamurthy J, Sharpless NE, Morrison SJ. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during aging[J]. Nature, 2006, 443(7110):448–452.
    [1] Shang YZ, Gong MY, Zhou XX, et,al. Improving effects of SSF on memory deficits and pathological changes of neural and immunological systems in senescent mice[J]. Acta-Pharmacol-Sin, 2001,22(12): 1078-83.
    [2]秦红兵,杨朝晔,范忆江,等. D-半乳糖诱导衰老小鼠模型的建立与评价[J].中国组织工程研究与临床康复, 2009,13(7):1275-1278.
    [3] Alvarez-Buylla A,Garcia-Verdugo JM.Neurogenesis in adult subventricular zone[J]. J Neurosci, 2002, 22(3):629- 634.
    [4]扎桑,多吉卓玛.成人神经干细胞的研究进展[J].四川解剖学杂志, 2008,16(3):37-39.
    [5] Gritti A, VescoviAL, Galli R. Adult neural stem cells: plasticity and developmental potential[J]. J Physiol Paris, 2002, 96 (1-2):81-90.
    [6] Zhao M, Momma S, Delfani K, et al. Evidence for neurogenesis in the adult mammalian substantia nigra[J]. Proc Natl Acad Sci USA, 2003,100(13):7925-7930.
    [7] Olariu A, Cleaver KM, Cameron HA. Decreased neurogenesis in aged rats results from loss of granule cell precursors without lengthening of the cell cycle[J]. J. Comp. Neurol. 2007, 501(4): 659–667.
    [8] Rao MS, Hattiangady B, Shetty AK. The window and mechanisms of major age-related decline in the production of new neurons within the dentate gyrus of the hippocampus[J]. Aging Cell, 2006, 5 (6):545–558.
    [9]崔巍,赵洪艳,王燕嬉.人参皂甙抗衰老的研究进展[J].中国老年学杂志,2006,26(17):1578-1581.
    [10] Cheng Y, Shen LH, Zhang JT. Anti-amnestic and anti-aging effects of ginsenoside Rg1 and Rb1 and its mechanism of action[J]. Acta Pharmocologica Sinica, 2005, 26 (2):143–149.
    [11]周文丽,张建鹏,冯伟华,等.脑衰老机制与脑疾病的关系[J].生命的化学2008,28(4):435-438.
    [12]郑文婕,童坦君,张宗玉.细胞衰老的重要通路:p16INK4a/Rb和p19ARF/p53/ p21Cip1信号途径[J].生命的化学,2002,22(4):314-316.
    [13]龚国清,徐黻本.小鼠衰老模型研究[J].中国药科大学学报. 1991, 2,101-103.
    [14]崔巍,赵洪艳,王燕嬉.人参皂甙抗衰老的研究进展[J].中国老年学杂志,2006,26(17):1578-1581.
    [15]Janakiraman K, Chad T, Matthew R, et al. Ink4a/Arf expression is a biomarker of aging[J]. J Clin Invest,2004,114(9):1299-1307
    [16]Guney I, Wu S, Sedivy JM. Reduced c-Myc signaling triggers telomereindependent senescence by regulating Bmi 1 and p16 (INK4a)[J]. Proc Natl Acad Sci USA,2006,103(10):3645-3650.
    [17]Cammarano MS, Nekrasova T, Noel B, et al. Pak4 induces premature senescence via a pathway requiring p16 INK4/P19 ARF and mitogen activated protein kinase signaling[J]. Mol Cell Biol, 2005,25(21):9532-9542.
    [18]Gong YH, Yue JP, Wu XD, et al. NSPc1 is a cell growth regulator that acts as a transcriptional repressor of p21Waf1/Cip1 via the RACE element[J]. Nucleic Acids Res,2006,34(21):6158-1669.
    [19]Limoli CL, Kaplan MI, Giedzinski E, et al. Attenuation of radiation reduced genomic instability by free radical scavengers and cellular proliferation[J].Free Radio boil Med,2001,31(1):10-19.
    [20]Gage H F.Mammalian neural stem cells[J].Science,2000,287(5457):1433-1438.
    [21]Jackson EL, Alvarez-Buylla A. Characterization of adult neural stem cells and their relation to brain tumors[J]. Cells Tissue Organs, 2008, 188(2): 212-24.
    [1] Turnhe IM ,Klau S. When drug t herapy get s old :pharmacok inetics and pharmacodynamics in t he elderly [J ] . Experimental Gerontology ,2003 ,38 (8) :843 - 853
    [2]梁晖,翁苓.范德荣主任谈中医衰老理论和老年病临床特点[ J] .福建中医药, 1995, 26( 3) : 6- 7.
    [3]黄娅琳.抗衰老中药的研究[J].时针国医国药, 2007,18(3): 691~693.
    [4]郑访江,宋志靖,陈佳丽等.衰老机制的中西医研究进展[J].甘肃中医学院学报2005;22(3):52-54
    [5]秦玫岗,祖丽华.中医衰老基本机理浅探[J].国医论坛2006;21(2):15-17
    [6]沈自尹,袁春燕,黄建华,郭爱克,胡作为。淫羊藿总黄酮延长果蝇寿命及其分子机制[ J ]。中国老年学杂志2005;9(25):1061-1063.
    [7] Huang L Y. Effect of Trillium tschonoskii Maxim and Radix polygonum multiflorum on expression funct ion of th e an tioxidation enzyme of dementia mice induced by haloperidol [ J]. Zhejiang J TraditChinMed, 2006, 41 ( 7): 430.
    [8] Qiu G, Wu X Q. E ffect of P olygonum mu ltiflorum Thunb1 on BDNF exp ression in rat h ippocampu s indu ced by amy loid beta2 protein ( AB ) 1 - 40 [ J ]. J Cen South Univ (Med Sci ),2006, 31 ( 2 ): 194.
    [9] Qu BX. E ffect of extractan t from Rad ix polyg onum mu ltiflorum on memory capacity and c2jun expression in h ippocampus of mice [ J]. Ch in J Clin Reh ab i,l 2006, 10 ( 23): 144.
    [10]Y ang X Y. Th e effects of refined Polygonum mu ltiflorum Thunb olysaccharide on learn ingmemory and the activ it ies of enzymes in the bra in for th e experimen tal mice w ith demen tia [ J ]. Prog Pharm Sc,i 2005, 29 ( 12 ): 557.
    [11]L iu L, Zhao L, L i Y L, et a.l Protective effect of 20 30 50 4c2 tetrahyd roxyst ilben e222B2O2D2glucoside on hippocampal neurons in dementia rats induced by chronic cerebral ischem ia [ J ]. Ch in Pharm J, 2006, 41 ( 5): 354.
    [12]贾继明,王宗权,吴立军,等.人参皂苷Rb1的药理活性研究进展[J].中国中药杂志, 2008, 33(12): 1372~1373.
    [13]陈会良,顾有方,王月雷.中草药化学成份与抗氧化活性的研究进展[J].中国中医药科技, 2006, 13(1):63.
    [14]屠宴会,高南南。木樨科女贞属植物主要化学成分及药理作用研究概况[J ]。时珍国医国药2007;18(5):1228-1230.
    [15]王洪侠,高微微.抗衰老中药的研究进展[J].中国中医药信息杂志, 2005, 12(1): 103.
    [16]刘柏炎,蔡光先.试论中医精气与干细胞生物学的关系[J].湖南中医学院学报2003;23(6):29-30
    [17]张进,徐志伟,杜少辉等.“精“学说与干细胞辨识[J].中医药学刊2004;22(7)1198-1199
    [18]王亚平,祝彼得。当归多糖对小鼠多能造血干细胞增殖分化影响的研究[J ]。中国中西医结合杂志, 1991 , 13 : 119
    [19]王亚平,祝彼得。当归多糖对小鼠粒单系血细胞发生的影响[J ]。解剖学杂志, 1993 , 16 (2) : 125
    [20]王建伟,李荣,王亚平等.人参总皂甙体外诱导CD34+造血干/祖细胞增殖的作用J].解剖学杂志2006;29(4):430-432,449
    [22]王亚平,祝彼得.当归多糖对小鼠多能造血干细胞增殖分化的影响J].中国中西医结合杂志实验专辑1993;13 119
    [21]王建伟,王亚平等.人参总皂苷体外定向诱导CD34+细胞分化为粒细系血细胞的研究J].中草药2007;38(1):77-80
    [23]王莎莉,李英博,王亚平等.人参总皂苷对人胚胎NSC增殖及定向诱导为多巴胺能神经原的影响J].中国中药杂志2007;32(13):1310-1313
    [24]王莎莉,李英博,王亚平等.人参总皂苷在神经干细胞移植治疗帕金森模型小鼠中的作用J].中国临床康复2006;10(41):19-21
    [25]李英博,王莎莉,刘永刚等.人胚胎神经干细胞分离、培养、纯化及增殖潜能的特点J].中国临床康复2006;10(45):21-23
    [26]黄永,王建伟,王亚平等.人参总皂苷对造血细胞红细胞生成素受体表达的影响J].中国现代医学杂志2008;18(8):1018-1020
    [27]赵朝晖,陈晓春,朱元贵等.人参皂甙Rg1延缓细胞衰老过程中端粒长度和端粒酶活性变化.中国药理学通报2005,21(1):61-66
    [28]肖刚峰,张怀勤,黄晓燕,黄伟剑,徐力辛。丹参的两种主要成分对培养内皮祖细胞药理作用研究[ J ]。中医药学刊2 0 0 6;24(6):1035-1037
    [29]刘德伍,胡翔,刘德明。黄芪诱导表皮干细胞增殖构建组织工程皮肤治疗皮肤缺损[ J ]。中药药理与临床2004; 20( 5):16-17.
    [30]朱志明.抗衰老药物应用的若干问题[ J ].实用老年医学,2002, 16 (2) : 73.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700