不可逆电穿孔治疗肿瘤的作用机理及临床应用关键技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肿瘤治疗是当今世界公认的公共卫生难题之一。由于受适应症、禁忌症等因素限制以及治疗副作用的影响,现有肿瘤治疗方法的疗效均不甚理想。不可逆电穿孔治疗肿瘤技术,作为一种新的肿瘤治疗方法,具有现有物理治疗方法无法比拟的优势,表现出良好的临床应用前景。
     然而,任何一种治疗方法,由学术思想发展成为真正可供临床应用的技术,必须明确治疗机理、完善治疗设备并解决临床应用中所涉及的若干关键问题。为此,本文在国家自然科学基金重点项目《陡脉冲不可逆性电击穿治疗肿瘤的作用机理及关键技术研究》(批准号:50637020)的支持下,深入研究不可逆电穿孔治疗肿瘤的作用机制,并着力解决该方法在临床推进中的几个关键问题。论文的主要工作有:
     ①研究脉冲电场作用下细胞膜的穿孔机理。建立了含二棕榈酰磷脂酰胆碱的脂质双分子层膜模型,对脉冲电场作用下分子的排列方式及孔洞开放过程进行了仿真分析,发现了穿孔过程中分子的排列规律,提出了脉冲电场诱导脂质分子偶极子重排和疏水基团翻转导致细胞膜出现孔洞的穿孔机理;建立了脉冲电场作用下细胞膜的电场应力模型,提出了基于细胞膜受力分析获取外加脉冲电场场强阈值参数的思路。
     ②研究脉冲电场对肿瘤细胞的作用机制。以人宫颈癌HeLa细胞为研究对象,系统研究了诱导细胞发生可逆电穿孔、不可逆电穿孔及凋亡的脉冲电场的场强参数,首次提出了微秒脉冲电场的“窗口效应”及其“重叠特性”;研究了微秒脉冲电场致肿瘤细胞死亡的过程,首次提出了低场强诱发细胞凋亡并导致不可逆穿孔、高场强诱导细胞不可逆电穿孔而坏死的脉冲电场作用机制;分别对脉冲电场处理后细胞的粘附、侵袭和迁移能力进行了研究,研究了微秒脉冲电场对肿瘤细胞转移能力的影响及其可能的机理。
     ③研究不可逆电穿孔治疗肿瘤技术临床应用的有效性和安全性。选择肝脏肿瘤为不可逆电穿孔治疗技术的适应症,以荷瘤裸鼠为研究对象,通过分析治疗后的抑瘤曲线和生存率曲线等研究了不可逆电穿孔技术对于肝部肿瘤治疗的有效性;以南疆黄羊在体肝脏组织为对象,研究了用B超引导治疗过程和评估治疗效果的可行性,论证了不可逆电穿孔治疗范围的可控性及安全性。
     ④研究不可逆电穿孔治疗肿瘤技术临床治疗参数的优化问题。以静电场分布理论为基础,结合生物热传导理论,提出了一种基于电场和温度场仿真计算,优化脉冲电压幅值、电极针间距离和入针深度等临床治疗参数的方法,并提出一种综合考虑杀伤范围、治疗温度等多种约束条件的治疗参数优化模型的思路,为不可逆电穿孔技术临床治疗参数的确定提供科学的定量依据。
     ⑤研制不可逆电穿孔肿瘤治疗仪样机。基于脉冲功率技术中电容充放电原理,结合高压大功率电力电子开关技术和测控技术,研制了一套不可逆电穿孔肿瘤治疗仪样机。实验表明,该样机稳定可靠,能精确控制输出微秒级方波脉冲的输出电压、脉冲宽度、重复频率和脉冲个数。
     综上所述,论文从分子动力学角度研究了电场脉冲诱导细胞不可逆电穿孔效应的作用机理,在细胞实验的基础上提出了微秒脉冲电场致细胞不可逆电穿孔的作用机制,系统研究了不可电穿孔技术临床应用的有效性、安全性及超声引导可行性等关键技术问题,提出了临床治疗参数的优化方法,研制并完善了新型治疗仪样机,为不可逆电穿孔治疗肿瘤技术的临床推进提供了必要的理论依据和技术支撑。
Tumor is the recognized public health problem all over the world, which is related to human health and life. However, existing therapies don’t work so well considering of the limits of their indications and contraindications as well as side effects. As a new idea of curing tumor, Irreversible electroporation (IRE) has a great advantage compared with the existing physical therapy and shows good clinical application.
     Therefore, we work hard at the mechanisms of IRE treatment and try to solve the basic problems of key technologies involved when the academic thoughts are to be realized in the clinical application. So, an in-depth research is focused on IRE tumor treatment with the support of the national natural science foundation in key project‘Mechanism and key technology researches on IRE tumor treatment of short pulses’(grant No.50637020). The major achievements are as follows:
     ①Researches on mechanism of electroporation in the pulsed electric fields. A model of lipid bilayer containing DPPC was set up. The process of electroporation and its pore size in lipid bilayer was analyzed from the atomic level as well as the mechanism of electroporation formation; the balance equation of the molecular interaction within the cell membrane was constructed to calculate the change process of molecular interaction with the increase of the applied electric intensity.
     ②Researches on mechanism of tumor cells in the pulsed electric fields The electric intensity parameters that induced RE, IRE and apoptosis were analyzed systematically to study the window effect mechanism of the microsecond pulse electric intensity parameters when human cervical cancer HeLa cells were taken as research objects; typical electric pulse parameters were chosen to discuss the tumor cell death process induced by microsecond pulse electric fields and corresponding mechanism; adhesion, invasion and migration abilities of the cells treated by the pulse electric fields have been studied respectively. Accordingly, the effects of the transfer ability of tumor cells treated with microsecond pulses and the possible mechanisms were discussed.
     ③Researches on efficacy and safety of IRE tumor treatment in clinical applications. Liver cancer is taken as the indication of the IRE treatment and tumor-burdened nude mouse as the research objects. It has been confirmed that IRE is an effective method to cure liver cancer by observing the inhibitory curve and survival curves after treatments; the liver tissues of Nanjiang Gazelle were taken as research objects for the application in vivo of the IRE treatment. The feasibility of guiding the treatments and assessing the treatment effects by type-B ultrasonic has been discussed, and it was clarified that the treatment area was controllable, which proved the safety of the method.
     ④Researches on the parameter optimizations of IRE tumor treatment in clinical applications. Based on the electrostatic field distribution theory in combination with the bio-heat transfer theory, we explored the optimal combination of parameters of IRE treatment by the corresponding electric field and temperature field simulations while avoiding thermal effects. That is, the tumor cells were killed when the surrounding normal tissues were little suffered, which offered the references for the choice of the parameters of IRE treatment in clinical applications.
     ⑤Development of IRE treatment prototype. Combined with the high-voltage high-power electronic switches and triggering technology, control technology, a set of IRE tumor treatment device prototype has been developed on the basis of charge-discharge of the capacitor in traditional pulsed power technology. According to the debugging it showed that the prototype is stable and reliable, which is also able to control the output voltage, width, frequency and pulse number of output microsecond square wave pulses accurately.
     In summary, this paper discussed the mechanism of the irreversible electroporation effect from the point of view of molecular dynamics and put forward the mechanism of irreversible electroporation induced by microsecond pulse electric field on the basic of the cell experiments. Besides, we also solved the key technical problems of effectiveness, safety and feasibility of ultrasound guide, proposed optimization strategy of treatment plan, developed and improved the novel treatment system prototype, which provided the material basis, theoretical basis and technical support for the clinical application of IRE tumor treatment.
引文
[1]关景文.人与肿瘤[M].北京:华夏出版社, 1997.
    [2]许昌韶.肿瘤放射治疗学[M].北京:原子能出版社, 1995.
    [3] A. J. DVM, F. Bray, M. M. Center, et al. Global cancer statistics [J]. CA: A Cancer Journal for Clinicians. 2011,61( 2): 69-90.
    [4]李力军,马林,吕大鹏,等.现代高新技术治疗恶性肿瘤[M].北京:人民军医出版社, 2003.
    [5]李振.恶性肿瘤的化学治疗与免疫治疗[M].北京:人民卫生出版社, 1993.
    [6] Schueller G, Kettenbach J, Sedivy R, et al. Expression of heat shock proteins in human hepatocellular carcinoma after radiofrequency ablation in an animal model [J]. Oncol Rep, 2004,12(3):495-499.
    [7] Rossi S,Fornari F,Buscarini L,et al. Percutaneous ultrasound-guided radiofrequency eletrocautery for the treatment of small hepatocellular carcinoma [J]. J Interve Radiol, 1993, 8:97-10.
    [8]陈敏华,严昆,杨薇,等.肝细胞癌256例射频消融治疗5年疗效报告[J].北京大学学报(医学版),2005,37(6):671-672.
    [9] Lu MD, Chen JW. Xie XY, et al. Hepatocellular carcinoma:US guided percutaneous microwave coagulation therapy [J]. Radiology,2001, 221:167-172.
    [10]董宝玮,梁萍.肿瘤热消融治疗:现状和展望.中华医学杂志[J],2006,86(12):793-796.
    [11] Mack MG, Straub R,Eichler K,et al. Breast cancer metastases in liver laser induced interstitial thermotherapy-local tumor control rate and survival data [J]. Radiology,2004, 233:400-409.
    [12] Vogl TJ, Staub R, Eichler K, et al. Colorectal carcinoma metastases in liver laser induced interstitial thermotherapy-local tumor control rate and survival data [J]. Radiology, 2004, 230:450-458.
    [13] Wang ZB, et al. Concept of biological focal field and its importance in tissue resection with high intensity focused ultrasound [J]. J Acoust Soc Am, 1998, 103(5):2869.
    [14] Wu F, Wang ZB, Cao YD, et al. A randomized clinical trial of high intensity focused ultrasound ablation for the treatment of patients with Localized breast cancer [J]. Br J Cancer, 2003, 89:2227-2233.
    [15] Consigliglieri I, dos Santos I, Haemmench D, et al. Theoretical analysis of the heat convection coefficient in large vessels and the significance for thermal ablative therapies [J]. Phys Med Biol, 2003, 48(24):4125-4134.
    [16] Gaga AA, Baust J. Mechanisms of tissue injury in cryosurgery [J]. Cryobiology, 1998, 37:171-186.
    [17] Hoffmann NE, Coad JE, Huot CS, et al. Investigation lf themechnism and the effect of cryoimmunology in the Copenhagen rat [J]. Cryobiology, 2001, 42:59-68.
    [18]秦军,涂汉军,张亚卓,等. G422胶质瘤冷冻后细胞凋亡及相关基因表达的研究[J].中华神经外科杂志, 2003;19(1):30-33
    [19]于天骅,刘静.最新低温治疗技术的研究进展及其评价[J].中国医疗器械杂志, 2004;28(5):350-355
    [20]胡凯文,李泉旺,姜敏,等.氩氦刀治疗恶性肿瘤103例临床观察[J].临床肿瘤学杂志,2006;11(11):830-832
    [21]周立,芮静安,王少斌,等.多模式系列疗法治疗老年原发性肝癌153例分析[J].中华肿瘤杂志, 2003;25(4):404-406
    [22] Nordenstrom B. Biologically Closed Electrical Circuits Clinical Experimental and Theoretical Evidence for an Additional Circulatory System [M]. Stockholm:Nordic Medical Publications, 1983.
    [23]李就宏,辛育龄,史伟,等.电化学治疗高龄晚期肺癌80例临床效果[J].医药产业资讯, 2005, 3(14):216-217.
    [24]辛育龄,刘德若,孟新,等.电针与肝动脉介入治疗巨块型肝癌的临床效果[J].中华外科杂志, ,2001;39(10):756-758
    [25] Weaver JC. Electroporation in cells and tissues - A biophysical phenomenon due to electromagnetic-fields [J]. Radio Science,1995, 30(1):205-221
    [26] Edwards DA, Prausnitz MR, Langer R,et al. Analysis of enhanced transdermal transport by skin electroporation [J]. Journal of Controlled Release,1995,34:(3) 211-221
    [27] Weaver JC, Langer R, Potts RO. Tissue electroporation for localized drug delivery [J]. Electromagnetic Fields,1995, 250: 301-316
    [28] Weaver JC. Electroporation theory. Concepts and mechanisms [J]. Methods Mol Biol, 1995,48:3-28
    [29] Weaver JC. Electroporation of Cells and Tissues [J]. IEEE Transaction on Plasma Science, 2000, 28(1):24-33.
    [30] Weaver JC. Electroporation of biological membranes from multicellular to nano scales [J]. IEEE Transactions on Dielectrics and Electrical Insulation,2003,10 (5):754-768.
    [31] Zewert TE, Pliquett UF, Vanbever R, et al. Creation of transdermal pathways for macromolecule transport by skin electroporation and a low toxicity, pathway-enlarging molecule [J]. Bioelectrochem Bioenerg, 1999, 9(1):11-20.
    [32] Prausnitz MR, Lee CS, Liu CH, et al. Transdermal transport efficiency during skin electroporation and iontophoresis [J]. Journal of Controlled Release, 1996, 38: (2-3)205-217.
    [33] Okino M, Mohri H. Optimal electric condictions in electrical impulse chemotherapy [J]. Japanese Journal of Cancer Research, 1992, 83(10):1095-1101.
    [34] Hofmann GA, Evans G. Electronic genetic-physical and biological aspects of cellular electromanipulation [J]. IEEE Eng Med Biol Mag, 1986, 5(4):6-25.
    [35] Sukhendu BD, Dietmar PR, Georg W, et al. Hofmann. Medical Applications of Electroporation [J]. IEEE Transactions on Plasma Science. 2000. 28(1): 206-223.
    [36] Pavlovic I, Kern T, Miklavcic D. Comparison of paper-based and electronic data collec-tion process in clinical trials: Costs simulation study [J]. Contemporary Clinical Trials, 2009, 30(4):300-316.
    [37] Corovic, S, Bester J, Miklavcic. D. An e-learning application on electrochemotherapy [J]. BioMedical Engineering OnLine, 2009, 8:26.
    [38] Cemazar M, Tamzali Y, Sersa G, et al. Electrochemotherapy in veterinary oncology [J]. Journal of veterinary international medicine, 2008, 22(4):826-831.
    [39] Sersa G, Miklavcic D, Cemazar M, et al. Electrochemotherapy in treatment of tumours [J]. European Journal of Surgical oncology, 2008, 34(2): 232-240.
    [40] Pavlovic I, Damijan Miklavcic. Web-based electronic data collection system to support electrochemotherapy clinical trial [J]. IEEE Transactions of Information technology in biomedcine, 2007, 11(2): 222-230
    [41] Michel M, Gregor S, Jean R, et al. Electrochemotherapy– An easy, highly effective and safe treatment of cutaneous and subcutaneous metastases: Results of ESOPE (European Standard Operating Procedures of Electrochemotherapy) study [J]. European Journal of Cancer Supplements, 2006, 4(11): 3-13.
    [42] Boris R. Irreversible electroporation [M]. New York: Springer.2009:249-254.
    [43]姚陈果.可控陡脉冲对恶性肿瘤细胞不可逆性电击穿的实验和机理研究[D].博士学位论文.重庆:重庆大学. 2003.6
    [44]姚陈果,孙才新,米彦,等.陡脉冲不可逆性电击穿治疗肿瘤的研究[J].高电压技术, 2007, 33(2): 7-13.
    [45] Esser AT, Smith KC, Gowrishankar TR, et al. Towards Solid Tumor Treatment by Irreversible Electroporation: Intrinsic Redistribution of Fields and Currents in Tissue [J]. Technology in Cancer Research and Treatment, 2007, 6(4):261-274.
    [46] Schoenbach KH, Xiao S, Joshi PR, et al. The effect of intense subnanosecond electrical pulses on biological cells [J]. IEEE Transactions on Plasma Science, 2008, 36(2): 414-422.
    [47] Schoenbach KH, Hargrave B, Joshi PR, et al. Bioelectric effects of intense nanosecond pulses [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2007, 14(5): 1088-1109.
    [48] Schoenbach KH, Peterkin F, Alden RW, et al. The effect of pulsed electric fields on biological cells: Experiments and applications [J]. IEEE Transactions on Plasma Science, 1997, 25(2): 284-292.
    [49] Schoenbach KH, Ghazal AA, Vithoulkas T, et al. The effect of pulsed electrical fields on biological cells [J]. IEEE in press, 1997: 73-78.
    [50] Schoenbach KH, Katsuki S, Stark RH, et al. Bioelectrics—new applications for pulsed power technology [J]. IEEE Transactions on Plasma Science, 2002, 30(1): 293-300.
    [51] Schoenbach KH, Beebe SJ, Buescher ES, et al. Intracell effect of ultrashort electrical pulses [J]. Bioelectromagnetics, 2001, 22(6): 440-448.
    [52] Buescher ES, Schoenbach KH,. Effects of submicrosecond, high intensity pulsed electric fields on living cells-intracellular electromanipulation [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(5): 788-794.
    [53] Schoenbach KH, Joshi PR, Kolb JF, et al. Ultrashort electrical pulses open a new gateway into biological cells [J]. Proceedings of the IEEE, 2004, 92(7): 1122-1137.
    [54] White JA, Blackmore PF, Schoenbach KH, et al. Stimulation of capacitative calcium entry in HL-60 cells by nanosecond pulsed electric fields [J].The Journal of Biological Chemistry,2004, 279(22):22964-229702
    [55] Beebe SJ, Fox PM, Rec LJ, et al. Nanosecond pulsed electric field (nsPEF) effects on cells and tissues: apoptosis induction and tumor growth inhibition [J]. IEEE Transactions on Plasma Science, 2002, 30(1): 286-292.
    [56]米彦.纳秒脉冲电场诱导肿瘤细胞凋亡的窗口效应与实验研究[D].博士学位论文.重庆:重庆大学. 2009.6
    [57]米彦,姚陈果,李成祥,等.ns脉冲电场诱导裸小鼠皮下人黑色素移植瘤凋亡[J].高电压技术,2009, 35(9):2207-2212.
    [58] Schoenbach KH, Xiao S, Joshi RP, et al. The Effect of Intense Subnanosecond Electrical Pulses on Biological Cells [J]. IEEE Transactions on Plasma Science, 2008,36(2):414-422
    [59]姚陈果,龙再全,孙才新,等.生物医用冲激脉冲辐射聚焦天线的设计与优化[J].电工技术学报,2011, 26(2):21-27.
    [60]龙再全,姚陈果,孙才新,等. ps电场脉冲无创治疗肿瘤的方法及天线设计[J].高电压技术,2009, 36(5):1275-1280.
    [61]龙再全,姚陈果,李成祥,等.皮秒电场脉冲在肿瘤无创治疗中的聚焦特性[J].生物医学工程学杂志,2010, 27(5):1128-1132.
    [62]姚陈果,龙再全,孙才新,等.高强度皮秒电场脉冲无创治疗肿瘤天线设计[J].重庆大学学报(自然科学版),2010, 33(7):29-35.
    [63] Frankenhaueuser, B., Widen, L. Anode break excitation in desheated frog nerve [J].The Journal of Physiology, 1956, 131: 243-247
    [64] Doevenspeck H. Influencing cells and cell walls by electrostatic impulses [J]. Fleischwirtschaft , 1961, 1 3: 968-987
    [65] Rubinsky B. Irreversible electroporation in medicine [J]. Technology in Cancer Research and Treatment, 2007, 6(4):255-260.
    [66] Miller L, Leor J, Rubinsky B. Cancer cells ablation with irreversible electroporation [J]. Technology in Cancer Research and Treatment, 2005,4(6):699-705
    [67]姚陈果,孙才新,米彦,等.陡脉冲不可逆性电击穿恶性肿瘤细胞的研究[J].高电压技术, 2003, 29(1): 45-47.
    [68]孙才新,姚陈果,熊兰,等.陡脉冲对恶性肿瘤细胞杀伤效应的研究[J].生物物理学报, 2002, 18(4): 474-477.
    [69]姚陈果,孙才新,米彦,等.陡脉冲对恶性肿瘤细胞不可逆性电击穿的实验研究[J].中国生物医学工程学报, 2004, 23(1): 92-97.
    [70]姚陈果,孙才新,米彦,等.陡脉冲对恶性肿瘤细胞增殖及细胞周期的影响[J].生物医学工程学杂志, 2004, 21(4): 546-548.
    [71]胡娅,胡丽娜,米彦,等.能量可控陡脉冲对人卵巢癌细胞的体外作用[J].第三军医大学学报, 2003, 25(16): 1441-1445.
    [72]米彦,姚陈果,李成祥,等.陡脉冲电场对体外人肝癌细胞SMMC-7721的诱导凋亡作用[J].中国生物医学工程学报, 2009, 28(5): 743-748.
    [73]罗小东,胡丽娜,孙才新,等.能量可控陡脉冲对人脐静脉血管内皮细胞的体外作用[J].第三军医大学学报, 2005, 27(21): 2139-2141.
    [74]熊兰.陡脉冲抗肿瘤效应的实验研究和机理分析[D].博士学位论文.重庆:重庆大学. 2004.12
    [75]姚陈果,孙才新,熊兰,等.陡脉冲电场对荷瘤BALB/C小鼠生存期的影响[J].生物医学工程学杂志, 2004, 21(3): 433-435.
    [76]熊兰,孙才新,米彦,等.陡脉冲诱导在体瘤细胞凋亡的实验及分析[J].重庆大学学报(自然科学版), 2004, 27(11): 22-25.
    [77]姚陈果,孙才新,米彦,等.陡脉冲电场对荷瘤BALB/C小鼠癌细胞杀伤效应和抑制作用的实验研究[J].中国生物医学工程学报, 2004, 23(6): 537-543.
    [78]姚陈果,孙才新,米彦,等.陡脉冲电场对荷瘤BALB/C小鼠癌细胞杀伤效应的实验研究[J].生物医学工程学杂志, 2005, 22(5): 896-900.
    [79]米彦,孙才新,姚陈果,等.陡脉冲电场对荷瘤Wistar大鼠癌细胞免疫功能的影响[J].生物医学工程学杂志, 2007, 24(2): 253-256.
    [80]熊兰,孙才新,王士彬,等.陡脉冲电场分布仿真与在体兔肝组织的实验研究[J].中国生物医学工程学报, 2007, 26(2): 208-213.
    [81]董晓静,胡丽娜,孙才新,等.能量可控陡脉冲治疗兔移植性肿瘤的安全性探讨[J].实用妇产科杂志, 2006, 22(12): 726-729.
    [82]董晓静,胡丽娜,孙才新,等.能量可控陡脉冲治疗肿瘤的剂量学初探及安全性研究[J].第三军医大学学报, 2007, 29(3): 213-215.
    [83]王萍玲,胡丽娜,杨孝军,等.能量可控陡脉冲损伤兔肝实验性肿瘤的病理学研究[J].中华肝脏病杂志, 2005, 13(7): 516-519.
    [84]罗小东,胡丽娜,孙才新,等.能量可控陡脉冲抗肿瘤血管作用[J].生物医学工程学杂志, 2007, 24(3): 492-495.
    [85]李大强,熊兰,胡丽娜,等.能量可控陡脉冲对离体肿瘤组织杀伤作用的观察[J].重庆医科大学学报, 2001, 26(4): 413-415.
    [86]熊兰,孙才新,李大强,等.能量可控陡脉冲杀伤肿瘤的离体试验研究[J].生物医学工程学杂志, 2002, 19(3): 440-443.
    [87]朱赟珊,胡丽娜,董晓静,等.能量可控陡脉冲对兔VX2乳腺癌增殖和凋亡的影响[J].实用妇产科杂志, 2006, 22(12): 726-729.
    [88]胡娅,胡丽娜,熊兰,等.能量可控陡脉冲对荷瘤小鼠生存转归的影响[J].实用肿瘤杂志, 2005, 20(4): 305-308.
    [89]李均,杨孝军,胡丽娜,等.陡脉冲电场对兔VX2乳腺移植瘤毛细淋巴管的影响[J].癌症, 2006, 25(2): 159-162.
    [90]罗小东,胡丽娜,孙才新,等.能量可控陡脉冲对荷瘤大鼠免疫功能的影响[J].重庆大学学报(自然科学版), 2004, 27(11): 22-25.
    [91]熊兰,孙才新,李大强,等.能量可控陡脉冲杀伤肿瘤的离体试验研究[J].生物医学工程学杂志, 2002, 19(3): 440-443.
    [92]杨孝军,胡丽娜,李均,等.活体兔肝中脉冲电场分布模型的定性实验研究[J].生物医学工程学杂志, 2005, 22(3): 497-500.
    [93]罗小东,胡丽娜,孙才新,等.陡脉冲对荷瘤鼠淋巴细胞及细胞因子的影响[J].中国免疫学杂志, 2006, 22(12): 1096-1099.
    [94] Jon F. E., Liana H., Rafael V. D., et al. In vivo results of a new focal tissue ablation technique: irreversible electroporation [J]. IEEE Transactions on Biomedical Engineering, 2006, 53(5): 1409-1415.
    [95] Boris Rubinsky, Gary Onik, Paul Mikus. Irreversible electroporation: a new ablation modality - clinical implications [J]. Technology in Cancer Research and Treatment. 2007.6(4): 37-48.
    [96] Elad M., Antoni I., Jonathan L., Boris R. . The effect of irreversible electroporation on blood vessels [J]. T Technology in Cancer Research and Treatment. 2007.6(4): 307-312.
    [97] Gary Onik, Paul Mikus, Boris R. et al. Irrevesible electroporation: implications for prostate ablation [J]. T Technology in Cancer Research and Treatment. 2007.6(4):295-300.
    [98] B. Al-sakere, C. Bernat, F. Andre., et al. A study of the immunological response to tumor ablation with irreversible electroporation [J]. Technology in Cancer Research and Treatment. 2007.6(4):301-305.
    [99] Edward W. Lee, Christopher T. Loh, Stephen T.Kee. Imaging guided percutaneous irreversible electroporation: Ultrasound and immunohistological correlation [J]. T Technology in Cancer Research and Treatment. 2007.6(4):287-293.
    [100] Boris Rubinsky. Irreversible electroporation. New York: Springer.2009
    [101] http://www.marketwire.com/press-release/BAPTIST-HEALTH-Debuts-NanoKnife-Treatment-for-Lung-Cancer-1183001.htm
    [102] Mojca P., Tadej K., Damijan M., et al. Electroporation of Planar Lipid Bilayers and Membranes [J]. Advances in Planar Lipid Bilayers and Liposomes. 2008, 6: 165-226.
    [103] Michael D.H. and O’Neill M.E. Electrohydrodynamic instability in plane layers of fluid [J]. Journal of Fluid Mechanics. 1970, 41:571-580.
    [104] Taylor G.I. and Michael D. H. On making holes in a sheet of fluid [J]. Journal of Fluid Mechanics .1973, 58: 625-639.
    [105] Joseph M. C. Electrical Breakdown of Bimolecular Lipid Membranes as an Electro- mechanical Instability [J]. Biophysical Journal. 1973, 13(7):711-724.
    [106] Charles M., Rakesh K. Ivan B., et al. Stability of symmetric and unsymmetric thin liquid films to short and long wavelength perturbations [J]. Journal of Colloid and Interface Science. 1980, 78(1): 118-143
    [107] Steinchen A., Gallez D., Sanfeld A. A viscoelastic approach to the hydrodynamic stability of membranes [J]. Journal of Colloid and Interface Science. 1982, 85(1):5-15.
    [108] Pastushenko V.F., Chizmadzhev Y.A., Arakelyan V.B. Electric breakdown of bilayer lipid membranes II. Calculation of the membrane lifetime in the steady-state diffusion approximation [J].Bioelectrochemistry and Bioenergetics. 1979, 6(1):53-62.
    [109] Abidor I.G., Arakelyan V.B., Chernomodik L.V, et al. Electric breakdown of bilayer lipid membranes: I. the main experimental facts and their qualitative discussion [J]. Journal ofElectroanalytical Chemistry and Interfacial Electrochemistry.1979, 104: 37-52.
    [110] Glaser R.W., Leikin Sergei, Chernomordik L.V., et al. Reversible electrical breakdown of lipid bilayers: formation and evolution of pores [J]. Biochimica et Biophysica Acta. 1988, 940:275-287.
    [111] Weaver, J.C, Y. A. C.Theory of electroporation: A review [J].Bioelectrochemistry and Bioenergetics.1996, 41(2):135-160.
    [112] Weaver, J.C. Electroporation of cells and tissues [J]. IEEE Transactions on Plasma Science. 2000, 28(1):24-33.
    [113] Weaver, J.C. Electroporation of biological membranes from multicellular to nano scales [J]. IEEE Transactions on Dielectrics and Electrical Insulation. 2003, 10 (5): 754-768.
    [114] Weaver, J.C. Electroporation theory. Concepts and mechanisms. [J]. Methods in Molecular Biology. 1995, 55: 3-28.
    [115] Krassowska W., Neu J.C. Response of a single cell to an external electric field [J] Biophysical Journal. 1994,66:1768-1776.
    [116] Debruin K.A., Krassowska W. Modeling electroporation in a single cell. I. effects of field strength and rest potential [J] Biophysical Journal. 1999,77:1213-1224.
    [117] Debruin K.A., Krassowska W. Modeling electroporation in a single cell. II. effects of ionic concentrations [J] Biophysical Journal. 1999,77:1225-1233.
    [118] Neu J.C., Smith K.C., Krassowska W. Electrical energy required to form large conducting pores [J] Bioelectrochemistry. 2003,60:107-114.
    [119] Smith K.C., Neu J.C., Krassowska W. Model of creation and evolution of stable electropores for DNA delivery [J] Biophysical Journal. 2004,86:2813-2826.
    [120] Krassowska W., Filev P.D. Modeling electroporation in a single cell [J] Biophysical Journal. 2007,92:404-417.
    [121] Joshi R.P., Schoenbach K.H. Electroporation dynamics in biological cells subjected to ultrafast electrical pulses: A numerical simulation study [J]. Physical Review E. 2000, 62(1):1025
    [122] Joshi R.P., Hu Q., Aly R., et al. Self-consistent simulations of electroporation dynamics in biological cells subjected to ultrashort electrical pulses [J]. Physical Review E. 2001, 64(1):011913.
    [123] Joshi R.P., Hu Q., Schoenbach K.H., et al. Simulations of elctroporation dynamics and shape deformations in biological cells subjected to high voltage pulses [J]. IEEE Transactions on Plasma Science. 2002, 30(4):1536-1546.
    [124] Joshi R.P., Hu Q., Schoenbach K.H., et al. Theoretical predictions of electromechanicaldeformation of cells subjected to high voltages for membrane electroporation [J]. Physical Review E. 2002, 65(2):021913.
    [125] Joshi R.P., Schoenbach K.H., Hjalmarson H.P. Improved energy model for membrane electroporation in biological cells subjected to electrical pulses [J]. Physical Review E. 2002, 65(4):041920.
    [126] Joshi R.P., Schoenbach K.H. Mechansim for membrane electroporation irreversibility under high-intensity, ultrashort electrical pulse conditions [J]. Physical Review E. 2002, 66(5):052901
    [127] Joshi R.P., Hu Q., Schoenbach K.H. Dynamical modeling of cellular response to short-duration, high-intensity electric field [J]. IEEE Transactions on Dielectrics and Electrical Insulation. 2003, 10(5):778-787.
    [128] Joshi R.P., Hu Q., Schoenbach K.H., et al. Energy-landescape-model analysis for irreversibility and its pulse-width dependence in cells subjected to a high-intensity ultrashort electric pulse [J]. Physical Review E. 2004,69(5):051901
    [129] Joshi R.P., Hu Q., Schoenbach K.H. Modeling studies of cell response to ultrashort, high-intensity electric fields- implications for intracellular manipulation [J]. IEEE Transactions on Plasma Science. 2004, 32(4):1677-1686.
    [130] Ji Z., Kennedy S.M., Booske J.H., et al. Experimentail studies of persistent poration dynamics of cell membrane induced by electric pulses [J]. IEEE Transactions on Plasma Science. 2006, 34(4):1416-1424
    [131]於卫春.外电场作用下压控电穿孔模型的研究[D].硕士学位论文.天津:天津大学. 2003.1
    [132] Schwan H.P. Electric properties of tissue and cell suspensions [J].Advances in Biological and Medical Physics. 1957,5:147-209.
    [133] Tadej K., Feda B., Damijian M. Sensitivity of transmembrane voltage induced by applied electric fields—A theoretical analysis [J].Bioelectrochemistry and Bioenergetics. 1997, 43(2),285-291.
    [134] Tadej K., Damijian M.Second-order model of membrane eElectric field induced by alternating external electric fields [J]. IEEE Transactions on Biomedical Engineering. 2000, 47(8):1074-1082.
    [135] Yao C. G., Hu X. Q., Mi Y., et al. Window effect of pulsed electric field on biological cells [J]. IEEE Transactions on Dielectrics and Electrical Insulation.2009. 16(5):1259-1266
    [136] K. H. Schoenbach, S. Katsuki, R.H. Stark, et al. Bioelectrics- new applications for pulsed power technology [J]. IEEE Transactions on Plasma Science. 2002.30(1):293-300.
    [137]翟中和,王喜忠,丁明孝.细胞生物学[M].北京:高等教育出版社, 2003.
    [138]黎明,戴陆如.生物物理学:能量、信息、生命[M].上海:上海科学技术版社, 2006.
    [139]赵南明,周海梦.生物物理学[M].北京:高等教育出版社, 2003.
    [140]向鹏.微秒级陡脉冲治疗肿瘤的量效关系研究[D].硕士学位论文.重庆:重庆大学. 2008.5
    [141]李成祥,姚陈果,米彦,等.陡脉冲致兔肝组织不可逆性电击穿的量效关系[J].高电压技术, 2007, 33(2): 75-78.
    [142] Davalos R.V., Mir L. M., Rubinsky B. Tissue ablation with irreversible electroporation [J]. Annals of Biomedical engineering. 2005.33(2):223-231.
    [143] Elad M., Antoni I., James J. M., et al. Vascular Smooth Muscle Cells Ablation with Endovascular Nonthermal Irreversible Electroporation [J]. Journal of Vascular and Interventional Radiology. 2010.21(11): 1708-1715.
    [144]冷启新,刘执玉.肿瘤转移机制的研究[J].解剖科学进展.2000.6(2):116-120
    [145]高进.癌的侵袭与转移——基础研究与临床[M].北京:北京医科大学中国协和医科大学联合出版社.1996.1
    [146] Jon F., Edd R., Davalos,V. Mathematical Modeling of Irreversible Electroporation for Treatment Planning[J]. Technology in Cancer Research and Treatment.2007.6(4): 275-286
    [147]王存诚,陈槐卿.生物医学中的热物理探索[M].北京:科学出版社.1994.
    [148] Chato J.C. Fundamentals of Bioheat Transfer [M]. Springer-Verlag. 1989
    [149]刘静,王存诚.生物传热学[M].北京:科学出版社.1997
    [150] Pennes H.H. Analysis of tissue and arterial temperature in the resting human foream [J]. Journal of Applied Physiology.1948. 1(2): 93-122.
    [151]蔡睿贤.一维不定常生物传热方程的解析解[J].科学通报.1995.40(15):1361-1362.
    [152]彭见曙,夏雅琴,王蕴华.在受热情况下局部组织温度的预测[J].工程热物理学报.1995.16(2):225-229.
    [153]王补宣,王艳民,蔡伟明,直角坐标系中第二类边界条件下一维生物组织温度场的稳态分析解及实验研究[J].工程热物理学报.1995.16(1):65-69.
    [154]傅宝群.低温生物学中传热传质研究[D].博士学位论文.武汉:华中理工大学.1989.
    [155]徐云生.皮肤烧伤的热分析[D].博士学位论文.武汉:华中理工大学.1990.
    [156] Damijan M., Dejan S., Halima M., et al. A validated model of in vivo electric field distribution in tissues for electrochemotherapy and for DNA electrotransfer for gene therapy [J]. Biochimica et Biphysica Acta.2000.1523(1):73-83
    [157] William B. J. Z. COMSOL Multiphysics有限元法多物理场建模与分析[M].北京:人民交通出版社.2007
    [158] Duck F.A. Physical Properties of Tissues: A Comprehensive Reference Book [M]. San Diego: Academic Press. 1990.
    [159] Kenneth R. D. Modeling of bioheat transfer processes at high and low temperatures [J].Advances in Heat Transfer.1992,22:157-357
    [160]李缉熙,牛中奇.生物电磁学概论[M].西安:西安电子科技大学出版社.1990.06
    [161] David C., Danute B., Franck A., et al. Real time electroporation control for accurate and safe in vivo non-viral gene therapy [J].Bioelectrochemistry Amsterdam Netherlands.2007.70(2): 501-507
    [162] Corovic, S. Zupanic, A. Miklavcic, D. Numerical modeling and optimization of electric field distribution in subcutaneous tumor treated with electrochemotherapy wsing needle electrodes [J]. IEEE Transactions on Plasma Science.2008. 36(4):1665-1672.
    [163] Edd J.F., Davalos R.V. Mathematical Modeling of Irreversible Electroporation for Treatment Planning [J]. Technology in Cancer Research and Treatment. 2007.6(4):276-285.
    [164]牛中奇.细胞膜上的自电场力[J].中国生物医学工程学报.1994.13(1):90-95
    [165]肖华娟.细胞膜电穿孔现象机理研究[D].硕士学位论文.北京:中国科学院研究生院.2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700