饲料中还原型谷胱甘肽、α-硫辛酸及二者分别与硒的交互作用对牙鲆(Paralichthys olivaceus)生长和抗氧化的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以海水肉食性鱼类牙鲆(Paralichthys olivaceus, Temminck et Schlegel)作为研究对象,分别研究了还原型谷胱甘肽、α-硫辛酸及二者分别与硒的交互作用对牙鲆生长和抗氧化力的影响,主要研究结果如下:
     实验一:利用单因素实验设计研究了在精制饲料中添加α-硫辛酸(LA)不同梯度(0、200、400、800、1600和3200 mg/Kg),投喂给牙鲆(P. olivaceus)幼鱼(初始体重9.39±0.17 g),养殖8周后,计算和测定牙鲆生长和存活、肝脏还原型谷胱甘肽(GSH)和丙二醛(MDA)含量、肝脏谷胱甘肽过氧化物酶(GPx)、谷胱甘肽S-转移酶(GST)、谷胱甘肽还原酶(GR)、超氧化物歧化酶(SOD)和总抗氧化力(T-AOC),来探讨饲料中LA添加量对牙鲆生长和抗氧化的影响。
     实验结果表明:饲料中添加外源的LA对牙鲆存活率没有显著影响(P>0.05)。牙鲆增重率(WGR)在饲料LA添加量为400和800 mg/Kg时达到最大值,显著高于其它各组(P<0.05)。各处理间肝脏GSH积累量和SOD活性没有显著差异(P>0.05)。各处理组肝脏GST和GR活性随着饲料中LA添加量含量升高而先降低后上升的趋势(P<0.05),且当饲料中LA添加量为400和800 mg/Kg时GST活性显著低于其他各处理组(P<0.05),LA添加量为800 mg/Kg处理组的GR活性显著高于除LA添加量为1600 mg/Kg的其它各处理组(P<0.05)。各处理组肝脏中MDA的含量随着饲料中LA添加量的增加而显著下降(P<0.05),且饲料中LA添加量为1600和3200 mg/Kg两组的肝脏MDA含量显著低于对照组(P<0.05)。各处理组肝脏中GPx活性随着饲料中LA添加量的增加而呈现先升高后降低的趋势(P<0.05),且饲料中LA添加量为200、400和800 mg/Kg三组的GPx活性显著高于对照组和LA饲料添加量为3200 mg/Kg两个处理组(P<0.05)。各处理组肝脏中T-AOC随着饲料中LA添加量的增加而呈现先升高后降低的趋势(P<0.05),且饲料中LA添加量为800 mg/Kg处理组的T-AOC显著高于对照组和LA饲料添加量为3200 mg/Kg两个处理组(P<0.05)。根据WGR的实验数据,利用折线模型得到牙鲆幼鱼饲料中LA的适宜添加量为745.05 mg/Kg,过高或过低都会对生长造成负面影响。
     实验二:利用单因素实验设计研究了在精制饲料中添加不同梯度(0、97.96、189.92、371.84、688.72及1063.56 mg/Kg)还原型谷胱甘肽(GSH),投喂给牙鲆(P. olivaceus)幼鱼(初始体重9.49±0.22 g),养殖8周后,计算和测定牙鲆生长和存活、肝脏GSH和MDA含量、肝脏GPx、GST、GR、SOD和T-AOC,以探讨饲料中GSH含量对牙鲆生长和抗氧化的影响。
     实验结果表明:饲料中添加外源的GSH对牙鲆存活率没有显著影响(P>0.05)。WGR在饲料GSH含量为371.84 mg/Kg时达到最大值,显著高于其它各组(P<0.05)。饲料GSH添加组牙鲆肝脏中GSH的含量显著高于零添加组(P<0.05)。各处理组肝脏中MDA的含量没有显著差异(P>0.05)。肝脏中GR的活力随饲料中GSH含量的升高呈现先降低后上升的趋势,并在饲料中GSH含量为371.84 mg/Kg时达到最低值。肝脏中SOD和GPx活力未受到饲料中GSH含量的显著影响(P>0.05)。饲料中GSH含量为371.84 mg/Kg时,肝脏中T-AOC显著高于1063.56 mg/Kg组(P<0.05),GST活力显著低于其它各处理组(P<0.05)。根据WGR的实验数据,利用折线模型得到牙鲆幼鱼饲料中GSH的适宜含量为368.92 mg/Kg,过高或过低都会对生长造成负面影响。
     实验三:利用3×3实验设计,研究了在精制饲料中联合添加不同梯度LA(0、800和3200 mg/Kg)和硒(0、1.07和40 mg/Kg),配制9种实验饲料,投喂牙鲆(P. olivaceus)幼鱼(初始体重9.42±0.16 g),养殖8周后,计算和测定牙鲆生长和存活、肝脏GSH和MDA含量、肝脏GPx、GST、GR、SOD和T-AOC,以探讨饲料中LA和硒的交互作用对牙鲆生长和抗氧化的影响。
     实验结果表明:LA与硒二者均过量添加组(LA:3200 mg/Kg;硒:40 mg/Kg)牙鲆幼鱼的存活率显著低于其它各处理组(P<0.05),其余各组间存活率没有显著差异(均高于96.43%)(P>0.05)。WGR受饲料中LA和硒的交互作用影响显著(P>0.05),当饲料中缺硒(0 mg/Kg)或正常添加硒(1.07 mg/Kg)时,LA的适量添加(800 mg/Kg)能够使WGR有上升的趋势,特别在硒添加1.07 mg/Kg组,LA添加800 mg/Kg能够显著提高WGR(P<0.05)。然而当饲料中硒含量过高(40 mg/Kg)时,饲料中LA的加入反而使WGR显著下降(P<0.05)。肝脏中GSH含量受饲料中LA和硒交互作用影响显著(P<0.05),饲料中缺硒(0 mg/Kg)或正常添加硒(1.07 mg/Kg)时,LA添加组的肝脏GSH积累量显著低于不添加LA各组(P<0.05),然而当饲料中硒含量过高(40 mg/Kg)时,LA的添加能够使肝脏GSH的积累量有上升趋势(P>0.05)。肝脏中MDA含量受到饲料中LA和硒的交互作用影响显著(P<0.05),饲料缺硒时LA的过量添加(3200 mg/Kg)组的肝脏MDA含量显著高于其它两组(P<0.05),饲料中硒含量为1.07 mg/Kg时LA的添加能够显著降低肝脏MDA积累量(P<0.05),饲料中硒过量添加(40 mg/Kg)时LA添加3200 mg/Kg组的肝脏MDA积累量显著高于其它两组(P<0.05)。肝脏中GPx活性变化受到饲料中LA和硒的影响显著(P<0.05),当饲料中LA添加800 mg/Kg、硒含量为1.07 mg/Kg时,肝脏GPx活性显著高于其它各组(P<0.05),饲料中硒含量一定时LA在饲料中添加量为800 mg/Kg各组肝脏GPx活性显著高于LA不添加(0 mg/Kg)和过量添加(3200 mg/Kg)各组(P<0.05),饲料中LA添加量一定时硒在饲料中含量为1.07 mg/Kg各组肝脏GPx活性显著高于硒不添加(0 mg/Kg)和过量添加(40 mg/Kg)各组(P<0.05)。肝脏中GST活性变化受到饲料中LA和硒的影响显著(P<0.05),当饲料中硒含量一定时LA添加800 mg/Kg各组GST活性显著最高(P<0.05),LA添加3200 mg/Kg各组的GST活性显著最低(P<0.05),当饲料中LA添加量一定时硒正常添加(1.07 mg/Kg)和过量添加(40 mg/Kg)各组肝脏GST活性显著高于硒零添加(0 mg/Kg)各组(P<0.05)。饲料中LA和硒的添加对肝脏GR活性均有显著影响(P<0.05),饲料中硒含量为1.07 mg/Kg、LA添加量为800 mg/Kg组的GR活性显著高于其它各组(P<0.05)。饲料中硒和LA对肝脏中T-AOC影响显著(P<0.05),硒含量为1.07 mg/Kg、LA添加量为800 mg/Kg组的T-AOC显著高于其它各组(P<0.05)。饲料中LA添加量对肝脏SOD影响并不显著(P>0.05),饲料中LA添加量一定时,硒含量为40 mg/Kg各组SOD活性显著高于硒含量为0 mg/Kg和1.07 mg/Kg各组(P<0.05)。
     实验四:利用3×3实验设计,研究了在精制饲料中联合添加不同梯度GSH(0、371.84和1063.56 mg/Kg)和硒(0、1.07和40 mg/Kg),配制9种实验饲料,投喂给牙鲆(P. olivaceus)幼鱼(初始体重9.49±0.17 g),养殖8周后,计算和测定牙鲆生长和存活、肝脏GSH和MDA含量、肝脏GPx、GST, GR、SOD和T-AOC,以探讨饲料中LA和硒的交互作用对牙鲆生长和抗氧化的影响。
     实验结果表明:饲料中硒和GSH的交互作用对牙鲆存活率没有显著影响(P<0.05)。在饲料中硒含量0 mg/Kg组的WGR显著低于饲料硒含量为1.07和40 mg/Kg组(P<0.05)。饲料中硒和GSH的含量对牙鲆肝脏GSH积累量影响显著(P<0.05),当饲料中硒含量一定时,饲料GSH含量为371.84 mg/Kg各组的肝脏GSH积累量显著高于其它各组(P<0.05),或饲料中GSH含量一定时,饲料硒含量为1.07 mg/Kg各组的肝脏GSH积累量显著高于其它各组(P<0.05)。饲料中硒和GSH的交互作用对肝脏MDA含量和SOD活性没有显著影响(P>0.05)。饲料中添加GSH能够显著提高肝脏GPx活性(P<0.05)。饲料中硒和GSH的含量对肝脏GST、GR活性和T-AOC均有显著影响(P<0.05)。饲料中缺硒时(0 mg/Kg)添加371.84 mg/Kg GSH组的肝脏GST活性和T-AOC显著高于GSH零添加组(0 mg/Kg)和过量添加组(1063.56 mg/Kg) (P<0.05),而GR活性显著低于其它两组。饲料中硒含量合适(1.07 mg/Kg)时添加371.84 mg/Kg GSH组的肝脏GST和GR活性显著低于GSH零添加组(0 mg/Kg)和过量添加组(1063.56mg/Kg) (P<0.05),而T-AOC显著高于其它两组(P<0.05)。饲料中硒过量添加(40 mg/Kg)时,肝脏GST活性随着饲料中GSH含量的升高而下降,GR活性在GSH添加量为371,84-mg/Kg组的活性显著高于其他两组(P<0.05)。
A series of experiments were conducted to determine the effects of dietary reduced glutathione (GSH), a-lipoic acid (LA) and the interaction between selenium (Se) and GSH, Se and LA on growth and antioxidation in Japanese Flounder (Paralichthys olivaceus), a marine carnivorous fish. The results of the present study were summarized as follows:
     Experiment 1:A one-factorial experiment was conducted to determine the effects of gradients of diatary LA on growth and antioxidation in juvenile Japanese flounder (initial weight was 9.39±0.17 g). The juveniles were divided into six triplicate groups, and fed one of the six purified diets (containing 0,200,400,800,1600 or 3200 LA mg/Kg dry diet respectively) for 8 weeks in a flow-through system. A series of indexes were conducted, such as weight gain rate (WGR), survival rate, the concentration of hepatic GSH and malonaldehyde (MDA), the hepatic total antioxidant capacity (T-AOC) and the activities of hepatic glutathione peroxidase (GPx), glutathione S-transferase (GST), glutathione reductase (GR) and superoxide dismutase (SOD).
     The results showed that there were no significant difference in the survival of Japanese Flounder among six dietary treatments(P>0.05). The average WGR reached the significantly highest value in the groups fed the diets with 400 or 800 mg LA, which were significantly higher than those of the other groups (P<0.05). No significant difference was found between groups in the concentrations of hepatic GSH and activities of SOD (P>0.05). The activities of hepatic GST and GR decreased then increased with the increasing of supplied dietary LA (P<0.05). The lowest values of GST were found in the treatments with 400 or 800 mg LA/Kg diet (P<0.05), and the GR value of the treatment with 800 mg LA/Kg diet was significantly higher than the values in other treatments, except for the treatment with 1600 mg LA/Kg diet (P<0.05). The concentrations of hepatic MDA were significantly decreased with rising content of dietary LA (P<0.05), and the concentrations of hepatic MDA with 1600 and 3200 mg LA/Kg diet were significantly lower than the control group with 0 mg/Kg dietary LA (P<0.05). The activities of hepatic GPx and T-AOC increased then decreased with the increasing of supplied dietary LA (P<0.05). The values of GPx in the three treatments with 200,400 and 800 mg LA/Kg diet were significantly higher than the two treatments with 0 arid 3200 mg/Kg dietary LA (P<0.05). The highest value of T-AOC was found in the treatment with 800 mg LA/Kg diet, which was significantly higher than the two treatments with 0 and 3200 mg LA/Kg diet (P<0.05). According to the average WGR data, a broken-line model was employed to calculate the optimal levels of dietary LA, which was 745.05 mg/Kg diet. Deficient or overdose of dietary LA could cause negative effects on the growth and antioxidative capacity of Paralichthys olivaceus.
     Experiment 2:A one-factorial experiment was conducted to determine the effects of gradients of diatary GSH on growth and antioxidation in juvenile Japanese flounder (initial weight was 9.49±0.22 g). The juveniles were divided into six triplicate groups, and fed on one of the six purified diets (containing 0,97.96,189.92,371.84,688.72 or 1063.56 GSH mg/Kg dry diet respectively) for 8 weeks in a flow-through system. A series of indexes were conducted, such as WGR, survival rate, the concentration of hepatic GSH and MDA, the hepatic T-AOC and the activities of hepatic GPx, GST, GR and SOD.
     The results showed that survival was not significantly affected by dietary GSH levels (P>0.05). The average WGR in the treatment with 371.84 mg/Kg dietary GSH was significantly higher than those in other treatments (P<0.05). The hepatic GSH concentration in dietary GSH added groups was significantly higher than that in dietary GSH deprived group (control group) (P<0.05). No significant differences in hepatic MDA concentration were found between GSH deprived and supplemented groups (P>0.05). The lowest value of hepatic GR activities was found in treatment with 371.84 mg/Kg dietary GSH (P<0.05). There were no significant differences in the activities of hepatic SOD and GPx among the treatments (P>0.05). In the group with 371.84 mg/Kg dietary GSH, the T-AOC was significantly higher than that in the group with 1063.56 mg/Kg dietary GSH, however, the GST activity was significantly lower than those in the other groups (P<0.05). Based on the WGR data in the present experiment, a broken-line model was employed to calculate the optimal levels of dietary GSH, which was 368.92 mg/Kg diet. Deficient or overdose of dietary GSH could cause negative effects on the growth and anti-oxidative capacity of Paralichthys olivaceus.
     Experiment 3:A two-factorial experiment was conducted to determine the Se and LA interaction on growth and antioxidation in juvenile Japanese flounder (initial weight was 9.42±0.16 g). Totally nine purified diets were made to provide graded levels of Se (0,1.07,40 mg/Kg, supplied as Na2Se03) and LA (0,800,3200 mg/Kg). The juveniles were divided into nine triplicate groups, and fed on one of the nine purified diets respectively, for 8 weeks in a flow-through system. A series of indexes were conducted, such as WGR, survival rate, the concentration of hepatic GSH and MDA, the hepatic T-AOC and the activities of hepatic GPx, GST, GR and SOD.
     The results showed that the value of survival in the treatment with both 3200 mg LA/Kg diet and 40 mg Se/Kg diet was significantly lower than other treatments (P<0.05), and there was no significant difference between other groups (all higher than 96.43) (P>0.05). WGR was significantly affected by the interaction between LA and Se (P<0.05). When the diets were provided 0 or 1.07 mg Se/Kg diet, WGR presented a trend to rise in the treatment with 800 mg LA/Kg diet, and WGR reached the highest value in the treatment with both 800 mg LA and 1.07 mg Se/Kg diet, which was significant higher than other groups (P<0.05). Oppositely, in the diets with high selenium level (40 mg/Kg), values of WGR in the LA provided treatments was significantly lower than the control group (0 mg/Kg LA). Hepatic GSH concentration was significantly affected by the interaction between dietary LA and selenium (P<0.05). When dietary Se was deprived or provided 1.07 mg/Kg, the values of hepatic GSH concentration in the treatments provided LA were significantly lower than LA deprived treatments (P<0.05). Nevertheless, between the treatments of high Se level (40 mg/Kg), hepatic GSH concentration of the treatments with LA provided (800 or 3200 mg/Kg) had a rising trend compared with control group (P>0.05). Hepatic MDA concentration was significantly affected by the interaction between dietary LA and Se (P<0.05). The value of hepatic MDA concentration in the treatment with 3200 mg LA/Kg diet was significantly higher than the other two treatments when dietary Se was deprived (P<0.05). The values of hepatic MDA concentration in the treatments provided LA (800 or 3200 mg/Kg) were significantly lower than the control group (0 mg LA/Kg diet) when dietary Se was 1.07 mg/Kg (P<0.05). In the treatments of high Se level (40 mg/Kg), the values of hepatic MDA concentration of the treatment with 3200 mg LA/Kg diet was significantly higher than the other two treatments (P<0.05). The activities of hepatic GPx and GST were significantly affected by the interaction between dietary LA and Se (P<0.05). The highest value of hepatic GPx activity was found in the treatment with both 800 mg LA and 1.07 mg Se/Kg diet, and this value was significantly higher than those in other treatments (P<0.05). The values of hepatic GPx and GST of the treatments with 800 mg LA/Kg diet was significantly higher than those of the treatments with 0 or 3200 mg LA/Kg diet when dietary Se level was invariable (P<0.05). Likewise, the values of hepatic GPx of the treatments with 1.07 mg Se/Kg diet was significantly higher than those of the treatments with 0 or 40 mg Se/Kg diet when dietary LA level was invariable (P<0.05). The lowest values of hepatic GST activity was found in the treatments with 3200 mg LA/Kg diet (P<0.05). The values of hepatic GST of the treatments with 1.07 or 40 mg Se/Kg diet were significantly higher than the control group (0 mg Se/Kg diet) when dietary LA level was invariable (P<0.05). Both T-AOC and the activities of hepatic GR were significantly affected by both dietary LA and Se (P<0.05). The highest values were found in the treatment with both 800 mg LA and 1.07 mg Se/Kg diet, and the two values were significantly higher than those of other treatments, separately (P<.05). No significant difference was found between the diets with grads of LA (P<0.05). SOD activities in the treatments with 40 mg Se/Kg diet were significantly higher than SOD in both the control groups (dietary selenium 0 mg/Kg) and dietary Se 1.07 mg/Kg groups when dietary LA level was invariable (P<0.05).
     Experiment 4:A two-factorial experiment was conducted to determine Se and GSH interaction on growth and antioxidation in juvenile Japanese flounder (initial weight was 9.49±0.17 g). Totally nine purified diets were made to provide graded levels of Se (0,1.07,40mg/Kg, supplied as Na2Se03) and GSH (0,371.84,1063.56 mg/Kg). The juveniles were divided into nine triplicate groups, and fed on one of the nine purified diets respectively, for 8 weeks in a flow-through system. A series of indexes were conducted, such as WGR, survival rate, the concentration of hepatic GSH and MDA, the hepatic T-AOC and the activities of hepatic GPx, GST, GR and SOD.
     The results showed that survival was not significantly affected by the interaction between Se and GSH (P>0.05). The values of WGR in the Se provided treatments (1.07 or 40 mg/Kg) were significantly higher than the Se deprived treatments (0 mg/Kg) (P<0.05). The hepatic GSH concentrations were significantly affected by the interaction between GSH and Se (P<0.05). The hepatic GSH concentrations of the treatments with 371.84 mg GSH/Kg diet were significantly higher than those in other treatments when dietary Se level was invariable (P<0.05). Likewise, the hepatic GSH concentrations of the treatments with 1.07 mg Se/Kg diet were significantly higher than those in other treatments when dietary GSH level was invariable (P<0.05). There was no significant difference in hepatic MDA concentrations among nine dietary treatments, and so was the SOD activities (P>0.05). Hepatic GPx activities were significantly affected by dietary GSH levels (P<0.05), moreover hepatic T-AOC and GST, GR activities were significantly affected by the interaction between dietary Se and GSH (P<.05). Both hepatic T-AOC and GST activity in the treatment with 371.84 mg GSH/Kg diet were significantly higher than those in the treatments dealed with 0 or 1063.56 mg GSH/Kg diet when dietary Se was deprived (P<0.05). When dietary Se was 1.07 mg/Kg, the hepatic GST and GR in the treatment with 371.84 mg/Kg was significantly lower compared with the other two treatments with 0 or 1063.56 mg GSH/Kg diet, but T-AOC in 371.84 mg GSH/Kg diet treatment was significantly higher than the other two treatments (P<0.05). When dietary Se was 40 mg/Kg, hepatic GST activity decreased with dietary GSH level increased, and GR activity in dietary GSH 371.84 mg/Kg group was significantly higher than the other two groups (P<0.05).
引文
Abdel-Tawwab M, Mousa M A A, Abbass F E. Growth performance and physiological response of African catfish, Clarias gariepinus (B.) fed organic selenium prior to the exposure to environmental copper toxicity [J]. Aquaculture,2007,272:335-345.
    Adil E M, Jacques C. Prevention of hypertension, insulin resistance, and oxidative stress by alpha-lipoic acid [J]. Hypertension,2002,39(2):303-307.
    Arivazhagan P, Shila S, Narchonai E, Panneerselvam C. α-Lipoic Acid enhances reduced glutathione, ascorbic acid, and α-tocopherol in aged rats [J]. Journal of Anti-aging Medicine, 2002,5(3):265-269.
    Arrigo A P. Gene expression and the thiol redox state [J]. Free Radical Biology and Medicine Free, 1999,27(9/10):936-944.
    Avanzo J L, Mendonca C X, Pugine S M P, Cesar M C. Effect of vitamin E and selenium on resistance to oxidative stress in chicken superficial pectoralis muscle [J]. Comparative Biochemistry and Physiology Part C:Toxicology & Pharmacology,2001,129(2):163-173.
    Aw T Y, Williams M W, Gray L. Absorption and lymphatic transport of peroxidized lipids by rat small intestine in vivo role of mucosal GSH [J]. Gastrointestinal and Liver Physiology,1992, 262(1):99-106.
    Bell J G, Adron J W, Cowey C B. Effect of selenium deficiency on hydroperoxide-stimulated release of glutathione from isolated perfused liver of rainbow trout (Salmo gairdneri) [J]. British Journal of Nutrition,1986,56:421-428.
    Bell J G, Cowey C B, Adron J W,Pirie B J S. Some effects of selenium deficiency on enzyme activities and indices of tissue peroxidation in Atlantic salmon parr (Salmo salar) [J]. Aquaculture,1987,65(1):43-54.
    Bell J G, Cowey C B, Adron J W, Shanks A M. Some effects of vitamin E and selenium deprivation on tissue enzyme levels and indices of tissue peroxidation in rainbow trout (Salmo gairdneri) [J]. British Journal of Nutrition,1985,53:149-157.
    Bell J G, Cowey C B. Digestibility and bioavailability of dietary selenium from fishmeal, selenite, selenomethionine and selenocystine in Atlantic salmon(Salmo salar) [J]. Aquaculture,1989, 81(1):61-68
    Bell J G, Pirie B J S, Adron J W, Cowey C B. Some effects of selenium deficiency on glutathione peroxidase (EC 1.11.1.9) activity and tissue pathology in rainbow trout(Salmo gairdneri) [J], British Journal of Nutrition,1986,55:305-311.
    Bennett W N, Brooks A S, Boraas M E. Selenium uptake and transfer in an aquatic food chain and its effects on fathead minnow larvae [J]. Archives of Environmental Contamination and Toxicology,1986,15(5):513-517.
    Besser J M, Canfield T J, La Point T W. Bioaccumulation of organic and inorganic selenium in a laboratory food chain [J]. Environmental Toxicology and Chemistry,1993,12(1):57-72.
    Board P G, Coggan M, Chelvanayagam G, Easteal S, Jermiin L S, Schulte G K, Danley D E, Hoth L R, Griffor M C, Kamath A V, Rosner M H, Chrunyk B A, Perregaux D E, Gabel C A, Geoghegan K F, Pandit J. Identification, characterization, and crystal structure of the Omega class glutathione transferases [J]. The Journal of Biological Chemistry,2000,275(32): 24798-24806.
    Bonomi F, Cerioli A, Pagani S. Molecular aspects of the removal of ferritin-bound iron by DL-dihydrolipoate [J]. Biochimica et Biophysica Acta, Protein Structure and Molecular Enzymology,1989,994(2):180-186.
    Bonomi F, Pagani S. Removal of ferritin-bound iron by DL-dihydrolipoate and DL-dihydrolipoamide [J]. European Journal of Biochemistry,1986,155(2):295-300.
    Busse E, Zimmer G, Schopohl B, Kornhuber B. Influence of a-lipoic acid on intracellular glutathione in vitro and in vivo [J]. Arzneimittel-Forschung,1992,42(6):829-831.
    Cao Z, Tsang M, Zhao H, Li Y. Induction of endogenous antioxidants and phase 2 enzymes by a-lipoic acid in rat cardiac H9C2 cells:protection against oxidative injur [J]. Biochemical and Biophysical Research Communications,2003,310:979-985.
    Chen G S, Xu Y, Xu L H, Zhang Y Y, Karl-Werner S, Antonius K. Influence of Dioxin and Metal-Contaminated Sediment on Phase Ⅰand Ⅱ Biotransformation Enzymes in Silver Crucian Carp [J]. Ecotoxicology and Environmental Safety,1998,40:234-238.
    Choi C Y, An K W, An M I. Molecular characterization and mRNA expression of glutathione peroxidase and glutathione S-transferase during osmotic stress in olive flounder (Paralichthys olivaceus) [J]. Comparative Biochemistry and Physiology (A),2008,149: 330-337.
    Correia A D, Goncalves R, Scholze M, Ferreira M, Henriques MAR. Biochemical and behavioral responses in gilthead seabream (Sparus aurata) to phenanthrene [J]. Journal of Experimental Marine Biology and Ecology,2007,347:109-122.
    Cossu C, Doyotte A, Jacquin M C, Babut M, Exinger A, Vasseur P. Glutathione Reductase, Selenium-Dependent Glutathione Peroxidase, Glutathione Levels, and Lipid Peroxidation in Freshwater Bivalves, Unio tumidus, as Biomarkers of Aquatic Contamination in Field Studies [J]. Ecotoxicology and Environmental Safety,1997,38:122-131.
    Cremer D R, Rabeler R, Roberts A, Lynch B. Safety evaluation of α-lipoic acid (ALA) [J]. Regulatory Toxicology and Pharmacology,2006,46:29-41.
    Deng D F, Hung S S O, Teh S J. Selenium depuration:Residual effects of dietary selenium on Sacramento splittail (Pogonichthys macrolepidotus) [J]. Science of the Total Environment, 2007,377:224-232
    Devasagayam T P A, Subramanian M, Pradhan D S, Sies Helmut. Prevention of singlet oxygen-induced DNA damage by lipoate [J]. Chemico-Biological Interactions,1993,86(1): 79-92.
    Di Guilio R T, Washburn P C, Wenning R J. Biochemical responses in aquatic animals:a review of determinants of oxidative stress [J]. Environmental Toxicology Chemistry,1989,8: 1103-1123.
    Eason R C, Archer H E, Akhtar S, Bailey C J. Lipoic acid increases glucose uptake by skeletal muscles of obese-diabetic ob/ob mice [J]. Diabetes, Obesity and Metabolism,2002,4(1): 29-35.
    Eason R C, Archer H E, Akhtar S, Bailey C J. Lipoic acid increases glucose uptake by skeletal muscles of obese-diabetic ob/ob mice [J]. Diabetes, Obesity and Metabolism,2002,4(1): 29-35.
    Esterbauer H, Schaur R J, Zollner H. Chemistry and biochemistry of 4-hydroxynonenal, malonaldehyde and related aldehydes [J]. Free Radicals in Biology and Medicine,1991, 11(1):81-128.
    Fang Y Z, Yang S, Wu G Y. Free radicals, antioxidants, and nutrition. Nutrition,2002,18(10): 872-879.
    Ferrante I, Ricci R, Aleo E, Passi S, Cataudella S. Can enzymatic antioxidant defences in liver discriminate between wild and seacage-reared Bluefin Tuna quality?[J] Aquaculture,2008, 279:182-187.
    Fucassi F, Lowe J E, Pavey K D, Shah S, Faragher R G A, Green M H L, Paul F, O'Hare D, Cragg P J. α-Lipoic acid and glutathione protect against the prooxidant activity of SOD/catalase mimetic manganese salen derivatives [J]. Journal of Inorganic Biochemistry,2007,101: 225-232.
    Fujiwara K, Okamura-Ikeda K, Motokawa Y. cDNA sequence, in vitro synthesis, and intramitochondrial lipoylation of H-protein of the glycine cleavage system [J]. Journal of Biological Chemistry,1990,265(29):17463-17467.
    Gatlin D M, Wilson R P. Dietary selenium requirement of fingerling channel catfish [J]. Journal of Nutrition,1984,114:627-633.
    Gissel Nielsen M, Gissel-Nielsen G. Sensitivity of trout to chronic and acute exposure to selenium [J]. Agriculture and Environment,1978,4(1):85-91.
    Halliwell B, Antioxidants, in Present knowledge in Nutrition, ed:Ziegler E E and Filer L J Jr. 1998.人民卫生出版社出版.
    Halver J E. (ed), Fish Nutrition. USA:Academic Press.2002.113 pp.
    Hamed R R, Maharem T M, Guinidi R A M. Glutathione and its related enzymes in the Nile fish [J]. Fish Physiology and Biochemistry,2004,30 (3/4):189-199.
    Hamilton S J, Holley K M, Buhl K J, Bullard F A. Selenium impacts on razorback sucker, Colorado River, Colorado Ⅱ. Eggs [J]. Ecotoxicology and Environmental Safety,2005,61(1): 32-43.
    Hamilton S J. Review of selenium toxicity in the aquatic food chain [J]. Science of the Total Environment,2004,326(1-3):1-31.
    Hayes J D, Pulford D J. The glutathione S-transferase super gene family. Regulation of GSTs and the Contribution of the Isoenzymes to cancer chemoprotection and drug resistance [J]. Critical Reviews in Biochemistry and Molecular Biology,1995,30(6):445-600.
    Henson K L, Gallagher E P. Glutathione S-Transferase Expression in Pollution-Associated Hepatic Lesions of Brown Bullheads (Ameiurus nebulosus) from the Cuyahoga River, Cleveland, Ohio [J]. Toxicological Sciences,2004,80(1):26-33.
    Hicks B D, Hilton J W, Ferguson H W. Influence of Dietary selenium selenium on the occurrence of nephrocalcinosis in the rainbow trout, Salmo gairdneri Richardson [J]. Journal of Fish Diseases,1984,7(5):379-389.
    Hill, A S, Werner J A, Rogers Q R, O'Neill S L, Christopher M M. Lipoic acid is 10 times more toxic in cats than reported in humans, dogs or rats [J]. Journal of Animal Physiology and Animal Nutrition,2004,88(3-4):150-156.
    Hilton J W, Hodson P V, Slinger S J. Absorption, distribution, half-life, and possible routes of elimination of dietary selenium in juvenile rainbow trout (Salmo gairdneri) [J]. Comparative Biochemistry and Physiology, C:Comparative Pharmacology,1982,71C (1):49-55.
    Hilton J W, Hodson P V, Slinger S J. The requirement and toxicity of selenium in rainbow trout (Salmo Galrdneri) [J]. The Journal of Nutrition,1980,110:2527-2535.
    Hilton J W, Hodson P V. Effect of increased dietary carbohydrate on selenium metabolism and toxicity in rainbow trout (Salmo gairdneri) [J]. Journal of Nutrition,1983,113:1241-1248.
    Hilton J W, Hudson P V, Slinger S J. The requirements and toxicity of selenium in rainbow trout (Salmo Gairdneri) [J]. The Journal of Nutrition,1980,110:2527-2535.
    Hoekstra W G. Biochemical function of selenium and its relation to vitamin E [J]. Federation Proceedings,1975,34(11):2083-2089.
    Huang C H, Huang S L. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone,1931) exposed to acute salinity changes [J]. Aquaculture,2007,265:351-358.
    Hussain S, Slikker W, Ali S F. Role of metallothione in and other antioxidants in scavenging superoxide radicals and their possible role in neuroprotection [J]. Neurochemistry International,1996,29(2):145-152.
    Infante J L Z, Cahu C L, Peres A. Partial substitution of di-and tripeptides for native proteins in sea bass diet improves Dicentrarchus labrax larval development [J]. Journal of Nutrition, 1997,127:608-614.
    Jameel N M, Shekhar M A, Vishwanath B S. a-lipoic acid:An inhibitor of secretory phospholipase A2 with anti-inflammatory activity [J]. Life Sciences,2006,80:146-153.
    Kim M S, Park J Y, Namkoong C, Jang P G, Ryu J W, Song H S, Yun J Y, Namgoong I S, Ha J, Park I S, Lee I K, Viollet B, Youn J H, Lee H K, Lee K U. Anti-obesity effects of a-lipoic acid mediated by suppression of hypothalamic AMP-activated protein kinase [J]. Nature Medicine,2004,10:727-733.
    Kleinow K M, Brooks A S. Selenium compounds in the fathead minnow (Pimephales promelas). I. Uptake, distribution, and elimination of orally administered selenate, selenite and L-selenomethionine [J]. Comparative Biochemistry and Physiology, Part C:Pharmacology, Toxicology& Endocrinology,1986,83C (1):61-69.
    Kondo F, Ikai Y, Oka H, Okumura M, Ishikawa N, Harada K, Matsuura K, Murata H, Suzuki M. Formation, characterization and toxicity of the glutathione and cysteine conjugates of toxic heptapeptide microcystins [J]. Chemical Research Toxiciology,1992,5(5):591-596.
    Konishi T, Kato K, Araki T, Shiraki K, Takagi M, Tamaru Y. Molecular cloning and characterization of a-class glutathione S-transferase genes from the hepatopancreas of red sea bream, Pagrus major [J]. Comparative Biochemistry and Physiology,2005b, 140C:309-320.
    Lawrence R A, Burk R F. Species, tissue, and subcellular distribution of non selenium-dependent glutathione peroxidase activity [J]. The Journal of Nutrition,1978,108:211-215.
    Lee Y M, Chang S Y, Jung S O, Kweon H S, Lee J S. Cloning and expression of alpha class glutathione S-transferase gene from the small hermaphroditic fish Rivulus marmoratus (Cyprinodontiformes, Rivulidae) [J]. Marine Pollution Bulletin,2005,51 (8/12):776-783.
    Lee Y M, Seo J S, Jung S O, Kim I C, Lee J S. Molecular cloning and characterization of theta-lass glutathione S-transferase (GST-T) from the hermaphroditic fish Rivulus marmoratus and biochemical comparisons with alpha-class glutathione S-transferase (GST-A) [J]. Biochemical and Biophysical Research Communications,2006a,346 (3):1053-1061.
    Lemly A D. Response of juvenile centrarchids to sublethal concentrations of waterbome selenium. I. Uptake, tissue distribution, and retention [J]. Aquatic Toxicology,1982,2(4):235-252.
    Levander O A, Ager A L, Morris V C, May R G. Qinghaosu, dietary vitamin E, selenium and cod-liver oil:effect on the susceptibility of mice to the malarial parasite Plasmodium yoelii [J]. The American Journal of Clinical Nutrition,1989,50(2):346-352.
    Liao W Q, Liang X F, Wang L, Lei L M, Han B P. Molecular cloning and characterization of alpha-class glutathione S-transferase gene from the liver of silver carp, bighead carp, and other major Chinese freshwater fishes [J]. Journal of Biochemical and Molecular Toxicology, 2006,20(3):114-126.
    Lin Y H, Shiau S Y T. Dietary selenium requirements of juvenile grouper, Epinephelus malabaricus [J]. Aquaculture,2005,250:356-363.
    Lin Y H, Shiau S Y. The effects of dietary selenium on the oxidative stress of grouper, Epinephelus malabaricus, fed high copper [J]. Aquaculture,2007,267:38-43.
    Linder M, De Burlet G, Sudaka P. Transport of glutathione by intestinal brush border membrane vesicles [J]. Biochemical and Biophysical Research Communications,1984,123(3):929-936.
    Liu Y, Wang W N, Wang A L, Wang J M, Sun R Y. Effects of dietary vitamin E supplementation on antioxidant enzyme activities in Litopenaeus vannamei (Boone,1931) exposed to acute salinity changes [J]. Aquaculture,2007,265:351-358.
    Lu C Y, Liu Y Y. Interactions of lipoic acid radical cations with vitamins C and E analogue and hydroxycinnamic acid derivatives [J]. Archives of Biochemistry and Biophysics,2002,406: 78-84.
    Maracine M, Segner H. Review:Cytotoxicity of metals in isolated fish cells:Importance of the cellular glutathione status [J]. Comparative Biochemistry and Physiology (A),1998,120: 83-88.
    Maritim A C, Sanders R A, Watkins J B. Effects of α-lipoic acid on biomarkers of oxidative stress in streptozotocin-induced diabetic rats [J]. Journal of Nutritional Biochemistry,2003,14: 288-294.
    Martinez-Lara E, Leaver M, George S. Evidence from heterologous expression of glutathione S-transferases A and Al of the plaice (Pleuronectes platessd) that their endogenous role is in detoxification of lipid peroxidation products [J]. Marine Environmental Research,2002,54: 263-266.
    Mather-Mihaich E, Di Giulio R T. Antioxidant enzyme activities and malondialdehyde, glutathione and methemoglobin concentrations in channel catfish exposed to def and N-butyl mercaptan [J]. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology,1986,85(2):427-432.
    McKenzie R C, Rafferty T S, Beckett G J. Selenium:an essential element for immune function [J]. Immunology today,1998,19(8):342-345.
    Monserrat J M, Lima J V, Ferreira J L R, Acosta D, Garcia M L, Ramos P B, Moraes T B, Santos L C dos, Amado L L. Modulation of antioxidant and detoxification responses-mediated by lipoic acid in the fish Corydoras paleatus (Callychthyidae) [J]. Comparative Biochemistry and Physiology, Part C,2008,148:287-292.
    Monserrat J M, Lima J V, Ferreira J L R, Acosta D, Garcia M L, Ramos P B, Moraes T B, Santos L C, Amado L L. Modulation of antioxidant and detoxification responses mediated by lipoic acid in the fish Corydoras paleatus (Callychthyidae) [J]. Comparative Biochemistry and Physiology,2008,148C:287-292.
    Morikawa T, Yasuno R, Wada H. Do mammalian cells synthesize lipoic acid? Identification of a mouse cDNA encoding a lipoic acid synthase located in mitochondria [J]. FEBS Letters, 2001,498(1):16-21.
    Mourente G, Diaz-Salvago E, Bell J G, Tocher D R. Increased activities of hepatic antioxidant defence enzymes in juvenile gilthead sea bream(Sparus aurata L.) fed dietary oxidized oil: attenuation by dietary vitamin E [J]. Aquaculture,2002,214(1-4):343-361.
    Mourente G, Tocher D R, Diaz E, Grau A, Pastor E. Relationships between antioxidants, antioxidants enayme activities and lipid peroxidation products during early development in Dentex dentex eggs and larvas [J]. Aquaculture,1999,179:309-324.
    Mueller L, Menzel H. Studies on the efficacy of lipoate and dihydrolipoate in the alteration of cadmium (2+) toxicity in isolated hepatocytes [J]. Biochimica et Biophysica Acta, Molecular Cell Research,1990,1052(3):386-91.
    Nascimento N R F, Costa-e-Forti A, Peter A A, Fonteles M C. Free radical scavengers improvethe impaired endotheliumdependent responses in aorta and kidneys of diabetic rabbits [J]. Diabetes Research and Clinical Practice,2003,61:145-153.
    Navari-lzzo F, Quartacci M F, Sgherri C. Lipoic acid:A unique antioxidant in the detoxification of activated oxygen species [J]. Plant Physiology and Biochemistry (Paris, France),2002, 40(6-8):463-470.
    Novoa-Valioas M C, Perez-Lopez M, Melgar M J. Comparative study of the purification and characterization of the cytosolic Glutathione S-transferases from two salmonid species: Atlantic salmon(Salmo salar) and brown trout(Salmo trutta) [J]. Comparative Biochemistry and Physiology,2002,131C(2):207-213.
    NRC (National Research Council),1993. Nutrient Requirements of Fish [M]. National Academy Press, Washington, DC.
    NRC (National Research Council),2005. Nutrient Requirements of Fish [M]. National Academy Press, Washington, DC.
    Obrosova I G, Fathallah L, Liu E, Nourooz-Zaden J. Early oxidative stress in the diabetic kidney: effect of DL-a-lipoic acid [J]. Free Radical Biology & Medicine,2003,34(2):186-195.
    Ohtake F, Takeyama K, Matsumoto T, Kitagawa H, Yamamoto Y, Nohara K, Tohyama C, Krust A, Mimura J, Chambon P, Yanagisawa J, Fujii-Kuriyama Y, Kato S. Modulation of oestrogen receptor signalling by association with the activated dioxin receptor [J]. Nature (London, United Kingdom),2003,423(6939):545-550.
    Oliveira M, Pacheco M, Santos M A. Organ specific antioxidant responses in golden grey mullet (Liza aurata) following a short-term exposure to phenanthrene [J]. Science of the total environment,2008,396:70-78.
    Otto D M E, Sen C K, Casley W L, Moon T W. Regulation of 3,3',4,4'-tetrachlorobiphenyl induced cytochrome P450 metabolism by thiols in tissues of rainbow trout [J]. Comparative Biochemistry and Physiology, C:Pharmacology, Toxicology and Endocrinology,1997,117C (3):299-309.
    Ou P, Tritschler H J, Wolff S P. Thioctic (lipoic) acid:a therapeutic metal-chelating antioxidant? [J]Biochemical Pharmacology,1995,50(1):123-126.
    Ozkan Y, Yilmaz O,Oztiirk A I, Yasemin E. Effects of triple antioxidant combination (vitamin E, vitamin C and α-lipoic acid) with insulin on lipid and cholesterol levels and fatty acid composition of brain tissue in experimental diabetic and non-diabetic rats [J].Cell Biology International,2005,29:754-760.
    Packer L, Kraemer K, Rimbach G. Molecular aspects of lipoic acid in the prevention of diabetes complications [J]. Nutrition,2001,17:888-895.
    Packer Lester, Kraemer Klaus, Rimbach Gerald. Molecular aspects of lipoic acid in the prevention of diabetes complications [M]. Nutrition (New York, NY, United States).2001, 17(10):888-895.
    Paris-Palacios S, Biagianti-Risbourg S, Vernet G. Biochemical and (ultra) structural hepatic perturbations of Brachydanio rerio (Teleostei, Cyprinidae) exposed to two sublethal concentrations of copper sulfate [J]. Aquatic Toxicology,2000,50(1-2),109-124.
    Park K H, Terjesen B F, Tesser M B, Portella M C, Dabrowski K. a-Lipoic acid-enrichment partially reverses tissue ascorbic acid depletion in pacu (Piaractus mesopotamicus) fed vitamin C-devoid diets [J]. Fish Physiology and Biochemistry,2006,32:329-338.
    Pena-Llopis S, Pena J B, Sancho E, Fernandez-Vega C, Ferrando M D. Glutathione-dependent resistance of the European eel Anguilla anguilla to the herbicide molinate [J]. Chemosphere, 2001,45:671-681.
    Pinochet H, De Gregori I, Cavieres M F. Selenium Concentration in Compartments of Aquatic Ecosystems in Central Chile [J]. Bulletin of Environment Contamination and Toxicology, 2002,69(1):139-146.
    Podda M., Tritschler H. J., Ulrich H., Packer L., Alpha-lipoic acid supplementation prevents symptoms of vitamin E deficiency [J]. Biochemical Biophysical Research Communications, 1994,204(1):98-104.
    Poston H A, Combs G F, Leibovitz L. Vitamin E and selenium interrelations in the diet of Atlantic salmon (Salmo salar):Gross, Histological and Biochemical Deficiency Signs [J]. The Journal of Nutrition,1976,106:892-904.
    Prohaska J R, Ganther H E. Glutathione peroxidase activity of glutathione-S-transferases purified from rat liver [J]. Biochemical and Biophysical Research Communications,1977,76(2): 437-445.
    Qin S, Huang K, Gao J, Huang D, Cai T, Pan C. Comparison of glutathione peroxidase and iodothyronine deiodinase mRNA expression in murine liver after feeding selenite or selenized yeast [J]. Journal of Trace Elements in Medicine and Biology,2009,23:29-35.
    Quinn J F, Bussiere J R, Hammond R S, Montine T J,-Henson E, Jones R E, Stackman R W. Chronic dietary a-lipoic acid reduces deficits in hippocampal memory of aged Tg2576 mice [J]. Neurobiology of Aging,2007,28:213-225.
    Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation:therapeutic approaches [J]. Free Radical Biology and Medicine,2000,28(9): 1405-1420.
    Rahman I, MacNee W. Regulation of redox glutathione levels and gene transcription in lung inflammation:therapeutic approaches [J]. Free Radical Biology and Medicine,2000,28(9): 1405-1420.
    Ranby B, Rabek J E. Singlet Oxygen [M]. Chichester:Wiley,1978.
    Reddy K V, Kumar T C, Prasad M, Reddanna P. Pulmonary lipid peroxidation and antioxidant defenses during exhaustive physical exercise:the role of vitamin E and selenium [J]. Nutrition,1998,14(5):448-451.
    Reed, Lester J. A trail of research from lipoic acid to alpha-keto acid dehydrogenase complexes [J]. Journal of Biological Chemistry,2001,276(42):38329-38336.
    Rotruck J T, Pope A L, Ganther H E, Swanson A B, Hafeman D Q Hoekstra W G 1973 Selenium: Biochemical role as a component of glutathione peroxidase [J]. Science,179(4073):588-590.
    Rudneva 11. Blood antioxidant system of Black Sea elasmobranch and teleosts [J]. Comparative Biochemistry and Physiology,1997,118C (2):255-260.
    Rutruck J T, Pope A L, Gather H E, Swanson A B, Hafeman D G, Hoekstra W G Selenium: Biochemical role as a component of glutathione peroxidase [J]. Science,1973,179(4073): 588-590.
    Sah N K, Kumar S, Subramanian M, et al. Variation in the modulation of superoxide-induced singlestrand breaks in plasmid pBR322 DNA by biological antioxidants [J]. Biochemistry and Molecular Biology International,1995,35(2):291-296.
    Sarada S K S, Sairam M, Dipti P, Anju B, Pauline T, Kain A K, Sharma S K, Bagawat S, Uavazhagan G, Kumar D. Role of selenium in reducing hypoxia-induced oxidative stress:an in vivo study [J]. Biomed Pharmacother,2002,56:173-178.
    Sato Takahiko, Ose Youki, Sakai Tsutomu. Toxicological effect of selenium on fish [J]. Environmental Pollution, Series A:Ecological and Biological,1980,21(3):217-224.
    Schafer F Q, Buettner G R. Redox environment of the cell as viewed through the redox state of the glutathione disulfide/glutathione couple [J]. Free "Radical Biology and Medicine,2001, 30(11):1191-1212.
    Scott B C, Aruoma O I, Evans P J, O'Neill C, Van Der Vliet A, Cross C E, Tritschler H, Halliwell B. Lipoic and dihydrolipoic acids as antioxidants [J]. A critical evaluation. Free Radical Research,1994,20(2):119-33.
    Sheffy B E, Schultz R D. Influence of vitamin E and selenium on the immune response mechanism [J]. Fed Proe.,1979,28(7):2139-2143.
    Shila S, Kokilavani V, Subathra M, Panneerselvam C. Brain regional responses in antioxidant system to a-lipoic acid in arsenic intoxicated rat [J]. Toxicology,2005,210:25-36.
    Sies H. Glutathione and its role in cellular functions [J]. Free Radical Biodicine & Medicine,1999, 27:916-921.
    Sigel H, Prijs B, McCormick D B, Shih J. C. H. Stability and structure of binary and ternary complexes of a-lipoate and lipoate derivatives with manganese (2+), copper (2+), and zinc (2+) in solution [J]. Archives of Biochemistry and Biophysics,1978,187(1):208-214.
    Stajn A, Zikic R V, Ognjanovic B, Saicic Z S, Pavlovic S Z, Kostic M M, Petrovic V M. Effect of Cadmium and Selenium on the Antioxidant Defense System in Rat Kidneys [J]. Comparative Biochemistry and Physiology,1997,117C(2):167-172.
    Surai P F. Selenium in poultry nutrition 1. Antioxidant properties; deficiency and toxicity [J]. World's Poultry Science Journal,2002,58(11):333-347.
    Teh S J, Deng X, Teh F C, Hung S O. Selenium-induced teratogenicity in Sacramento splittail (Pogonichthys macrolepidotus) [J]. Marine Environmental Research,2002,54(3-5):605-608.
    Terjesen B F, Park K, Tesser M B, Portella M C, Zhang Y, Dabrowski K. Lipoic Acid and Ascorbic Acid Affect Plasma Free Amino Acids Selectively in the Teleost Fish Pacu (Piaractus mesopotamicus) [J]. Journal of Nutrition,2004,134:2930-2934.
    Thirunavukkarasu V, Anitha Nandhini A T, Anuradha C V. Cardiac lipids and antioxidant status in high fructose rats and the effect of a-lipoic acid [J]. Nutr Metab Cardiovasc Dis,2004,14: 351-357.
    Thomas P, Wofford H W. Effects of cadmium and Aroclor 1254 on lipid peroxidation, glutathione peroxidase activity, and selected antioxidants in Atlantic croaker tissues [J]. Aquatic Toxicology,1993,27(1-2):159-177.
    Thomas S, Lowe J E, Hadjivassiliou V, Knowles R G, Green I C, Green M H L. Use of comet assay to investigate the role of superoxide in glutathione-induced DNA damage [J]. Biochemical and Biophysical Research Communications,1998,243 (1,4):241-245.
    Trattner S, Pickova J, Park K H, Rinchard J, Dabrowski K. Effects of a-lipoic and ascorbic acid on the muscle and brain fatty acids and antioxidant profile of the South American pacu Piaractus mesopotamicus [J]. Aquaculture,2007,273:158-164.
    Trenzado C, Hidalgo M C, Garcia-Gallego M, Morales A E, Furne M, Domezain A, Domezain J, Sanz A. Antioxidant enzymes and lipid peroxidation in sturgeon Acipenser naccarii and trout Oncorhynchus mykiss [J]. A comparative study. Aquaculture,2006,254:758-767.
    Vincenzini M T, Favilli F, lantomasi T. Glutathione-mediated transport across intestinal brush-border membranes [J]. Biochimica et Biophysica Acta, Biomembranes,1988,942(1): 107-14.
    Vincenzini M T, lantomasi T. Intestinal uptake and transmembrane transport systems of intact GSH:Characteristics and possible biological role [J]. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes,1992,1113:13-23.
    Vincenzini M T, lantomasi T. Intestinal uptake and transmembrane transport systems of intact GSH:Characteristics and possible biological role [J]. Biochimica et Biophysica Acta (BBA)-Reviews on Biomembranes,1992,1113:13-23.
    Wang C, Lovell R T. Organic selenium sources, selenomethionine and selenoyeast, have higher bioavailability than an inorganic selenium source, sodium selenite, in diets for channel catfish (Ictalurus punctatus) [J]. Aquaculture,1997,152(1-4):223-234.
    Wang W N, Wang A L, Zhang Y J. Effect of dietary higher level of selenium and nitrite concentration on the cellular defense response of Penaeus vannamei [J]. Aquaculture,2006, 256:558-563.
    Wang W N, Wang Y, Wang A L. Effect of supplemental L-ascorbyl-2-polyphosphate (APP) in enriched live food on the immune response of Penaeus vannamei exposed to ammonia-N [J]. Aquaculture,2006,256:552-557.
    Wang Y, Han J, Li W, Xu Z. Effect of different selenium source on growth performances, glutathione peroxidase activities, muscle composition and selenium concentration of allogynogenetic crucian carp (Carassius auratus gibelio) [J]. Animal Feed Science and Technology,2007,134:243-251.
    Winston G W, Di Giulio R T. Prooxidant and antioxidant mechanisms in aquatic organisms [J]. Aquatic Toxicology,1991,19(2):137-161.
    Winterbourn C C, Metodiewa D. Reaction of superoxide with glutathione and other thiols [J]. Methods in Enzymology,1995,251:81-86.
    Wise D J, Tomasso J R, Gatlin D M Ⅲ, Bai S C, Blazer V S. Effects of dietary selenium and vitamin E on red blood cell peroxidase, glutathione peroxidase activity and macrophage superoxide anion production in channel catfish [J]. Journal of Aquatic Animal Health,1993,5: 177-183.
    Wolf R, Wolf D, Ruocco V. Vitamin E:the radical protector [J]. Journal of European Academy of Dermatology and Venereology,1998,10(2):103-117.
    Wollin S D, Jones P J H. α-Lipoic acid and cardiovascular disease [J]. Journal of Nutrition,2003, 133(11):3327-3330.
    Xia Y, Hill K E, Burk R F. Effect of Selenium Deficiency on Hydroperoxide-Induced Glutathione Release from the Isolated Perfused Rat Heart [J]. The Journal of Nutrition,1985,115: 733-742.
    Xiao D, Lin H R. Effects of cysteamine-a somatostatin-inhibiting agent-on serum growth hormone levels and growth in juvenile grass carp (Ctenopharyngodon idellus) [J]. Comparative Biochemistry and Physiology Part A,2003,134:93-99.
    Xu Z, Bai S. Effects of waterborne Cd exposure on glutathione metabolism in Nile tilapia (Oreochromis niloticus) liver [J]. Ecotoxicology and Environmental Safety,2007,67:89-94.
    Yang R L, Le G W, Li A L, Zheng J L, Shi Y H. Effect of antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fat diet [J]. Nutrition,2006,22: 1185-1191.
    Yilmaz O, Ozkan Y, Yildirim M, Ozturk A I, Ersan Y. Effects of alpha lipoic acid, ascorbic acid-6-palmitate, and fish oil on the glutathione, malonaldehyde, and fatty acids levels in erythrocytes of streptozotocin induced diabetic male rats [J]. Journal of Cellular Biochemistry, 2002,86(3):530-539.
    Zhang L, Xing G Q, Barker J L, Chang Y, Maric D, Ma W, Li B, Rubinow D R. α-lipoic acid protects rat cortical neurons against cell death induced by amyloid and hydrogen peroxide through the Akt signalling pathway [J]. Neuroscience Letters,2001,312(3):125-128.
    曹俊明,刘晓华,周萌,等.饲料中添加谷胱甘肽对凡纳滨对虾非特异性免疫因子和相关酶活性的影响[J].华中农业大学学报,2007,26(4):528-532.
    曹俊明,刘晓华,周萌,朱选,赵红霞,马力,蓝汉冰,谢从新,李邦佑,王定发.饲料中添加谷胱甘肽对凡纳滨对虾非特异性免疫因子和相关酶活性的影响[J].华中农业大学学报,2007,26(4):528-532.
    陈家长,孟顺龙,翟建宏,胡庚东,冷春梅.低浓度阿特拉津对鲫鱼谷胱甘肽S-转移酶(GSTs)活性的影响[J].生态与农村环境学报,2007,23(1):68-72.
    陈京华.微生物发酵、外源酶制剂和促摄食物质对牙鲆(Paralichthys olivaceus)利用豆粕蛋白的影响:[博士学位论文].青岛:中国海洋大学水产养殖系,2006
    储霞玲,曹俊明,赵红霞,朱选,陈水春,吕军仪.饲料中联合添加硒和谷胱甘肽对凡纳宾对虾生长、饲料系数和体成分的影响[J].饲料工业,2008,29(12):28-31.
    高姝娟,刘东波,罗贵民,等.抗氧化剂抗脂质过氧化机制的ESR研究[J].波谱学杂志,1998.15(2):139-143.
    郭金龙,孙桂清,殷禄阁,等.牙鲆营养需求及饲养管理技术[J].河北渔业,2008,5:34-35.
    何珊,梁旭方,廖婉琴,姚伟,李光照,朱伟峰.鲢鱼、鳙鱼、草鱼谷胱甘肽过氧化物酶cDNA的克隆及肝组织表达[J].动物学杂志,2007,42(3):40-47.
    贺建忠.硒中毒的研究进展[M].2007,6:37-38,48.
    侯江文,韩斌,董庆爱.天然富硒饲料对畜禽全血谷胱甘肽过氧化物酶活性的影响[J].山西农业科学,1996,3:15-16.
    华雪明,周洪琪,邱小.饲料中添加芽孢杆菌和硒酵母对异育银鲫的生长及抗病力的影响[J].水产学报,2001,25(5):448-453.
    黄涛,黄开勋.α-硫辛酸的生物医学功能[J].生命的化学,2004,24(1):58-60.
    惠天朝,施明华,朱荫湄.硒对罗非鱼慢性镉中毒肝抗氧化酶及转氨酶的影响[J].中国兽医 学报,2000,20(3):264-266.
    李继红,朱国标.生化指标及小肠上皮膜结构在热应激中的变化规律[J].成都军医医院学报,2003,5(1):12-14.
    李磊,张珺,赵清喜,王庆才,王常会.还原型谷胱甘肽对急性坏死性胰腺炎大鼠胰腺组织脂质过氧化的保护作用fJ].2008,31-32.
    李奕.α-硫辛酸对耐力训练小鼠力竭运动后谷胱甘肽抗氧化系统的影响:[硕士学位论文].上海:华东师范大学,2006.
    梁萌青,王家林,常青,柳旭东,麦康森.饲料中硒的添加水平对鲈鱼生长性能及相关酶活性的影响[J].中国水产科学,2006,13(6):1017-1022.
    廖婉琴,梁旭方,王琳,雷腊梅,韩博平.鲢鱼可溶性谷胱甘肽S-转移酶(sGST)基因cDNA全序列与5’调控区的克隆与分析[J].中国生物化学与分子生物学报,2006,22(6):470-476.
    林浩然,张皎.半胱胺盐酸盐对鳗鱼生长性能的影响[J].饲料广角,2005,11:34-36.
    刘慧,王晓蓉,王为木,沈骅.低浓度锌及其EDTA配合物长期暴露对鲫鱼肝脏锌富集及抗氧化系统的影响[J].环境科学,2005,26(1):173-176.
    刘慧,王晓蓉,张景飞,沈骅.铜及其配合物对鲫鱼肝脏谷胱甘肽的影响[J].南京大学学报,2004,40(3):356-361.
    刘晓华,曹俊明,吴建开,周萌,赵红霞,蓝汉冰,谢从新.饲料中添加谷胱甘肽对凡纳宾对虾肝胰腺抗氧化指标和脂质过氧化物含量的影响[J].水产学报,2007,31(2):235-240.
    刘晓华,曹俊明,吴建开,周萌,赵红霞,蓝汉冰,谢从新.饲料中添加谷胱甘肽对凡纳滨对虾肝胰腺抗氧化指标和脂质过氧化物含量的影响[J].水产学报,2007,31(2):235-240.
    刘晓华,曹俊明,吴建开,周萌,赵红霞,蓝汉冰,谢从新.饲料中添加谷胱甘肽对凡纳滨对虾生长及组织生化组成的影响[J].水生生物学报,2008,32(3):440-444.
    刘晓华,曹俊明,吴建开.饲料中添加谷胱甘肽对凡纳滨对虾肝胰腺抗氧化指标和脂质过氧化物含量的影响[J].水产学报,2007,31(2):235-240.
    刘学忠,崔旭,卞建春,任建新,刘宗平,王捍东,王宗元.硫辛酸在大鼠全脑缺血再灌注损伤中的神经保护作用[J].中国兽医学报,2004,24(4):388-390.
    吕社民.硒与甲状腺和甲状腺激素代谢[J].国外医学、医学地理分册,1994,15(3):97-101.
    牟维鹏.不同化学形式硒的毒性作用机制[J].国外医学卫生学分册,2001,28(4):202-205, 210.
    沙大年,范小兵,张迪,胡天喜.生物抗氧化剂α-硫辛酸[J].中成药,1999,21(12):655-657.
    水产动物营养与饲料学[M],1994.中国农业出版社,北京.
    宋玉果,王涤新.谷胱甘肽作为脂质过氧化损伤指标的研究[J].中华预防医学杂志,1999,33(5):317.
    孙贵范,李影奕,吴颖.硒与GSH联合对氟致大鼠脂质过氧化作用的影响[J].中国地方病学杂志,2000,9(6):414-416.
    万敏,麦康森,马洪明,徐玮,刘付志国.硒和维生素E对皱纹盘鲍血清抗氧化酶活力的影响[J].水生生物学报,2004,28(5):496-503.
    王蔚芳,2007。皱纹盘鲍矿物元素(K、Mg、Se、Cu)及糖类营养生理的研究:[硕士学位论文]。青岛:中国海洋大学。
    魏万全,牙鲆幼鱼对铁、锌、锰、铜、钴、硒营养需求的研究[D].青岛:青岛海洋大学,1998.
    魏文志,杨志强,罗方妮,王为松.饲料中添加有机硒对异育银鲫生长的影响[J].淡水渔业,2001,31(3):45-46.
    吴建平,陈学敏,杨成峰,等.硒氟联合作用对大鼠脂质过氧化作用的影响[J].中国地方病学杂志,1994,13(4):213.
    薛飞,王广田,庞志刚,刘超,孙建军,赵玉洲.还原型谷胱甘肽对大鼠肝脏缺血再灌注损伤的保护作用[J].郑州大学学报(医学版),2007,42(1):139-141.
    杨国宇,惠参军,崔平安,王月影,朱河水.日粮中添加α-硫辛酸对肉鸡脂肪代谢的影响[J].兽药与饲料添加剂,2003,8(3):1-2.
    杨在宾,方希修.维生素E和硒的营养生理功能及相互关系[J].中国饲料,1998,23:21-22.
    张国良,赵会宏,周志伟,何志交,郭慧,陈静,刘丽.还原型谷胱甘肽对罗非鱼生长和抗氧化性能的影响[J].华南农业大学学报,2007,28(3):90-93.
    张晓迪,海春旭,梁欣,赵康涛,秦绪军,陈红利,刘瑞.硫辛酸的急性毒性及抗辐射作用初步研究[J].卫生毒理学杂志,2002,16(4):232-233.
    张甬元,徐立红,周炳升,等.鱼体中谷胱甘肽对微囊藻毒素的解毒作用的初步研究[J].水生生物学报,1996,20(3):284-286.
    张在香,田园,杨晓光,夏弈明,陈孝曙.不同硒水平饲料对大鼠肝脏谷胱甘肽过氧化物酶和脱碘酶活性的影响[J].卫生研究,1998,(3):66-68.
    赵红霞,谭永刚,周萌,朱选,扬大伟,曹俊明.饲料中添加谷胱甘肽对草鱼生长、生理指标和抗病力的影响[J].中国水产科学,2007,14(4):678-683.
    赵克然,杨毅军,曹道俊.氧自由基与临床[M].北京:中国医药科技出版社,2000:529-538.
    仲晓丽.皱纹盘鲍(Haliotis discus hannai Ino)微量金属元素及其与铜的交互作用的营养生理研究:[硕士学位论文].青岛:中国海洋大学,2009.
    朱选,曹俊明,赵红霞,张海涛.饲料中添加谷胱甘肽对草鱼组织中谷胱甘肽沉积和抗氧化能力的影响[J].中国水产科学,2008,15(1):160-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700