青蒿琥酯增加大肠埃希菌对β-内酰胺类抗生素敏感性及相关机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     在临床上,抗生素在细菌感染性疾病的治疗中发挥着重要的作用。然而,当长时间暴露于抗生素后,细菌通过改变其代谢通路、产生灭活酶、以及调节相关外排泵蛋白的表达而导致对一些抗生素产生一定程度的耐药。一项关于革兰氏阴性菌耐药的研究发现,最常见的革兰氏阴性细菌如铜绿假单胞菌、鲍氏不动杆菌、以及大肠埃希菌对临床上广泛使用的抗生素如头孢他啶、头孢哌酮、环丙沙星、庆大霉素等产生耐药。
     到目前为止,除了β-内酰胺酶抑制剂外,还没有一项成功的策略可以恢复抗生素的抗菌活性。在前期研究中,我们发现青蒿琥酯,一种广泛用于恶性疟及脑型疟治疗的青蒿素的衍生物,在其浓度达到256μg/ml时可将大肠埃希菌ATCC35218对庆大霉素的最小抑制浓度由4μg/ml降为0.25μg/ml。扩大青蒿琥酯的联用范围后,我们同样发现青蒿琥酯可显著增加大肠埃希菌ATCC35218对舒氨西林与头孢匹胺的敏感性。更令人兴奋的是,这种协同的抗菌效应在大肠埃希菌临床分离株与耐甲氧西林的金黄色葡萄球菌中也被观察到。同时,我们发现青蒿琥酯明显增加了柔红霉素在大肠埃希菌ATCC35218中的聚集。在动物实验中,我们发现青蒿素与舒氨西林合用时明显降低了热灭活大肠埃希菌攻击脓毒症小鼠的死亡率。
     事实上,青蒿琥酯在体外是如何增敏不同抗生素的抗菌效应的还不是很明确。鉴于此,在本研究中我们首先检测了青蒿琥酯联合不同β-内酰胺类抗生素对大肠埃希菌ATCC35218的抗菌增敏作用。随后我们探讨了主要的外排泵基因在青蒿琥酯所产生的抗菌增敏效应中所发挥的作用。基于此,我们试图阐明青蒿琥酯在大肠埃希菌中所引起的抗菌增敏效应的具体机制,同时,为临床上降低感染性疾病治疗中革兰氏阴性菌的耐药提供一种有效的治疗措施。
     方法:
     一、采用二倍微孔稀释法检测青蒿琥酯处理与不处理情况下,大肠埃希菌ATCC35218和临床分离株对不同β-内酰胺类抗生素的敏感性;
     二、采用动态生长曲线法观察不同β-内酰胺类抗生素单独或与青蒿琥酯联合使用时对大肠埃希菌ATCC35218和临床分离株的抑制作用;
     三、采用逆转录PCR检测不同浓度青蒿琥酯预处理对相关外排泵基因表达的影响;
     四、采用实时定量PCR检测合适浓度氨苄西林与青蒿琥酯联合使用时对大肠埃希菌ATCC35218差异外排泵基因表达的影响;
     五、采用逆转录PCR检测不同浓度青蒿琥酯预处理对差异外排泵基因上游调控子mRNA表达水平的影响;
     六、采用实时定量PCR检测合适浓度氨苄西林与青蒿琥酯联合使用时对大肠埃希菌ATCC35218差异外排泵基因上游调控子mRNA表达水平的影响;
     七、采用二倍微孔稀释法检测青蒿琥酯处理与不处理情况下,AcrA、AcrB敲除的大肠埃希菌AG100A不同β-内酰胺类抗生素的敏感性;
     八、采用反义寡核苷酸干扰技术探讨差异外排泵基因在青蒿琥酯产生的抗菌增敏效应中所处的地位以及发挥的作用;
     九、采用Western blot技术检测青蒿琥酯对大肠埃希菌ATCC35218中差异外排泵基因蛋白表达水平的影响;
     十、液相色谱-质谱联用技术检测氨苄西林在细菌体内的聚集情况;
     结果:
     一、尽管青蒿琥酯单独使用并没有明显的抗菌作用,但它几乎增加了大肠埃希菌对所有被检测的β-内酰胺类抗生素包括氨苄西林、舒氨西林、青霉素G、苯唑西林、头孢匹胺的敏感性;
     二、单独的青蒿琥酯对于大肠埃希菌的生长没有明显的抑制作用,但与不同的β-内酰胺类抗生素联合使用后相对于单纯的抗生素处理可明显抑制细菌的生长;
     三、RT-PCR结果表明,不同浓度的青蒿琥酯并不能显著降低外排泵相关基因MdtA、MdtC与MdtF的mRNA水平,但512μg/ml的青蒿琥酯明显降低了AcrA、AcrB、MdtE的表达水平。此外,512-32μg/ml青蒿琥酯对于共同的外膜通道TolC的表达并没有明显影响;
     四、qRT-PCR结果表明,相对于单纯的青蒿琥酯或者氨苄西林处理,联合处理明显降低了大肠埃希菌中AcrB mRNA的水平。然而,AcrA、MdtA、MdtC、MdtE、MdtF基因的表达水平并没有明显影响;相类似地,青蒿琥酯对于TolC的表达同样没有明显影响;
     五、AcrA和AcrB基因双敲除的大肠埃希菌AG100A对β-内酰胺类抗生素的敏感性明显增加,但青蒿琥酯的联合处理并没有增加AG100A对β-内酰胺类抗生素的敏感性;
     六、针对AcrA和AcrB基因的反义寡核苷酸干扰明显降低了大肠埃希菌对氨苄西林的敏感性。当大肠埃希菌中的AcrA基因被有效沉默时,青蒿琥酯的额外处理使细菌的耐药性进一步降低。然而,当AcrB基因被沉默时,青蒿琥酯的加入并没有进一步地降低细菌的耐药性;
     七、512μg/ml青蒿琥酯显著地下调了大肠埃希菌ATCC35218中AcrB蛋白的表达水平。然而,其他浓度(32-256μg/ml)青蒿琥酯对于AcrB蛋白的表达并没有抑制作用;
     八、除了MarA基因,512-32μg/ml青蒿琥酯对于主要的外排泵系统AcrAB-TolC上游的调控子的表达并没有明显影响。然而,相对于单纯的青蒿琥酯或氨苄西林处理,256μg/ml青蒿琥酯联合256μg/ml氨苄西林可明显减少上游正性调控子SoxS、MarA的表达水平。同时,青蒿琥酯联合氨苄西林对于负性调控子AcrR、MppA的表达没有明显影响;
     九、青蒿琥酯增加了氨苄西林在大肠埃希菌ATCC35218体内的聚集。当青蒿琥酯预处理浓度为128μg/ml时,抗生素在细菌体内的聚集达到最大值。当青蒿琥酯浓度超过此浓度时聚集量反而逐渐减少。
     十、青蒿琥酯不能增加AcrB基因缺失菌株大肠埃希菌AG100A中柔红霉素的聚集,同时,青蒿琥酯也不能增加AcrB基因过表达的大肠埃希菌AG100A/pQE30-AcrB中柔红霉素的聚集。
     结论:
     1.青蒿琥酯广泛地增加了大肠埃希菌对不同β-内酰胺类抗生素的敏感性;
     2.青蒿琥酯抑制了外排泵系统AcrAB-TolC的表达;
     3. AcrB和AcrA基因缺失可显著增加细菌对β-内酰胺类抗生素的敏感性;
     4.对于AcrA基因的反义寡核苷酸干扰不足以减弱青蒿琥酯的抗菌增敏作用,而AcrB的沉默使青蒿琥酯的抗菌增敏作用几乎消失;
     5. AcrB在青蒿琥酯产生的抗菌增敏效应中起着主要的作用,而AcrA在这一事件中发挥着次要的作用;
     6.青蒿琥酯单独或联合氨苄西林显著下调了AcrAB-TolC外排泵系统上游某些正性调控子如MarA和SoxS的表达;
     7. 512μg/ml青蒿琥酯显著地下调了大肠埃希菌ATCC35218中AcrB蛋白的表达水平,但低于此浓度青蒿琥酯对于AcrB蛋白的表达没有影响。
     8.青蒿琥酯不能增加大肠埃希菌AG100A细菌体内柔红霉素的聚集,表明AcrB缺失时,青蒿琥酯失去了主要的作用环节,其抗菌增敏作用消失;而AcrB过表达时,青蒿琥酯同样不能增加细菌体内柔红霉素的聚集,表明AcrB的过表达同样使有限的青蒿琥酯的效应无法发挥;
     9.青蒿琥酯增加了氨苄西林在大肠埃希菌ATCC35218中的聚集,这一现象可能与AcrAB-TolC被抑制导致抗生素外排减少相关。同时,当超过一定浓度时,抗生素的聚集量反出现降低,可能与细胞膜通透性的改变有关。
Objective:
     Antibiotic plays a key role in the treatment of diseases caused by bacterial infection in clinic. However, after the long-term exposure to antibiotics, the bacteria alter their metabolic pathways, produce inactivated enzyme, and regulate the expressions of efflux pump proteins, which result in the bacterial resistance against some antibiotics in some degree. A study on gram-negative bacteria resistance have documented that the most common gram-negative pathogens such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Escherichia coli (E. coli) became resistant against many antibiotics including ceftazidime, cefoperazone/sulbactam, ciprofloxacin, gentamicin and etc. those were widely used in clinic.
     By now there was no such a successful strategy exceptβ-lactamase inhibitors to restore antibacterial activities of antibiotics. In the previous study, we found that 256μg/ml Artesunate (AS), a derivative of artemisinin (ART), which was widely used against falciparum malaria and cerebral malaria, could decrease the MIC of Escherichia coli ATCC35218 to gentamicin from 4μg/ml to 0.25μg/ml (16-fold). Expanding the combined range of AS, we found that AS also increased the susceptibility of Escherichia coli ATCC35218 to ampicillin sodium-sulbactam sodium and cefpiramide. Excitedly, the synergetic antibacterial effect was also observed in Escherichia coli isolates and methicillin resistant staphylococcus aureus (MRSA). Meanwhile, AS increased the accumulation of daunorubicin within ATCC35218. Importantly, ART could significantly decrease the mortality of mice challenged with live E. coli when it was used with ampicillin together.
     However, how AS potentiate the antibacterial effects of various antibiotics in vitro is still not clarified. In the present study we first measured the AS’s antibacterial potentiation on variousβ-lactam antibiotics against E. coli ATCC35218. Then we investigated the role of the main efflux pump related genes in the artesunate’s antibacterial potentiation effect against E. Coli. Based on these, we tried to illuminate the possible mechanism for AS’s antibacterial potentiation effect and provide an efficient approach to reduce the resistance of gram -negative bacteria in the treatment of infectious diseases in clinic.
     Methods:
     1.Two-fold diluted method was used to measure the susceptibility of E. Coli ATCC35218 and clinical isolates to variousβ-lactam antibiotics in the absence or presence of AS;
     2.Dynamic growth assay of effects of variousβ-lactam antibiotics alone or combined with AS on E. coli ATCC35218 and clinical isolates;
     3.RT-PCR analysis of the mRNA levels of the main efflux pump related gene(s) and upstream regulator(s) within E. coli ATCC35218 after the treatments of AS with different concentrations;
     4.qRT-PCR analysis of the mRNA level(s) of the differential gene(s) and and upstream regulator(s) within E. coli ATCC35218 after the treatment of 256μg/ml AMP alone or in combination with 256μg/ml AS;
     5.Two-fold diluted method was used to measure the susceptibility of E. Coli AG100A lacking AcrA and AcrB in the absence or presence of AS treatment.
     6.Antisense oligonucleotide technique was employed to knockdown the main differential genes to investigate its or their role of the differential gene(s) in the antibacterial potentiation effect produced by AS;
     7.Western blot analysis of protein(s) expression levels of the differential gene(s) within E. coli ATCC35218 after the treatment of AMP alone or in combination with AS;
     8.The accumulation of AMP in E. coli ATCC35218 by High Performance Liquid Chromatography-Mass Spectrometry (HPLC-MS).
     Results:
     1. Although AS alone had no significant antibacterial effect, it almost increased the susceptibility of E. Coli to all testedβ-lactam antibiotics including ampicillin, ampicillin sodium-sulbactam sodium, penicilin G, oxacillin, cefpiramide, and ect.;
     2. Single AS had little inhibitory effect on E. coli ATCC35218, while AS in combination with variousβ-lactam antibiotics significantly suppressed the bacterial growth compared with single antibiotics treatments;
     3. RT-PCR results showed that different concentrations AS (512-32μg/ml) could not significantly reduce the expression of AcrA, MdtA, MdtC, and MdtF. In fact, 512μg/ml AS markedly down-regulated the expressions of AcrB and MdtE. In addition, AS (512-32μg/ml) had no obvious effects on the common outer membrane channel, TolC;
     4. qRT-PCR results demonstrated that 256μg/ml AS in combination with 256μg/ml AMP significantly reduced the mRNA levels of AcrB compared with single AS or AMP treatment. However, the expressions of AcrA, MdtA, MdtC, MdtE, and MdtF were not significantly changed in the presence or absence of AS. Meanwhile, the expression of TolC was not significantly changed;
     5. E. Coli AG100A lacking AcrA and AcrB genes became very sensitive to variousβ-lactam antibiotics. However, the additional AS treatment could not further increase the bacterial susceptibility;
     6. The transformation of as-ODNs targeting AcrA and AcrB significantly increased the the bacterial susceptibility to AMP. However, the bacterial resistance was not further decreased even after the additional AS adding when AcrB gene was knockdown.
     7. Except MarA gene, AS (512-32μg/ml) had no significant effect on the upstream regulators of AcrAB-TolC. However, AS (256μg/ml) in combination with AMP (256μg/ml) significantly down-regulated expressions of the positive regultors including SoxS, and MarA compared with single AS or AMP treatment. However, AS had no significant effects on the negative regulators such as AcrR and MppA;
     8. High concentration AS (512μg/ml) significantly down-regulted the expression of AcrB protein within ATCC35218. However, AS with lower concentration (32-256μg/ml) had no significant inhibitory effect on AcrB protein;
     9. AS could significantly increase the accumulation of AMP in the bacteria. The largest accumulation was found after the additional AS treatment at a concentration of 128μg/ml. Then the accumulation product was gradually decreased accompanied by increasing concentration of AS.
     10. Artesunate could not increase the accumulation of daunorubicin in E. coli AG100A, suggesting that artesunate lost its main effect when AcrB gene was knockout. Also, artesunate could not increase the the accumulation of daunorubicin when AcrB was overexpressed. We speculated it was due to the limited artesunate that could not play its antibacterial potentiation effect in front of the overexpression of AcrB.
     Conclusions:
     1. AS widely increased the susceptibility of E. coli toβ-lactam antibiotics;
     2. AS inhibited the expression of a major multi-drug efflux pump system AcrAB-TolC;
     3. AcrB played a major role in the antibacterial potentiation produced by AS, and AcrA played a minor role in this event;
     4. AS alone or in combination with AMP significantly down-regulated the positiveregulators and up-regultated the negative regulator on the upstream of AcrAB-TolC, thereby reducing the expression of AcrAB-TolC, which decreased the bacterial resistance against AMP;
     5. AS increased the accumulation of AMP within E. coli ATCC35218, which might be associated with the decreased the efflux output of antibiotics by the inhibition of the main efflux pump system AcrAB-TolC. While, the accumulation of the antibiotics was reduced when AS was over some certain concentration.
     6. AS could not increase the accumulation of DNR in E. coli AG100A (△AcrB), suggesting AS lost its main target when AcrB was knockout. And, AS could not increase the accumulation of DNR in E. coli AG100A transfected with pQE30-AcrB, indicating AS could not play its inhibitory effect on efflux pumps in the presence of the AcrB overexpression.
引文
1. Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19:382-402.
    2. Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem 2009;78:119-146.
    3. Nishino K. Role of drug efflux pumps in bacterial multidrug resistance and virulence. Analysis to identify novel drug targets and counteract multidrug resistance and virulence. Jpn J Antibiot. 2008;61:105-113.
    4. Kumar A, Schweizer HP. Bacterial resistance to antibiotics: active efflux and reduced uptake. Adv Drug Deliv Rev. 2005;57:1486-1513.
    5. Webber MA, Piddock LJ. The importance of efflux pumps in bacterial antibiotic resistance. J Antimicrob Chemother. 2003;51:9-11.
    6. Van-Bam beke F, Balzi E, Tulkens PM. Antibiotic efflux pumps. Biochem Pharmacol. 2000;60:457-470.
    7. Poole K. Efflux-mediated antimicrobial resistance. J Antimicrobial Chemother. 2005;56: 20-51.
    8. Bolhuis H, Molenaar D, Poelarends G, et al. Proton motive force-driven and ATP-dependent drug extrusion systems in multidrug-resistant Lactococcus lactis. J Bacteriol. 1994; 176:6957-6964.
    9. Ma D, Cook DN, Hearst JE, et al. Efflux pumps and drug resisitance in gram-negative bacteria. Trends Microbiol. 1994;2:489-489.
    10. Nikaido H, Takatsuka Y. Mechanisms of RND multidrug efflux pumps. Biochim Biophys Acta. 2009;1794:769-781.
    11. Paix?o L, Rodrigues L, Couto I, et al. Fluorometric determination of ethidium bromide efflux kinetics in Escherichia coli. J Biol Eng. 2009;3:18.
    12. Boutoille D, Jacqueline C, Le Mabecque V, et al. In vivo impact of the MexAB-OprM efflux system on beta-lactam efficacy in an experimental model of Pseudomonas aeruginosa infection. Int J Antimicrob Agents. 2009;33:417-420.
    13. Srikumar R, Tsang E, Poole K. Contribution of the MexAB-OprM multidrug efflux system to the beta-lactam resistance of penicillin-binding protein and beta-lactamase-derepressedmutants of Pseudomonas aeruginosa. J Antimicrob Chemother. 1999;44:537-540.
    14. Stoitsova SO, Braun Y, Ullrich MS, et al. Characterization of the RND-type multidrug efflux pump MexAB-OprM of the plant pathogen Pseudomonas syringae. Appl Environ Microbiol. 2008;74:3387-3393.
    15. Bohnert JA, Kern WV. Selected arylpiperazines are capable of reversing multidrug resistance in E scherichia Coli overexpressing RND efflux pumps. Antimicrob Agents Chemother. 2005;49:849-852.
    16. Mallea M, Chevalier J, Eyraud A, et al. Inhibitors of antibiotic efflux pump in resistant Enterobacter aerogenes strains. Biochem Biophys Res Commun. 2002;293:1370-1373.
    17. Piddock LJ, Jin YF, Griggs DJ. Effect of hydrophobicity and molecular mass on the accumulat ion of fluoroquinolones by Staphylococcus aureus. J Antimicrob Chemother. 2001;47 (3): 261-270.
    18. Mitchell BA, Paulsen IT, B rown MH, et al. Bioenerget ics of the staphylococcal multidrug export protein QacA. Identification of distinct binding sites for monovalent and divalent cations. J Biol Chem. 1999;274:3541-3548.
    19. Lomovskaya O, Warren MS, Lee A, et al. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob Agents Chemother. 2001;45:105-116.
    20. Stermitz FR, Tawara-Matsuda J, Lorenz P, et al. 5'-Methoxyhydnocarpin-D and pheophorbide A: Berberis species components that potentiate berberine growth inhibition of resistant Staphylococcus aureus.. J Nat Prod. 2000;63:1146-1149.
    21. Belofsky G, Percivill D, Lewis K, et al. Phenolic metabolites of Dalea versicolor that enhance antibiotic activity against model pathogenic bacteria. J Nat Prod. 2004;67: 481-484.
    22. Marquez B, Neuville L, Moreau NJ, et al. Multidrug resistance reversal agent from Jatropha elliptica. Phytochemistry. 2005;66:1804-1811.
    23. Li B, Zhang R, Li J, et al. Antimalarial artesunate protects sepsis model mice against heat-killed Escherichia coli challenge by decreasing TLR4, TLR9 mRNA expressions and transcription factor NF-kappa B activation. Int Immunopharmacol. 2008; 8: 379 -389.
    24. Rani Basu L, Mazumdar K, Dutta NK, et al. Antibacterial property of the antipsychotic agent prochlorperazine, and its synergism with methdilazine. Microbiol Res.2005;160:95-100.
    25. Lee EJ, Schmittgen TD. Comparison of RNA assay methods used to normalize cDNA for quantitative real-time PCR. Anal Biochem. 2006;357:299-301.
    26. Livak K J, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (-Delta Delta C (T)) Method. Methods. 2001;25:402-408.
    27. Schmittgen T D. Real-time quantitative PCR. Methods. 2001;25:383-385.
    28. Sambrook J. ed. Molecular cloning-Laboratory manuals (3rd). Beijing: Science Press, 2002:126-137.
    29. Meng J, Wang H, Hou Z, et al. Novel anion liposome-encapsulated antisense oligonucleotide restores susceptibility of Methicillin-resistant Staphylococcus aureus and reduces mice from lethal sepsis by targeting mecA. Antimicrob Agents Chemother 2009;53:2871-2878.
    30.陈民钧,王辉. 1994-2001年中国重症监护病房革兰阴性菌耐药性监测研究.中华医学杂志. 2003;83:375-381.
    31.杨世杰.药理学.北京:人民卫生出版社, 2005, 409-410.
    32. Walsh, C. Molecular mechanisms that confer antibacterial drug resistance. Nature. 2000; 406:775-781.
    33. Fuda C, Suvorov M, Shi Q, et al. Shared functional attributes between the mecA gene product of Staphylococcus sciuri and penicillin-binding protein 2a of methicillin-resistant Staphylococcus aureus. Biochemistry. 2007;46:8050-8057.
    34. Fuda CC, Fisher JF, Mobashery S. b-Lactam resistance in Staphylococcus aureus: the adaptive resistance of a plastic genome. Cellular Molecular Life Sciences. 2005; 62: 2617-2633.
    35. B. Rouveix. Clinical implications of multiple drug resistance efflux pumps of pathogenic bacteria. Journal of Antimicrobial Chemotherapy. 2007;59:1208-1209.
    36. Lorca GL, Barabote RD, Zlotopolski V, et al. Transport capabilities of eleven gram- positive bacteria: comparative genomic analyses. Biochim Biophys Acta. 2007; 768: 1342-1366.
    37. Hasdemir U. The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria. Mikrobiyol Bul. 2007;41:309-327.
    38. Grkovic S, Brown MH, Skurray RA. Regulation of bacterial drug export systems. Microbiol Mol Biol Rev. 2002;66:671-701.
    39. Poole K. Outer membranes and efflux: the path to multidrug resistance in Gram-negative bacteria. Curr Pharm Biotechnol. 2002;3:77-98.
    40. Poole K. Multidrug resistance in Gram-negative bacteria. Curr Opin Microbiol. 2001;4: 500-508.
    41. Linares JF, López JA, Camafeita E, et al. Overexpression of the multidrug efflux pumps MexCD-OprJ and MexEF-OprN is associated with a reduction of type III secretion in Pseudomonas aeruginosa. J Bacteriol. 2005;187:1384-1391.
    42. Carilla-Latorre S, Calvo-Garrido J, Bloomfield G, et al. Dictyostelium transcriptional responses to Pseudomonas aeruginosa: common and specific effects from PAO1 and PA14 strains. BMC Microbiol. 2008;8:109.
    43. Baranwal S, Dey K, Ramamurthy T, et al. Role of active efflux in association with target gene mutations in fluoroquinolone resistance in clinical isolates of Vibrio cholerae. Antimicrob Agents Chemother. 2002;46:2676-2678.
    44. Navia MM, Ruiz J, Ribera A, et al. Analysis of the mechanisms of quinolone resistance in clinical isolates of citrobacter freundii. J Antimicrob Chemother. 2000;45: 556.
    45. Ishii H, Sato K, Hoshino K, et al. Active efflux of ofloxacin by a highly quinolone-resistant strain of Proteus vulgaris. J Antimicrob Chemother. 1991;28:827-836.
    46. Griffith DC, Corcoran E, Lofland D, et al. Pharmacodynamics of levofloxacin against Pseudomonas aeruginosa with reduced susceptibility due to different efflux pumps: do elevated MICs always predict reduced in vivo efficacy? Antimicrob Agents Chemother. 2006;50:1628-1632.
    47. Touze T, Eswaran J, Bokma E, et al. Interactions underlying assembly of the Escherichia coli AcrAB-TolC multidrug efflux system. Mol Microbiol.2004;53:697 -706.
    48. Elkins CA, Nikaido H. Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump. J Bacteriol. 2003;185:5349-5356.
    49. Zgurskaya HI, Nikaido H. Cross-linked complex between oligomeric periplasmic lipoprotein AcrA and the inner membrane associated multidrug efflux pump AcrB from Escherichia coli. J Bacteriol. 2000;182:4264-4267.
    50. Murakami S, Nakashima R,Yamashita E, et al. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature. 2002;419:587-593.
    51. Zgurskaya HI, Nikaido H. Bypassing the periplasm: reconstitution of the AcrAB multidrugefflux pump of Escherichia coli. Proc Natl Acad Sci USA.1999;96:7190-71951.
    52. Satoshi Nagakubo, Kunihiko Nishino, Takahiro Hirata, et al. The Putative Response Regulator BaeR Stimulates Multidrug Resistance of Escherichia coli via a Novel Multidrug Exporter System, MdtABC. J. Bacteriol. 2002;184:4161-4167.
    53. Alekshun MN, Levy SB. Regulation of chromosomally mediated multiple antibiotic resistance :the mar regulon. Antimicrob Agents Chemother.1997;41:2067-2075.
    54.佟海山,李乾学,邓彦宏,等.大肠埃希菌多重耐药调节基因AcrR和MarR突变.中国兽医杂志. 2007;43:10-12.
    55. Ding H, Demple B. Direct nitric oxide signal transduction via nitro sylation of iron -sulfur centers in the SoxR transcription activator. Proc Natl Acad Sci USA. 2000; 97:5146-5150.
    56. Rosenberg E Y, Bertenthal D, Nilles M L, et al. Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol Microbiol. 2003;48:1609-1619.
    57. Miller P F, Sulavik M C. Overlap s and parallels in the regulation of intrinsic multiple antibiotic resistance in Escherichia coli. Mol Microbiol. 1996;21:441-448.
    58. Rahmat i S, Yang S, Davidson A L, et al. Cont rol of the AcrAB mult idrug efflux pump by quorum-sensing regulator SdiA. Mol Microbiol. 2002;43:677-685.
    59. Chollet R, Chevalier J, Bollet C, et al. RamA is an alternate act ivator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob Agents Chemother. 2004;48: 2518-2523.
    60. Rami A, Toutain C M, Jacq A. An increased level of alternative sigma factor RpoS partially suppresses drug hypersensitivity associated with inactivation of the multidrug resistance pump AcrAB in Escherichia coli. Res Microbiol. 2005;156:356-360.
    61. Nishino, K., and A. Yamaguchi. EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coli. J. Bacteriol. 2002;184;2319-2323.
    62. Tikhonova EB, Devroy VK, Lau SY and Zgurskaya HI. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol. 2001;183:5639-5644.
    63. de Cristóbal RE, Vincent PA, Salomón RA. Multidrug resistance pump AcrAB-TolC is required for high-level, Tet(A)-mediated tetracycline resistance in Escherichia coli. JAntimicrob Chemother. 2006;58:31-36.
    64. Baranova, N., H. Nikaido. The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J. Bacteriol. 2002, 184:4168-4176.
    65. Nagasawa, S., K. Ishige, and T. Mizuno. Novel members of the two component signal transduction genes in Escherichia coli. J. Biochem. 1993,114:350-357.
    66. Nishino, K., J. Yamada, H. Hirakawa, et al. Roles of TolC-dependent multidrug transporters of Escherichia coli in resistance toβ-lactams. Antimicrob. Agents Chemother. 2003;47:3030-3033.
    67. Nishino, K., and A. Yamaguchi. Analysis of a complete library of putative drug transporter genes in Escherichia coli. J. Bacteriol. 2001;183:5803-5812.
    68. Sulavik, M. C., C. Houseweart, C. Cramer, et al. Shimer. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 2001;45:1126-1136.
    69. Nishino, K., and A. Yamaguchi. EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coli. J. Bacteriol. 2002;184:2319-2323.
    70. Masuda, N., and G. M. Church. Regulatory network of acid resistance genes in Escherichia coli. Mol. Microbiol. 2003;48:699-712.
    71. Nishino, K., and A. Yamaguchi. Role of histone-like protein H-NS in multidrug resistance of Escherichia coli. J. Bacteriol. 2004;186:1423-1429.
    72. Kobayashi, A., H. Hirakawa, T. Hirata, K. Nishino, and A. Yamaguchi. Growth phase- dependent expression of drug exporters in Escherichia coli and its contribution to drug tolerance. J. Bacteriol. 2006;188:106-116.
    73. Hirakawa, H., Y. Inazumi, T. Masaki, et al. Indole induces the expression of multidrug exporter genes in Escherichia coli. Mol. Microbiol. 2005; 55:1113-1126.
    74. Page`s J-M, Masi M, Barbe J. Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med. 2005;11:382-389.
    75. Davin-Regli A, Bolla JM, James CE, et al. Membrane permeability and regulation of drug "influx and efflux" in enterobacterial pathogens. Curr Drug Targets. 2008; 9:750-759.
    76. Griffith DC, Corcoran E, Lofland D, et al. Pharmacodynamics of levofloxacin against Pseudomonas aeruginosa with reduced susceptibility due to different efflux pumps: do elevated MICs always predict reduced in vivo efficacy? Antimicrob Agents Chemother. 2006;50:1628-1632.
    77. Agustiandari H, Lubelski J, van den Berg van Saparoea HB,et al. LmrR is a transcriptional repressor of expression of the multidrug ABC transporter LmrCD in Lactococcus lactis. J Bacteriol. 2008;190:759-763.
    78. Zaidi AH, Bakkes PJ, Lubelski J, et al. The ABC-type multidrug resistance transporter LmrCD is responsible for an extrusion-based mechanism of bile acid resistance in Lactococcus lactis. J Bacteriol. 2008;190:7357-7366.
    79. Miyazono K, Tsujimura M, Kawarabayasi Y, et al. Proteins. 2007;67:1138-1146.
    80.董妍君,李卫东.双氢青蒿素对BXSB狼疮小鼠自身抗体产生、TNFα分泌及狼疮性肾炎病理改变的影响.中国中西医结合杂志. 2003;13:676-679
    81.叶彬,陈雅棠.双氢青蒿素、青蒿琥酯治疗大鼠肺孢子虫肺炎的疗效研究.中国人兽共患病杂志. 2001;17:43-45.
    82.丁小芬,胡红.青蒿治疗类风湿性关节炎的免疫药理作用.中国中医基础医学杂志. 2006;12:75-76.
    83.刘鹏,叶玉津.青蒿琥酯对类风湿关节炎滑膜细胞TNF-α分泌的抑制作用及其机制研究.中国药物与临床. 2007;7:520-523.
    84.梁爱华,薛宝云.青蒿琥酯对内毒素诱导的一氧化氮合成的抑制作用.中国中药杂志. 2001;11:48-51.
    85.梁爱华,薛宝云.青蒿琥酯对内毒素诱导的炎性因子合成抑制作用的研究.中国中西医结合急救杂志. 2001;5:7-10.
    86.田雪莲,王莎莉.青蒿琥酯诱导人白血病细胞K562胀亡和凋亡作用的研究.重庆医科大学学报. 2008;33:796-798.
    87.李哲,袁守军,聂丽平,等.青蒿琥酯诱导肿瘤细胞凋亡与抑制活蛋白表达有关.中国临床药理学与治疗学. 2004;9:607-611.
    88.王玮琴,周慧君,陈欢欢,等.青蒿琥酯抑制新生血管生成的作用.中国药理学与毒理学杂志. 2004;18:32-36.
    89.张居馨,王士贤,张富庚,等.青蒿琥酯对人宫颈癌Hela细胞的乏氧杀伤和辐射增敏作用初探.癌症. 2001;20:1363-1366.
    90.董俊清,赵妍妍,姚琦,等.青蒿琥酯增加人脑胶质瘤细胞CHG25对β射线的敏感性.第三军医大学学报. 2010;32:588-592.
    91.郑红艳.青蒿素母液体外抗真菌试验.四川畜牧兽医, 2001;28:33-34.
    92.金慧玲,唐素兰.青蒿琥酯抗真菌、抗细菌的实验研究.中国微生态学杂志.2003; 15:26-28.
    93. Guo QY, Xiao G, Li R, Guan SM, Zhu XL, Wu JZ. Treatment of Streptococcus mutants with antisense oligodeoxyribonucleotides to gtfB mRNA inhibits GtfB expression and function. FEMS Microbiol Lett. 2006;264:8-14.
    94. Gebhart CL, Kabanov AV. Evaluation of polyplexes as gene transfer agents. J Control Release. 2001;73:401-416.
    95. Perry D, Slade HD. Transformation of streptococci to streptomycin resistance. J Bacteriol. 1962;83:443-449.
    96. Poole K. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob Agents Chemother. 2000; 44:2233-2241.
    97. Barbosa TM, Levy SB. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J Bacteriol. 2000; 182: 3467 -3474.
    98. Michán C, Manchado M, Pueyo C. SoxRS down-regulation of rob transcription. J Bacteriol. 2002;184:4733-4738
    99. Helling RB ,Janes BK,Kimball H , et al . Toxic waste disposal in Escherichia coli. J Bacteriol. 2002;184:3699-3703.
    1. Hasdemir U. The role of cell wall organization and active efflux pump systems in multidrug resistance of bacteria. Mikrobiyol Bul. 2007;41:309-327.
    2. Vila J, Martínez JL. Clinical impact of the over-expression of efflux pump in non- fermentative Gram-negative bacilli, development of efflux pump inhibitors. Curr Drug Targets. 2008;9:797-807.
    3. Poole K. Efflux-mediated antimicrobial resistance. J Antimicrob Chemother. 2005;56: 20-51.
    4. Piddock LJ. Clinically relevant chromosomally encoded multidrug resistance efflux pumps in bacteria. Clin Microbiol Rev. 2006;19:382-402.
    5. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003;67:593-656.
    6. Page`s J-M. Role of bacterial porins in antibiotic susceptibility of Gram-negative bacteria. In: Benz R. ed. Bacterial and Eukaryotic Porins. Chichester: Wiley-VCH, 2004; 41-59.
    7. Higgins CF. Multiple molecular mechanisms for multidrug resistance transporters. Nature. 2007;446:749-757.
    8. Saier MH Jr. Tracing pathways of transport protein evolution. Mol Microbiol. 2003;48: 1145-1156.
    9. Touze T, Eswaran J, Bokma E, et al. Interactions underlying sembly of the Escherichia coli AcrAB. TolC multidrug efflux system. Mol Microbiol, 2004, 53: 697-706.
    10. Nishino K, Yamada J, Hirakawa H, et al. Roles of TolC-dependent multidrug transporters of Escherichla coli in resistance toβ-lactams. Antimicrob Agents Chemother. 2003;47: 3030-3033.
    11. Yu EW, Aires JR, Nikaido H. AcrB multidrug efflux pump of Escherichla coli:composite substrate-binding cavity of exceptional flexibility generates its extremely wide substrate specificity. J Bacteriol. 2003;185:5657-5664.
    12. Aono R, Tsukagoshi N, Yamamoto M. Involvement of outer membrane protein TolC, a possible member of the mar-sox regulon, in maintenance and improvement of organicsolvent tolerance of Escherichia coli K-12. J Bacteriol. 1998;180:938-944.
    13. Lobedanz S, Bokma E, Symmons MF, et al. A periplasmic coiled-coil interface underlying TolC recruitment and the assembly of bacterial drug efflux pumps. Proc Natl Acad Sci U S A. 2007;104:4612-4617.
    14. Koronakis V. TolC--the bacterial exit duct for proteins and drugs. FEBS Lett. 2003, 555: 66-71.
    15. Zoetendal EG, Smith AH, Sundset MA, et al. The BaeSR two-component regulatory system mediates resistance to condensed tannins in Escherichia coli. Appl Environ Microbiol. 2008;74: 535-539.
    16. Nishino K, Honda T, Yamaguchi A. Genome-wide analyses of Escherichia coli gene expression responsive to the BaeSR two-component regulatory system. J Bacteriol. 2005; 187:1763-1772.
    17. Baranova N, Nikaido H. The baeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J Bacteriol. 2002; 184: 4168-4176.
    18. White, D. G., J. D. Goldman, B. Demple, et al. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 1997;179: 6122–6126.
    19. Satoshi Nagakubo, Kunihiko Nishino, Takahiro Hirata, et al. The Putative Response Regulator BaeR Stimulates Multidrug Resistance of Escherichia coli via a Novel Multidrug Exporter System, MdtABC. J. Bacteriol. 2002;184:4161-4167.
    20. Siebold, C., K. Flukiger, R. Beutler, et al. Carbohydrate transporters of the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS). FEBS Lett. 2001; 504:104-111.
    21. Nishino, K., and A. Yamaguchi. EvgA of the two-component signal transduction system modulates production of the yhiUV multidrug transporter in Escherichia coli. J. Bacteriol. 2002;184: 2319-2323.
    22. Tikhonova EB, Devroy VK, Lau SY and Zgurskaya HI. Novel macrolide-specific ABC-type efflux transporter in Escherichia coli. J Bacteriol. 2001;183:5639-5644.
    23. de Cristóbal RE, Vincent PA and Salomón RA. Multidrug resistance pump AcrAB-TolC is required for high-level, Tet(A)-mediated tetracycline resistance in Escherichia coli. J Antimicrob Chemother. 2006;58:31-36.
    24. Jurgen A. Bohnert, Sabine Schuster, Eva Fa¨hnrich, et al. Altered spectrum of multidrug resistance associated with a single point mutation in the Escherichia coli RND-type MDR efflux pump YhiV (MdtF). Journal of Antimicrobial Chemotherapy. 2007; 59:1216-1222.
    25. Li X-Z, Nikaido H. Efflux-mediated drug resistance in bacteria. Drugs.2004;64:159 -204.
    26. Stubbings W, Bostock J, Ingham E, et al. Deletion of the multiple-drug efflux pump AcrAB in Escherichia coli prolongs the postantibiotic effect. Antimicrob Agents Chemother 2005;49:1206-1208.
    27. Hirata T, Saito A, Nishino K, et al. Effects of efflux transporter genes on susceptibility of Escherichia coli to tigecycline (GAR-936). Antimicrob Agents Chemother 2004; 48:2179-84.
    28. Keeney D, Ruzin A, McAleese F, et al. MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J Antimicrob Chemother 2008;61:46-53.
    29. Gotoh N, Murata T, Ozaki T, et al. Intrinsic resistance of Escherichia coli to mureidomycin A and C due to expression of the multidrug efflux system AcrAB-TolC: comparison with the efflux systems of mureidomycin-susceptible Pseudomonas aeruginosa. J Infect Chemother. 2003;9:101-103.
    30. Oppegard LM, Hamann BL, Streck KR, et al. In vivo and in vitro patterns of the activity of simocyclinone D8, an angucyclinone antibiotic from Streptomyces antibioticus. Antimicrob Agents Chemother. 2009;53:2110-2119.
    31. Delgado MA, Vincent PA, Farias RN, et al. YojI of Escherichia coli functions as a microcin J25 efflux pump. J Bacteriol. 2005;187:3465-3470.
    32. Socias SB, Vincent PA, Salomon RA. The leucine-responsive regulatory protein, Lrp, modulates microcin J25 intrinsic resistance in Escherichia coli by regulating expression of the YojI microcin exporter. J Bacteriol 2009;191:1343-1348.
    33. Wu B, Xia C, Du X, et al. Influence of anti-FloR antibody on florfenicol accumulation in florfenicol-resistant Escherichia coli and enzyme-linked immunosorbent assay for detection of florfenicol-resistant E. coli isolates. J Clin Microbiol. 2006;44:378-382.
    34. Hansen LH, Johannesen E, Burmolle M, et al. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob Agents Chemother 2004;48:3332-3337.
    35. Hansen LH, Sorensen SJ, Jorgensen HS, et al. The prevalence of the OqxAB multidrug efflux pump amongst olaquindox-resistant Escherichia coli in pigs. Microb Drug Resist. 2005;11:378-382.
    36. Hansen LH, Jensen LB, Sorensen HI, et al. Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. J Antimicrob Chemother 2007;60:145-147.
    37. Yamane K, Wachino J, Suzuki S, et al. New plasmid-mediated fluoroquinolone efflux pump, QepA, found in an Escherichia coli clinical isolate. Antimicrob Agents Chemother 2007;51:3354-3360.
    38. Yamane K, Wachino J, Suzuki S, et al. Plasmid-mediated qepA gene among Escherichia coli clinical isolates from Japan. Antimicrob Agents Chemother 2008;52:1564-1566.
    39. Cattoir V, Poirel L, Nordmann P. Plasmid-mediated quinolone resistance pump QepA2 in an Escherichia coli isolate from France. Antimicrob Agents Chemother 2008;52:3801-3804.
    40. Baudry PJ, Nichol K, DeCorby M, et al. Mechanisms of resistance and mobility among multidrug-resistant CTX-M-producing Escherichia coli from Canadian intensive care units: the 1st report of QepA in North America. Diagn Microbiol Infect Dis 2009;63:319-326.
    41. Page`s J-M, Masi M, Barbe J. Inhibitors of efflux pumps in Gram-negative bacteria. Trends Mol Med. 2005;11: 382-389.
    42. Davin-Regli A, Bolla JM, James CE, et al. Membrane permeability and regulation of drug "influx and efflux" in enterobacterial pathogens. Curr Drug Targets. 2008;9: 750-759.
    43. Lomovskaya O, Bostian KA. Practical applications and feasibility of efflux pump inhibitors in the clinic-a vision for applied use. Biochem Pharmacol. 2006;71: 910-918.
    44. Schito AM, Schito GC. Levofloxacin, a broad spectrum anti-infective: from Streptococcus pneumoniae to Pseudomonas aeruginosa. J Chemother. 2004;16: 3-7.
    45. Kriengkauykiat J, Porter E, Lomovskaya O, et al. Use of an efflux pump inhibitor to determine the prevalence of efflux pump-mediated fluoroquinolone resistance and multidrug resistance in Pseudomonas aeruginosa. Antimicrob Agents Chemother. 2005;49:565-570.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700