胡杨果糖-1,6-二磷酸醛缩酶的定位及功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究将从胡杨中克隆的果糖-1,6-二磷酸醛缩酶基因(PeALD)构建到原核表达载体pGEX-4T-1上,经IPTG诱导成功获得融合蛋白GST:PeALD,并将蛋白进行纯化,得到目的条带大小约为52KD。转化大肠杆菌的耐盐性实验表明,PeALD基因的成功表达有利于提高大肠杆菌菌株的耐盐性。为研究该基因编码蛋白在植物细胞中的定位情况,我们将基因的Open Reading Frame (ORF)区构建到定位表达载体pMDC85上,该载体带有GFP标签,通过PEG介导的拟南芥瞬时转化法观察融合蛋白PeALD:GFP在细胞中的定位情况,结果显示该蛋白定位于胞质中,由此说明实验克隆得到的该胡杨果糖-1,6-二磷酸醛缩酶基因编码的是胞质蛋白。T1代烟草种子在盐培养基上的萌发实验表明转基因烟草获得了更高的耐盐性;烟草水培苗经200mMNaCl盐处理一周后,其叶片可溶性糖的质谱检测结果显示转基因烟草植株中葡萄糖的含量有很大提高,表明胡杨果糖-1,6-二磷酸醛缩酶通过促进糖酵解和有氧呼吸途径来提高植物对盐胁迫的适应性。
The fructose-1,6-bisphosphate aldolase gene (PeALD) of Populus euphratica was cloned and constructed to an expression vector pGEX-4T-1. And then the recombinant plasmid pGEX-PeALD was transformed into Escherichia coli competent cell BL21(DE3) to identify the expression of fusion protein GST:PeALD that induced by IPTG. The SDS-PAGE gel electrophoresis showed that the molecular weight of fusion protein was about52KDa.The E. coli strains expressing the PeALD showed a higher salt tolerance compared to control strains that expressing the null vector. We constructed the fusion expression vector PeALD:GFP and identify the localization of PeALD in Arabidopsis mesophyll protoplast. The green fluorescence detected by fluorescence microscope showed that the protein encoded by PeALD localized in the cytoplasm. Seed germination experiment under200mmol· L-1NaCl showed that genetically modified tobacco seeds exhibited a higher salt tolerance. The content of soluble sugars in wile-type and transgene lines was analyzed after salt treatment. Results showed that the content of glucose in transgenic plants was greatly elevated under salt stress. Our data suggest that PeALD enhanced plant salt adaptation through up-regulation of glycolysis and aerobic respiration.
引文
1.蔡以滢,陈珈.植物防御反应中活性氧的产生和作用[J].植物学通报,1999,(02):12-17.
    2.陈海宝,杨春松.水稻醛缩酶嵌合基因的克隆和在大肠杆菌中高表达[J].生物化学与生物物理学报,1997,29(06):89-92.
    3.陈惠萍.活性氧的检测方法[J].华南热带农业大学学报,2000,6(2):14-17.
    4.陈洁,林栖凤.植物耐盐生理及耐盐机理研究进展[J].海南大学学报:自然科学版,2003,21(2):177-182.
    5.杜秀敏,殷文璇,赵彦修,张慧.植物中活性氧的产生及清除机制[J].生物工程学报,2001,17(2):121-125.
    6.方允中,李文杰.自由基和酶基础理论及其在生物学和医学中的应用[J].北京科学出版杜,1994.
    7.冯立田,赵可夫.叶绿体对盐胁迫的某些生理适应机制[J].植物学通报,1998,15(S1):63-68.
    8.冯燕,陈晓,施定基,等.水稻胞质FBA基因在鱼腥藻7120中的表达及其对光合作用的调控[J].植物研究,2006,26(06):691-698.
    9.冯燕.水稻胞质FBA基因在鱼腥藻7120中的表达及其对光合碳同化的调控[D].上海师范大学,2005.
    10.昊永波,薛建辉.盐胁迫对3种白蜡树幼苗生长与光合作用的影响[J].南京林业大学学报(自然科学版),2002,26(3):19-22.
    11.蒋明义,张建华.脱落酸与植物细胞的抗氧化防护[J].植物学报,2004,46(1).
    12.康瑞娟,施定基,丛威,等.果糖-1,6-二磷酸醛缩酶和丙糖磷酸异构酶共表达对蓝藻光合作用效率的影响[J].生物工程学报,2004,20(06):851-855.
    13.李吉涛,龙建琪,叶妙水,等.北美海蓬子盐胁迫条件下抑制差减文库构建与分析[J].分子植物育种,2007,5(03):377-383.
    14.李娜娜,孔维国,张煜,等.野生大豆耐盐性研究进展[J].西北植物学报,2012,32(05):1067-1072.
    15.李全宏,武改兰,李娟.芽孢杆菌转化南瓜六碳糖产生戊糖的研究[J].青岛农业大学学报(自然科学版),2011,28(4).
    16.刘国花.植物抗盐机理研究进展[J].安徽农业科学,2006,34(23):611 1-6112.
    17.刘建红.盐碱地开发治理研究进展[J].山西农业科学,2008,36(12):51-53.
    18.刘群录,张旭家,李义,王沙生,黄有国,蒋湘宁.胡杨液泡膜微囊的纯化及其质子转运活性[J].中国生物化学与分子生物学报,2000,16(3):372-376.
    19.罗秋香,管清杰,金淑梅,等.植物耐盐性分子生物学研究进展[J].分子植物育种,2006,4(6S):57.
    20.吕科.低温条件下小麦返白系中叶绿体果糖1,6-二磷酸醛缩酶的初步研究[D].西北农林科技大学,2011.
    21.吕品,张岩,李建华,等.植物细胞活性氧的产生和清除机制[J].生物学教学,2010(002):4-5.
    22.马海燕,田长彦,冯固,等.多细胞盐腺离子选择性分泌机理及其成因[J].中国科学:生命科学,2010,40(12):1161-1168.
    23.马建华,郑海雷,赵中秋.植物抗盐机理研究进展[J].生命科学研究,2001,5(3):175-179.
    24.马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(02):225-231.
    25.沈文飚,黄丽琴,徐朗莱。植物抗坏血酸过氧化物酶[J].生命的化学(中国生物化学会通讯),1997.5.
    26.石德成,盛艳敏,赵可夫.不同盐浓度的混合盐对羊草苗的胁迫效应[J].植物学报,1998,40(12):53-59.
    27.孙兰菊,岳国峰,王金霞,周百成.植物耐盐机制的研究进展[J].海洋科学,2001,25(4):28-31.
    28.王菲菲.胡杨PeTPK1与PeGPX基因转化及耐盐性功能研究[D].北京林业大学,2012.
    29.魏兰珍,崔轶文,马为民,等.鱼腥藻Ⅱ型果糖-1,6-二磷酸醛缩酶基因的克隆及其在大肠杆菌中的高效表达[J].中国生物工程杂志,2006,26(05):74-77.
    30.吴立全.盐碱地改良模式现状与探索[J].吉林省教育学院学报(学科版),2008,24(2):52.
    31.武春霞,杨静慧,杜长城.日本农业环境保护对中国盐碱地改良的启示[J].天津农业科学,2008,14(03):43-44.
    32.肖雯,贾恢先,蒲陆梅.几种盐生植物抗盐生理指标的研究[J].西北植物学报,2000,20(5):818-825.
    33.杨晓慧,蒋卫杰,魏珉,余宏军.植物对盐胁迫的反应及其抗盐机理研究进展[J].山东农业大学学报:自然科学版,2006,37(2):302-305.
    34.张道远,尹林克,潘伯荣.柽柳泌盐腺结构,功能及分泌机制研究进展[J].西北植物学报,2003,23(1):190-194.
    35.张帆.胡杨果糖-1,6-二磷酸醛羧酶基因PeALD的克隆及功能初步分析[D].北京林业大学,2011.
    36.张克强,白成云,马宏斌,等.大同盆地金沙滩盐碱地综合治理技术开发研究[J].农业工程学报,2005,21(S1):136-141.
    37.张晓宁,林长发,陈火英,等.受NaCl诱导的盐藻果糖-1,6-二磷酸醛缩酶cDNA的克隆及其在烟草中的表达[J].中国科学:C辑,2002,32(5):392-398.
    38.张艳.丙酮酸激酶OsPK1对水稻重要农艺性状的影响及机制研究[D].清华大学,2011.
    39.赵可夫,范海.盐生植物及其对盐渍生境的适应生理[M].科学出版社,2005.
    40. Arenas-Huertero F, Arroyo A, Zhou L, et al. Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar[J]. Genes & Development,2000,14(16):2085-2096.
    41. Barkla B J, Vera-Estrella R, Hernandez-Coronado M, et al. Quantitative proteomics of the tonoplast reveals a role for glycolytic enzymes in salt tolerance[J]. The Plant Cell Online,2009, 21(12):4044-4058.
    42. Barry G F, Cheikh N, Kishore G M. Expression of fructose-1,6-bisphosphate aldolase in transgenic plants for improved crops with better solids uniformity by improving carbon availability[J]. PCT Int Appl WO,1998,9858069(77):23.
    43. Bogeat-Triboulot M B, Brosche M, Renaut J, et al. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions[J]. Plant Physiology,2007,143(2):876-892.
    44. Branden C I, Jornvall H, Eklund H, et al. The Enzymes[J]. The Enzymes,1975,2:103-190.
    45. Chen G Y, Yong Z H, Liao Y, et al. Photosynthetic acclimation in rice leaves to free-air CO2 enrichment related to both ribulose-1,5-bisphosphate carboxylation limitation and ribulose-1, 5-bisphosphate regeneration limitation[J]. Plant and Cell Physiology,2005,46(7):1036-1045.
    46. Chen S, Li J, Fritz E, et al. Sodium and chloride distribution in roots and transport in three poplar genotypes under increasing NaCl stress[J]. Forest Ecology and Management,2002a,168(1): 217-230.
    47. Chen S, Li J, Wang S, et al. Effects of NaCl on shoot growth, transpiration, ion compartmentation, and transport in regenerated plants of Populus euphratica and Populus tomentosa[J]. Canadian Journal of Forest Research,2003,33(6):967-975.
    48. Chen S, Li J, Wang S, et al. Salt, nutrient uptake and transport, and ABA of Populus euphratica; a hybrid in response to increasing soil NaCl[J]. Trees,2001,15(3):186-194.
    49. Chen S, Li J, Wang T, et al. Osmotic stress and ion-specific effects on xylem abscisic acid and the relevance to salinity tolerance in poplar[J]. Journal of Plant Growth Regulation,2002b,21(3): 224-233.
    50. Chen S, Olbrich A, Langenfeld-Heyser R, et al. Quantitative X-ray microanalysis of hydrogen peroxide within plant cells[J]. Microscopy research and technique,2009,72(1):49-60.
    51. Chen S, Polle A. Salinity tolerance of Populus[J]. Plant Biology,2010,12(2):317-333.
    52. Chen S, Wang S, Altman A, et al. Genotypic variation in drought tolerance of poplar in relation to abscisic acid[J]. Tree physiology,1997,17(12):797-803.
    53. Cheng W H, Endo A, Zhou L, et al. A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions[J]. Science Signaling,2002,14(11): 2723.
    54. Couee I, Sulmon C, Gouesbet G, et al. Involvement of soluble sugars in reactive oxygen species balance and responses to oxidative stress in plants[J]. Journal of Experimental Botany,2006,57(3): 449-459.
    55. Fan W, Zhang Z, Zhang Y. Cloning and molecular characterization of fructose-1,6-bisphosphate aldolase gene regulated by high-salinity and drought in Sesuvium portulacastrum[J]. Plant cell reports,2009,28(6):975-984.
    56. Gefflaut T, Blonski C, Perie J, et al. Class I aldolases:substrate specificity, mechanism, inhibitors and structural aspects[J]. Progress in biophysics and molecular biology,1995,63(3):301.
    57. Glenn E P, Watson M C, O'leary J W, et al. Comparison of salt tolerance and osmotic adjustment of low-sodium and high-sodium subspecies of the C4 halophyte, Atriplex canescens[J]. Plant, Cell & Environment,1992,15(6):711-718.
    58. Greenway H, Munns R. Mechanisms of salt tolerance in nonhalophytes[J]. Annual review of plant physiology,1980,31(1):149-190.
    59. Gries D, Zeng F, Foetzki A, et al. Growth and water relations of Tamarix ramosissima and Populus euphratica on Taklamakan desert dunes in relation to depth to a permanent water table[J]. Plant, cell & environment,2003,26(5):725-736.
    60. Gross W, Lenze D, Nowitzki U, et al. Characterization, cloning, and evolutionary history of the chloroplast and cytosolic class I aldolases of the red alga Galdieria sulphuraria[J]. Gene,1999, 230(1):7-14.
    61. Haake V, Zrenner R, Sonnewald U, et al. A moderate decrease of plastid aldolase activity inhibits photosynthesis, alters the levels of sugars and starch, and inhibits growth of potato plants[J]. The Plant Journal,1998,14(2):147-157.
    62. Hasegawa P M, Bressan R A, Zhu J K, et al. Plant cellular and molecular responses to high salinity[J]. Annual review of plant biology,2000,51(1):463-499.
    63. Hernandez J A, Corpas F J, Gomez M, et al. Salt-induced oxidative stress mediated by activated oxygen species in pea leaf mitochondria[J]. Physiologia Plantarum,1993,89(1):103-110.
    64. Hidaka S, Kadowaki K, Tsutsumi K, et al. Nucleotide sequence of the rice cytoplasmic aldolase cDNA[J]. Nucleic acids research,1990,18(13):3991.
    65. Horemans N, Foyer C H, Asard H. Transport and action of ascorbate at the plant plasma membrane[J]. Trends in Plant Science,2000,5(6):263-267.
    66. Hukin D, Cochard H, Dreyer E, et al. Cavitation vulnerability in roots and shoots:does Populus euphratica Oliv., a poplar from arid areas of Central Asia, differ from other poplar species?[J]. Journal of experimental botany,2005,56(418):2003-2010.
    67. Incharoensakdi A, Takabe T, Akazawa T. Effect of betaine on enzyme activity and subunit interaction of ribulose-1,5-bisphosphate carboxylase/oxygenase from Aphanothece halophytica[J]. Plant physiology,1986,81(4):1044-1049.
    68. Iwaki T, Wadano A, Yokota A, et al. Aldolase—an important enzyme in controlling the ribulose 1, 5-bisphosphate regeneration rate in photosynthesis[J]. Plant and cell physiology,1991,32(7): 1083-1091.
    69. Kobayashi H, Masaoka Y, Takahashi Y, et al. Ability of salt glands in Rhodes grass (Chloris gayana Kunth) to secrete Na+ and K+[J]. Soil Science and Plant Nutrition,2007,53(6):764-771.
    70. Konishi H, Yamane H, Maeshima M, et al. Characterization of fructose-bisphosphate aldolase regulated by gibberellin in roots of rice seedling[J]. Plant molecular biology,2004,56(6):839-848.
    71. Laby R J, Kincaid M S, Kim D, et al. The Arabidopsis sugar-insensitive mutants sis4 and sis5 are defective in abscisic acid synthesis and response[J]. The Plant Journal,2000,23(5):587-596.
    72. Larkum A W D. Ionic relations of chloroplasts in vivo[J]. Nature,1968,218(5140):447-449.
    73. Lebherz H G, Leadbetter M M, Bradshaw R A. Isolation and characterization of the cytosolic and chloroplast forms of spinach leaf fructose diphosphate aldolase[J]. Journal of Biological Chemistry, 1984,259(2):1011-1017.
    74. Lu M, Ammar D, Ives H, et al. Physical interaction between aldolase and vacuolar H+-ATPase is essential for the assembly and activity of the proton pump[J]. Journal of Biological Chemistry, 2007,282(34):24495-24503.
    75. Luo Z B, Janz D, Jiang X, et al. Upgrading root physiology for stress tolerance by ectomycorrhizas: insights from metabolite and transcriptional profiling into reprogramming for stress anticipation[J]. Plant physiology,2009,151(4):1902-1917.
    76. Marsh J J, Lebherz H G. Fructose-bisphosphate aldolases:an evolutionary history[J]. Trends in biochemical sciences,1992,17(3):110-113.
    77. McCue K F, Hanson A D. Drought and salt tolerance:towards understanding and application[J]. Trends in Biotechnology,1990,8:358-362.
    78. Meyerhof O, Lohmann K. Enzymic equilibrium reaction between hexosediphosphate and dihydroxyacetonephosphate[J]. Biochem. Z,1934,271:89-110.
    79. Mittler R, Vanderauwera S, Gollery M, et al. Reactive oxygen gene network of plants[J], Trends in plant science,2004,9(10):490-498.
    80. Mittova V, Theodoulou F L, Kiddle G, et al. Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii-a role for matrix isoforms in protection against oxidative damage[J]. Plant, Cell & Environment, 2004,27(2):237-250.
    81. Moriau L, Michelet B, Bogaerts P, et al. Expression analysis of two gene subfamilies encoding the plasma membrane H+-ATPase in Nicotiana plumbaginifolia reveals the major transport functions of this enzyme[J]. The Plant Journal,1999,19(1):31-41.
    82. Nakamura H, Satoh W, Hidaka S, et al. Genomic structure of the rice aldolase isozyme C-1 gene and its regulation through a Ca2+-mediated protein kinase-phosphatase pathway [J]. Plant molecular biology,1996,30(2):381-385.
    83. Osmond C B, Greenway H. Salt responses of carboxylation enzymes from species differing in salt tolerance[J]. Plant Physiology,1972,49(2):260-263.
    84. Plaumann M, Pelzer-Reith B, Martin W F, et al. Multiple recruitment of class-I aldolase to chloroplasts and eubacterial origin of eukaryotic class-II aldolases revealed by cDNAs from Euglena gracilis[J]. Current genetics,1997,31(5):430-438.
    85. Pollak G, Waisel Y. Ecophysiology of salt excretion in Aeluropus litoralis (Graminae)[J]. Physiologia Plantarum,1979,47(3):177-184.
    86. Pollard A, Jones R G W. Enzyme activities in concentrated solutions of glycinebetaine and other solutes[J]. Planta,1979,144(3):291-298.
    87. Ramadan T. Ecophysiology of salt excretion in the xero-halophyte Reaumuria hirtella[J]. New phytologist,1998,139(2):273-281.
    88. Rhodes D, Hanson A D. Quaternary ammonium and tertiary sulfonium compounds in higher plants[J]. Annual review of plant biology,1993,44(1):357-384.
    89. Robinson S P, Downton W J S, Millhouse J A. Photosynthesis and ion content of leaves and isolated chloroplasts of salt-stressed spinach[J]. Plant Physiology,1983,73(2):238-242.
    90. Rook F, Corke F, Card R, et al. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signalling[J]. The Plant Journal, 2001,26(4):421-433.
    91. Rozema J, Riphagen I. Physiology and ecologic relevance of salt secretion by the salt gland of Glaux maritima L[J]. Oecologia,1977,29(4):349-357.
    92. Rutter W J. Evolution of aldolase[C]. Fed. Proc.1964,23:1248-1257.
    93. Ryter S W, Tyrrell R M. Singlet Molecular Oxygen (1O2):A Possible Effector of Eukaryotic Gene Expression[J]. Free radical biology and medicine,1998,24(9):1520-1534.
    94. Schnarrenberger C, Jacobshagen S, Muller B, et al. Evolution of isozymes of sugar phosphate metabolism in green algae[J]. Progress in clinical and biological research,1990,344:743.
    95. Sixto H, Aranda I, Grau J M. Assessment of salt tolerance in Populus alba clones using chlorophyll fluorescence[J]. Photosynthetica,2006,44(2):169-173.
    96. Sonnewald U, Lerchl J, Zrenner R, et al. Manipulation of sink-source relations in transgenic plants[J]. Plant, Cell & Environment,1994,17(5):649-658.
    97. SoPory S K, Munchi M. Critical Review in Plant Sciences,1998,17(3):245-318.
    98. Stone J M, Walker J C. Plant protein kinase families and signal transduction[J]. Plant Physiology, 1995,108(2):451-457.
    99. Takabe T, Incharoensakdi A, Arakawa K, et al. CO2 fixation rate and RuBisCO content increase in the halotolerant cyanobacterium, Aphanothece halophytica, grown in high salinities[J]. Plant physiology,1988,88(4):1120-1124.
    100. Takayama S, McGarvey G J, Wong C H. Microbial aldolases and transketolases:new biocatalytic approaches to simple and complex sugars[J]. Annual Reviews in Microbiology,1997,51(1): 285-310.
    101. Thomson W W, Liu L L. Ultrastructural features of the salt gland of Tamarix aphylla L[J]. Planta, 1967,73(2):201-220.
    102. Uematsu K, Suzuki N, Iwamae T, et al. Increased fructose 1,6-bisphosphate aldolase in plastids enhances growth and photosynthesis of tobacco plants[J]. Journal of experimental botany,2012, 63(8):3001-3009.
    103. Volkmar K M, Hu Y, Steppuhn H. Physiological responses of plants to salinity:a review[J]. Canadian Journal of Plant Science,1998,78(1):19-27.
    104. Watanabe S, Kojima K, Ide Y, et al. Effects of saline and osmotic stress on proline and sugar accumulation in Populus euphratica in vitro[J]. Plant Cell, Tissue and Organ Culture,2000,63(3): 199-206.
    105. Wu C A, Yang G D, Meng Q W, et al. The cotton GhNHXl gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress[J]. Plant and cell physiology,2004, 45(5):600-607.
    106. Yamada S, Komori T, Hashimoto A, et al. Differential expression of plastidic aldolase genes in Nicotiana plants under salt stress[J]. Plant Science,2000,154(1):61-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700