饲料中的铁、锌和铜对皱纹盘鲍生长、代谢反应和抗氧化作用的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以草食性原始腹足贝类皱纹盘鲍(Haliotis discus hannai Ino)作为研究对象,分别以硫酸亚铁(FeSO4·7H2O)为铁源、硫酸锌(ZnSO4·7H2O)为锌源、以硫酸铜(CuSO4·5H2O)为铜源在饲料中设置不同的梯度,在流水系统中进行摄食生长实验。探讨铁的缺乏与过量、铁与锌的交互作用、铁与铜的交互作用对皱纹盘鲍生长、代谢反应及抗氧化作用的影响,主要研究结果如下:
     1、在以酪蛋白和明胶为蛋白源的半精制基础饲料中,以硫酸亚铁(FeSO4·7H2O)为铁源,设置铁的4个梯度0(缺乏)、65(正常)、1300(过量)、6500mg/kg(过量)(饲料中实测含量29.7、65.7、1267.2、6264.7mg/kg),研究铁的缺乏与过量对皱纹盘鲍稚鲍生长与体组成、代谢反应与抗氧化作用的影响。实验共分4个处理,每个处理设3个重复,每个重复放养50只鲍鱼(平均体重0.29±0.00g;平均壳长为13.05±0.02 mm),进行为期28周的流水养殖实验。结果表明:各实验组鲍鱼成活率(>97%)均无显著差异(P>0.05)。在铁缺乏(29.7 mg/kg)组,增重率(WGR)和贝壳日增长(DISL)最低,但与正常组(65.7 mg/kg)无显著差异;在铁过量(1267.2、6264.7mg/kg)组,WGR和DISL显著升高(P<0.05)。饲料中铁含量的升高显著增加了软体部粗蛋白的含量,显著降低了软体部粗脂肪的含量(P<0.05)。肝胰脏、肌肉、血清、贝壳中铁的含量随着饲料中铁含量的升高而升高,而铜、锰、锌的含量随着饲料中铁含量的升高而降低。血清和肝胰脏酸性磷酸酶(ACP)及肝胰脏碱性磷酸酶(AKP)的活性随着饲料中铁水平的升高有先升高后下降的趋势。血清超氧化物歧化酶(SOD)、肝胰脏过氧化氢酶(CAT)的活性及肝胰脏总抗氧化力(T-AOC)在铁过量组显著降低(P<0.05)。饲料丙二醛(MDA)水平在铁过量组显著升高,饲料VE含量显著降低(P<0.05)。在6264.7 mg/kg饲料组,内脏团MDA的含量高于其他处理组(P<0.05),肌肉VE的含量显著低于其他处理组(P<0.05)。在铁过量组,铁过量导致肝胰脏中VE显著降低(P<0.05)。结论:当饲料中的铁过量(1267.2、6264.7mg/kg)时,在皱纹盘鲍生长上虽没有观察到铁的毒性,然而肝胰脏VE的含量、SOD和CAT的活性及T-AOC都有降低的趋势,同时在6264.7mg/kg组,内脏团的MDA含量也显著升高。这就说明,饲料中过量的铁(1267.2、6264.7mg/kg),导致皱纹盘鲍体内氧化压力增加,抗氧化能力下降,对健康造成了不利影响。
     2、利用3×3双因素实验设计,在饲料中添加不同含量的铁(0,65,1300mg/kg)和锌(0,35,700mg/kg),探讨铁和锌的相互作用对皱纹盘鲍生长、代谢反应和抗氧化作用的影响。以硫酸亚铁(FeSO4?7H2O)为铁源,以硫酸锌(ZnSO4?7H2O)为锌源,酪蛋白和明胶为蛋白源制作半精制基础饲料。共有9个处理,每个处理设3个重复,每个重复放养50只鲍鱼(平均体重:0.29±0.00g;平均壳长:13.05±0.02 mm),流水养殖28周。
     结果表明:增重率(WGR)和贝壳日增长(DISL)随着饲料中铁水平的升高而升高,当饲料中铁的含量为1300mg/kg时,WGR和DISL显著高于其他处理组(P<0.05)。软体部粗蛋白含量随着饲料中铁含量的升高显著升高,而软体部粗脂肪含量显著下降(P<0.05)。饲料中的铁和锌对软体部脂肪的含量变化存在显著的交互作用(P<0.05),对WGR和DISL无显著的交互作用(P>0.05)。当饲料锌的含量一定时,肝胰脏、肌肉、血清、贝壳中铁的含量随着饲料铁水平的升高而显著升高(P<0.05);而这4个组织中锌的含量随着饲料铁水平的升高有先升高后下降的趋势,在饲料铁为1300mg/kg时,组织锌含量显著下降(P<0.05)。当饲料铁的含量一定时,组织铁的含量随着饲料锌水平的升高而显著降低,而其锌的含量随着饲料锌水平的升高而显著升高(P<0.05)。饲料中高水平的铁和锌相互抑制。饲料中的铁和锌对肝胰脏中铁和锌的含量、肌肉中铁的含量及血清中铁、铜、锰的含量变化均存在显著的交互作用(P<0.05),且对血清酸性磷酸酶(ACP)、碱性磷酸酶(AKP)和肝胰脏ACP活性的变化也存在显著的交互作用(P<0.05)。血清超氧化物歧化酶(SOD)、肝胰脏过氧化氢酶(CAT)的活性及总抗氧化力(T-AOC)随着饲料铁含量的升高有先上升后下降的趋势,当饲料铁水平为1300 mg/kg时,肝胰脏CAT的活性及T-AOC显著下降(P<0.05)。饲料中MDA含量随着饲料中铁水平的升高而显著升高(P<0.05),而饲料中VE含量显著降低(P<0.05)。当饲料铁为1300mg/kg时,肝胰脏的VE含量显著低于其他处理组(P<0.05)。饲料中的铁和锌对血清SOD、肝胰脏CAT活性的变化均存在显著的交互作用(P<0.05)。
     3、利用3×3双因素实验设计在饲料中添加不同含量的铁(0,65,1300mg/kg)和铜(0,4,80mg/kg),探讨铁和铜的相互作用对皱纹盘鲍生长、代谢反应和抗氧化作用的影响。以硫酸亚铁(FeSO4?7H2O)为铁源,以硫酸铜(CuSO4·5H2O)为铜源,以酪蛋白和明胶为蛋白源制作半精制基础饲料。共有9个处理,每个处理设3个重复,每个重复放养50只鲍鱼(平均体重:0.33±0.00g;平均壳长:13.54±0.04 mm),流水养殖28周。
     结果表明:当饲料铁为1300mg/kg时,增重率(WGR)和贝壳日增长(DISL)显著升高(P<0.05)。饲料中铁水平的升高,显著增加了软体部粗蛋白的含量而显著降低了软体部粗脂肪的含量(P<0.05)。当饲料中铜含量为0、4 mg/kg时,肝胰脏、肌肉、血清、贝壳中铁的含量随着铁含量的增加而显著增加(P<0.05);当铜含量为80 mg/kg时,这4个组织铁的含量不再随着饲料铁含量的增加而增加。当饲料铁的含量一定时,组织铁的含量随着饲料铜水平的升高存在先升高后下降的趋势,组织铁的含量在饲料铜为4mg/kg时最高,在饲料铜为80mg/kg时显著降低(P<0.05)。组织中锌、锰的含量随着饲料铁和铜水平的升高而显著降低(P<0.05)。饲料中铁和铜的含量对鲍鱼肝胰脏中的铁、铜、锌和锰、肌肉中锰、血清铁、锌、锰的含量及血清和肝胰脏中的酸性磷酸酶(ACP)和碱性磷酸酶(AKP)的活性变化均有显著性的交互作用(P<0.05)。当饲料铜水平一定时,肝胰脏过氧化氢酶(CAT)的活性和总抗氧化力(T-AOC)随着饲料铁水平的升高而显著降低(P<0.05)。饲料铁的含量对饲料丙二醛(MDA)、饲料和肝胰脏VE的含量均存在显著影响(P<0.05)。在饲料铁含量为1300mg/kg的饲料组,饲料MDA的含量显著降低(P<0.05),饲料及肝胰脏的VE含量显著低于其他处理组(P<0.05)。饲料中的铁和铜对血清和肝胰脏超氧化物歧化酶(SOD)及肝胰脏CAT的活性变化均有显著的交互作用(P<0.05)。
A series of experiments were conducted to determine the effects f dietary iron, zinc and copper on growth,metabolic responses and antioxidation in juvenile abalone(Haliotis discus hannai Ino) with FeSO4·7H2O as iron source, ZnSO4·7H2O as zinc source and CuSO4·5H2O as copper source.The results of the present study are summarized as follows:
     1.A one-factorial experiment was conducted to determine the effects of iron deficiency and overload on growth, metabolic responses and antioxidation in juvenile abalone Haliotis discus hannai. The juveniles (initial mean weight, 0.29±0.00g; initial mean shell length, 13.05±0.02mm) were divided into four triplicate groups, and fed on one of the four semi-purified diets containing 29.7(deficiency), 65.7 (control), 1267.2 (overload), 6264.7 (overload) mg iron/kg dry diet, respectively, for 28 weeks in a flow-through system.The results showed that there were no significant difference in the survival of abalone among four dietary treatments (P>0.05). The average weight gain rate (WGR, %) and daily increment in shell length (DISL) were significantly increased with rising content of dietary iron (P<0.05) and reached the highest value in in 1267.2 and 6264.7 mg iron /kg diet treatments. Dietary iron significantly elevated the soft body protein content, however, significantly decreased the lipid content (P<0.05). Iron concentrations in muscle, hepatopancreas, serum and shell of abalone significantly increased with the dietary iron, however, copper, manganese and zinc concentrations in these tissues significantly decreased with the dietary iron (P<0.05). The activities of serum and hepatopancres acid phosphatase (ACP) and hepatopancres alkaline phosphatase (AKP) significantly decreased with the increasing of dietary content of iron(P<0.05).The activities of serum superoxide dimutase (SOD)and hepatopancres Catalase (CAT) and hepatopancres total anti-oxidation competence (T-AOC) increased then decreased with the increasing of dietary content of iron(P<0.05). The lowest values of SOD, CAT activities and T-AOC were found in the treatment with 6264.7 mg/kg dietary iron.The malonaldehyde (MDA) concentration of the test diets increased as the iron levels in the diets increased indicating that iron catalyzed lipid oxidation was occurring. The treatment of highest iron level had the highest level of MDA in hepatopancreas. The VE levels of diet and hepatopancreas decreased with increasing of dietary content of iron(P<0.05). According to these results, the abalone fed with diets of high iron level (1267.2 and 6264.7 mg/kg) kept better growth at the end of the experiments. But high iron catalyzed lipid oxidation in diet and tissue and increased tissue oxidative stress indicated that high dietary iron affected the healthy of the abalone.
     2. A two-factorial experiment was conducted to determine iron and zinc interaction on growth, metabolic responses and antioxidant in juvenile abalone Haliotis discus hannai (average weight0.29±0.00g ; average shell length 13.05±0.02mm). Totally nine semi-purified diets were made to provide graded levels of iron(0, 65, 1300 mg/kg, supplied as FeSO4·7H2O)and zinc(0, 35, 700 mg/kg, supplied as ZnSO4·7H2O). Each treatment were triplicate. .The experimental period lasted 28 weeks in a flow-through systems. The results showed that there was no significant difference in the survival rate(>97.50%, P>0.05) of juvenile abalone in the feeding trial. 1300 mg iron /kg diet treatments significantly improved the growth performance of abalone, and dietary iron significantly elevated the soft body protein content, though the lipid content of abalones were significantly decreased (P<0.05). The interaction of Fe and Zn to the soft body lipid content was significant (P<0.05). The iron concentration of abalone body tissues(including hepatopancreas, muscle, serum and shell) decreased and the zinc concentration increased with the uprising dietary zinc treatments, when dietary iron level was invariable. However, when dietary zinc level was invariable ,the iron concentration of abalone body tissues significantly increased and the zinc concentration of tissues fluctuated by the treatment of increase dietary iron level. The concentration of abalone tissues iron (zinc) significantly decreased when the dietary zinc (iron) levels was highest(P<0.05 ). Iron and zinc had obviously interactions on the activities of serum acid phosphatase(ACP), alkaline phosphatase (AKP) and hepatopancreas ACP and tissue metal concentrations (the Fe and Zn concentration of hepatopancreas, the Fe level of muscle, and the Fe, Zn, Cu and Mn concentrations of serum)(P<0.05 ). The activities of hepatopancres Catalase (CAT) and total anti-oxidation competence (T-AOC) have a up and down trend along with the increasing dietary content of iron (P<0.05). There were significant interactions between iron and zinc on the activities of serum superoxide dismutase (SOD) and hepatopancreas CAT (P<0.05 ). The malonaldehyde (MDA) levels of diet was significantly increased by the dietary iron supplement(P<0.05), however, the iron supplement decreased the VE levels of diet and hepatopancreas (P<0.05). And the dietary ion did not have interactions on the serum SOD and hepatopancreas CAT (P<0.05).
     3. Iron and copper are essential micronutrients for aquatic animals health. The abalone( Haliotis discus hannai ino) juveniles (initial weight 0.33±0.00 g, initial shell length 13.54±0.04 mm) were fed nine experimental diets containing 0, 65, 1300 mg iron /kg (supplied as FeSO4·7H2O), combined with 0, 4, 80 mg copper /kg dry diet (supplied as CuSO4·7H2O), in order to elucidate the interaction between iron and copper on growth, metabolic responses and antioxidation in abalone( Haliotis discus hanni ino). Each treatment had three replicates.The experimental period lasted 28 weeks in a flow-through systems. 1300 mg iron /kg diet treatments significantly improved the growth performance of abalone, and dietary iron significantly elevated the soft body protein content, though the lipid content of abalones were significantly decreased (P<0.05). The iron concentrations of hepatopancreas, muscle and serum were higher than 1.80 copper mg/kg when dietary copper was 4.24 mg/kg and dietary iron was 0 and 65 mg/kg, therefore this indicated copper increased iron absoption when dietary iron was lower. The concentration of abalone tissues iron (copper) significantly decreased when the dietary copper (iron) levels was highest (P<0.05 ). Iron and copper had interactions on the activities of serum and hepatopancreas acid phosphatase(ACP) and alkaline phosphatase (AKP) and tissue metal concentrations (the Fe, Cu,Zn and Mn concentrations of hepatopancreas, the Mn level of muscle, and the Fe, Zn and Mn concentrations of serum)(P<0.05). The activities of hepatopancres Catalase (CAT) and hepatopancres total anti-oxidation competence (T-AOC) increased then decreased with the with increasing of dietary content of iron(P<0.05). There were significant interactions between iron and zinc on the activities of serum and hepatopancreas superoxide dismutase (SOD) and hepatopancreas CAT (P<0.05 ).The malonaldehyde (MDA) levels of diet increased with increasing of dietary content of iron(P<0.05), however the VE levels of diet and hepatopancreas decreaed with increasing of dietary content of iron(P<0.05). There were significant interactions between Fe and Zn on the activities of serum SOD and hepatopancreas SOD and CAT (P<0.05).
引文
Cheng W, Juang F M, Chen J C. The immune response of Taiwan abalone Haliotis diversicolor superte and its susceptibility to Vibrio parahaemolyticus at different salinity levels. Fish & Shellfish Immunology, 2004, 16:295-306.
    Coulston L, Nandona P. Insulin-like effect of zinc in adipocytes. Diahaes, 1980, 29: 665-667.
    Davis D A, Gatlin D M. Ev aluation of the dietary zinc requirement of Penaeus vannamei and effects of phytic acid on zinc and phosphorus bioabailability. J World Aquac Soc, 1993, 241(1): 40-47.
    Davis D A, Lawrence A I, Gatlin III D. Dietary copper requirement of Penaeus vannamei. Nippon Suisan Gakkaishi, 1993b, 59:117-122.
    Davis D A, Lawrence A L, GatlinIII D M. Mineral requirements of Penaeus varmamei: a preliminar examination of the dietary essentiality for thirteen minerals. J World Aquac Soc, 1992, 2(1),8-14.
    Depledge M H. The ecotoxicological significance of genotoxicity in marine invertebrates. Marine Environmental Research, 1989, 27:115-126.
    Doong G, Keen C L, Rogers Q, Morris J, Rucker R B. Selected features of copper metabolism in the cat. J Nutr, 1983, 113:1963-1971.
    Faure P, Roussel A, Coudray C, et al. Zinc and insulin sensitivity. Biol trace Elem Res, l992, 32: 305-310.
    Giugliano, Millward D J. Growth and zinc homeostasis in the severlv Zn-deficient rat. Br J Nutr, 1984, 52: 545-560.
    Hallwell B. Oxidants and the cental nervous system;Some fundamental questions. Acta Neurol Scand Suppl, 1989, 4: 170.
    Hilton J W. Interralationship between vitamins, inorganic salts and feed ingredients in feed of fishes. Aquaculture, 1989, 79:223-244.
    Hughes S G.. Nutritional eye diseases in salmonides: a review. Prog Fish-Cult, 1985,47:81-85.
    Kanazawa A, Teshima S, Sasald M. Requirements of juvenile prawn for ealdum, phosphorus, magnesium, potassium, copper, manganese and iron. Mem Fac Fish Kagcshima Univ. 1984, 33:63-71.
    Knutson M D, Walter P B, Ames B N, et a1. Both iron deficiency and daily iron supplements increase lipid peroxidation in rats. J Nutr, 2000, 130(3): 621-628.
    Lall S P. The minerals[ M] // Halver. Fish nutrition[C]. New York: Academic press. l989: 2l9-257.
    Lee M H, Shiau S Y. Dietary copper requirement of juvenile grass shrimp, Penaeus mcnodon, and effects on non-specific immune responses. Fish&Shell fish Immunology, 2002, 13: 259-270.
    Mai, K., Tan, B. Iron methionine (FeMet) and iron sulfate (FeSO4) as sources of dietary iron for juvenile abalone, Haliotis discus hannai Ino. J. Shellfish Research, 2000, 19(3): 861-868.
    May J M. Contoreggi. The mechanism of the Insulin-like effects of ionic zinc. J Biol Chem, 1982,257:4362-4368.
    Oliveres L,Vega Lic V, Anzulovich A C, et a1. Vitamin A deficiency modifies antioxidant defense and essential element contents in rat heart. Nutrition Research,2000, 8(20):1139-1150.
    Páez-Osuna F, A C Ruiz-Fernández . Trace metals in the Mexican shrimp Penaeus vannamei from estuarine and marine environments. Environmental pollution, 1995, 87 (2) 243-247.
    Spaargaren D H. Osmotically induced changes in copper and iron concentrations in three euryhaline crustacean species, 1983, 17(1): 96-105.
    Strain J J. Putative role of dietary trace elements in coronary heart decease and cancer. British Journal of Biochemical Science, 1994, 51: 241-251.
    Tan Beiping, Kangsen Mai. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone,Haliotis discus hannai Ino.Aquaculture,2001, 192:67-84.
    Tarladgis B G, Watts B M, Younathan M T. A distillation method for the quantitative determination of malondialdehyde in rancid foods. J. Am. Chem. Oil Soc. , 1960, 37, 44–48.
    Uki N, Watanabe T. Review of nutritional requirements of abalone ( Haliotis spp . ) and development of more efficient artifical diets . In : S. A. Shepherd , M. J . Tegner and S. A. Guzman Del Proo ( Editors) , Abalone of the World : Fisheries , Biology and Culture. Proceedings of the 1st International Symposium on Abalone. Fishing News Books , Oxford , 1992, 504-517.
    Yurkova I, Kisel M, Arnhold J, et a1. Iron-mediated free-radical formation of signaling lipids in a model system.Chem Phys Lipids, 2005, 137(1-2): 29-37.
    陈明.中华绒螯蟹铜、锌营养需求研究.上海:华东范大学.2001.
    程侃声,王象坤,卢义宣,等.云南稻种资源的综合研究与利用, I.云南稻的光温反应型和早中晚稻.作物学报,1984,10(3):163-171.
    黄波,程开敏,刘艳妮,郑石轩.对虾矿物元素营养需求的研究进展.饲料广角,2006,20:36-40.
    蓝伟光等.海水污染物对对虾毒性研究的进展.对虾的重盘属毒性研究.福建水产,1990,(1):41-45.
    李爱杰,陈淑珍,杨淑梅,等.不同剂型微量元素在对虾饲料上的应用研究.齐鲁渔业, 1995,12(6):13- 18.
    梁德海等.饵料中的锌对中国对虾的影响.海洋科学,1989,(5):49-52.
    刘存岐,王安利,王维娜.海水中Zn2+和Mn2+对日本对虾仔虾体内碱性磷酸酶活性的影响.水产科技情报,2002,29(5):195-197.
    刘发义,李荷芳.中国对虾矿物质营养的研究.海洋科学. 1995,(2):32-37.
    刘发义,梁德海,等.饵料中的铜对中国对虾的影响.海洋与湖沼,1989,21( 5 ):404-410.
    刘发义等.饵料中的铜对中国对虾的影响.海洋与湖沼,1990, 2l(5):49-52.
    吕景才,赵元凤,吴益春,刘长发,张明珠,张天扬.海水中铜在扇贝组织的蓄积及其对酶活性的影响.农业工程学报,2005,21(5):131-135.
    王维娜,王安利,等.饵料中铜含量对中国对虾生长及体内铜、锌和铁含量的影响.水产学报,1997,21(3):258-262.
    王蔚芳.矿物元素(K、Mg、Se、Cu)及糖类营养生理的研究.中国海洋大学博士论文,2007,123-124.
    吴坚.微量元素对海洋生物的生物化学效应.海洋环境科学,1991,10(2):58-64.
    徐新章.池塘中用配台饵料培育体重9-10g河蟹的的生产性实验.江西水产科技,1992,(1):19-21.
    杨顺江.动物微量元素.湖北科学技术出版社, 1980.225.
    邹栋梁,高淑英.铜锌锰镉汞和铬对斑节对虾仔虾急性致毒的研究.海洋环境科学,1994,13(3):13-l8.
    Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 1995, 16th ed. AOAC, Arlington, VA.
    Bartfay W J, Bartfay E. Systemic oxygen-free radical production in iron-loaded mice. West J Nuts Bes, 2000, 22(8): 927-935.
    Bartfay W J, Hou D, L ehotay D C, et a1. Cytotoxic Mdehyde generation in heart following acute iron-klding. J Trace Elem Med Biol, 2000, 14(1): 14-20.
    Brandsch C, Ringseis, R., Eder, K., 2002. High dietary iron concentrations enhance the formation of cholesterol oxidation products in the liver of adult rats fed salmon oil with minimal effects on antioxidant status. J. Nutr. 132, 2263–2269.
    Cheng J C, et al. Experimentally induced elebations in acid phophatase activity in the hemolymph of Bromphalama glohroto( Mollucan).J Invert pathol, 1979, 34:119-124.
    Cowey C B, Degener E, Tacon A G J, Youngson A, Bell J G. The effect of vitamin E and oxidized fish oil on the nutritoin of rainbow trout(Salmo gairdneri) grown at natural, varying water temperatures. Br. J. Nutr, 1984, 51: 443-451.
    Davis M T, Bartfay W J. Ebselen decreases oxygen free radical production and iron concentrations in the hearts of chronically iron-overloaded mice. Biol Res Nurs, 2004, 6(1):37-45.
    Ferrley H N. The Enzyme. Academic Press , Ine ,1971. 2 :417.
    Góth L. A simple method for determination of serunl catalase activity and revision of reference range. Gin Chim Acta, 1991, 196(2-3): l43-151.
    Hamre, K., Kolas, K., Sandnes, K., Julshamn, K., Kiessling, A..Feed intake and absorption of lipid oxidation products in Atlantic salmon (Salmo salar) fed diets coated with oxidised fish oil. Fish Physiol. Biochem. , 2001,25:209–219.
    Hung S S O. 1980. Effect of oxidized fish oil on the vitamin E, vitamin C, and essential fatty acid status of rainbow trout(Salmo gairdneri). Ph.D. Thesis, University of Guelph, Guelph, Ontario.
    Johnson P E, Korynta E D.Effects of copper, iron, and ascorbic acid on manganese availability to rats. Proc Soc Exp Biol Med,1992 ,199(4):470-80.
    L.M. Desjardins, B.D. Hicks and J.W. Hilton, Iron catalysed oxidation of trout diets and its effect on the growth and physiological response of rainbow trout. Fish Physiology and Biochemistry, 1987,3: 173–182.
    Lim C,Klesius P H. Responses of channel catfish (Ictalurus punctatus) fed iron-deficient and replete diets to Edwardsiella ictaluri challenge. Aquaculture ,1997,157: 83–93.
    Maage A, Sveier H, Julshamn K. A comparison of growth rate and trace element accumulation in Atlantic salmon (Salmo salar) fry fed four different commercial diets. Aquac, 1989, 79: 267-273.
    Mai K, He G, X W. Studies on postprandial changes of digestive status and free amino acids in theviscera of Haliotis discus hannai Ino. J. Shellfish Res, 1998, 17:717-722.
    Mai K, J P Mercer, J Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis mberculam L and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth. Aquaculture, 1995a, 136:165-180.
    Mai K, J P Mercer, J Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis tuberculata L and Haliotis discus hannai Ino. II. Response of abalone to various levels of dietary lipid. Aquaculture, 1995b, 134:65-80.
    Mai K, Tan B. Iron methionine (FeMet) and iron sulfate (FeSO4) as sources of dietary iron for juvenile abalone, Haliotis discus hannai Ino. J. Shellfish Research, 2000, 19(3): 861-868.
    Mello AC, Meneghini R. Iron is the intracellular metal involved in the production of DNA damage by oxygen radicals.Mutat. Res. Rev. Mutat. Res., 1991, 251: 109–113.
    Parks R R,Huang C C, Haddad JR. Evidence of oxygen radical injury in experimental otitis media. Laryngoscope, 1994,104(1l Pt 1): 1389-1392.
    Pokorny J., 1987. Major factors affecting autoxidation. In: Chan H.W.S. (Ed.), Autoxidation of Unsaturated Lipids. Academic Press, London.
    R.T.M. Baker, P. Martin, S.J. Davies.Ingestion of sub-lethal levels of iron sulphate by African catfish affects growth and tissue lipid peroxidation. Aquatic Toxicology, 1997, 40:51-61.
    Sakamoto S, Yone Y. Bull Jpn Soc Sci Fish, 1978c, 44:1157.
    Salo-Vaananen P, Ollilainen V, Mattila P, et al. Simultaneous HPLC analysis of fat-soluble vitamins in selected animal products after small-scale extraction. Food Chemistry, 2000, 71:535-543.
    Sealey W M, Lim C, Klesius P H. Influence of the dietary level of iron methionine and iron sulfate on immune response and resistance of channel catfish to Edwardsiella ictaluri. J World Aquac Soci, 28(2): 142-149
    Steffens W, Mattheis T. Riedel M. Field observations on the production of rainbow trout(Oncorhynchus mykiss)under high concentrations of water-borne iron. Aquatic Sciences, 1993, 55: 173-178.
    Sutton W R and Nelson V E . Studies on zinc. Proc Soc Exp Biol Med,1937 ,36: 211-213.
    Thomson A B R,C Shaver. Effect of varying iron stores on site of intestinal absorption of cobalt and iron. Ant of Physiol,1971, 220: 674-678.
    Uki N, A Kemuyama T. Watanabe. Development of semipurified test diets for abalone. Bull. Jap. Soc. Sci.Fish., 1985, 51: 1825-1833.
    William J H, Griffiths, Alison L, et a1. Inherited disorders of iron storage and transport. Molecullar Med Today, 1999, 5: 431-438.
    陈竞春,石安静.贝类免疫生物学研究概况.水生生物学报,1996,20(1):71-78.
    董晓慧,杨原志.自由基与维生素E的抗氧化作用.饲料研究,2003,6:15-18.
    黄周英,陈奕欣,赵扬,左正宏,陈美,王重刚.三丁基锡对文蛤鳃酸性磷酸酶、碱性磷酸酶和Na+,K+-ATP酶活性的影响.海洋环境科学. 2005,24(3):56-59.
    贾秀英,陈志伟.镉对鲤鱼磷酸酶性的影响.上海环境科学,1998,17(8):40-41.
    李继红,朱国标.生化指标及小肠上皮模结构在热应激中的变化规律.成都军区医院学报,2003,5 (1):12-14.
    李少菁,等.重金属对日本对虾子虾存活及代谢酶活力的影响.台湾海峡,1998 ,17 (2):115 - 119.
    宋善俊主编.临床压师手册上海上海科学技术出版社,1991.185-200.
    苏传福,罗莉,文华,盛小洒,李珊珊.日粮铁对草鱼生长、营养成分和部分血液指标的影响.淡水渔业,2007,37(1):48-52.
    万敏,麦康森,马洪明,徐玮,刘付治国.硒和维生素E对皱纹盘鲍血清抗氧化酶活力的影响.水生生物学报,2004,28(5):496-503.
    魏万权,李爱杰,李德尚,张榭令,孙宗哲.饲料中添加铁对牙鲆幼鱼生长的影响.水产学报,1999,23:100-103.
    杨兴斌,杨会宜.补硒与锌对梭曼中毒大鼠乙酰胆碱酯酶活力和抗氧化力的影响.中国药理学与毒理学杂志,2003,17(2):117-120.
    詹付凤,赵欣平.重金属镉对鲫鱼碱性磷酸酶和酸性磷酸酶活性的影响.四川动物,2007,26(3):641-643.
    张洪渊,等.金属离子和脲对背角无齿蚌碱性磷酸酶的影响.四川大学学报(自然科学版),1996 ,33 (1) :100 - 105.
    周丽玲,黄连珍.缺锌对大鼠脂质过氧化及抗氧化系统的影响.营养学报,1999,21(2):181-185.
    朱航,张守华,雷蕾,罗海吉.不同剂量铁对小鼠肝脏损伤作用的实验研究.医学杂志,2007,7(2):129-132.
    朱忠勇.实用医学检验学.北京:人民军医出版社,1997.368-378.
    Uki N, A Kemuyama T. Watanabe. Development of semipurified test diets for abalone. Bull. Jap. Soc. Sci.Fish., 1985, 51: 1825-1833.
    Abd E F, Aamir I G. Dietary zinc requirement of fingerling Oreochromis nilotcus. Aquaculture,1994,119: 259-264.
    Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 1995, 16th ed. AOAC, Arlington, VA.
    Beiping Tan, Kangsen Mai. Zinc methionine and zinc sulfate as sources of dietary zinc for juvenile abalone, Haliotis discus hannai Ino . Aquaculture,2001, 192:67–84.
    Chen M H, Chen C Y. Bioaccumulation of sediment-bound heavy metals in grey mullet, Liza macrolepis. Mar. Pollut. Bull. , 1999, 39: 239–244.
    Chesters J K.Trace element-gene interactions with particular reference to zine. Proc. Nutr. Soc,1991, 50 :123-129.
    Chvapil M, Aronson A L, Peng Y M. Relation between zinc and iron and peroxidation of lipids in liver homogenate in CaEDTA-treated rats. Exp Mol Pathol, 1974, 20(2):216-27.
    Coulston L, Nandona P. Insullin-like effect of zinc in adipocytes. Diabetes, 1980, 29:665-667.
    Cowey C B, Degener E, Tacon A G J, Youngson A, Bell J G. The effect of vitamin E and oxidized fish oil on the nutritoin of rainbow trout(Salmo gairdneri) grown at natural, varying water temperatures. Br. J. Nutr, 1984, 51: 443-451.
    Darrell R Van Campen, Priscilla U Scaife. Zinc Interference with Copper Absorption in Rats. J Nutr, 91 (4): 473-476.
    Dursun N, Aydogan S. The influence of dietary iron on zinc in rat. Biological trace element research, 1995, 48(2):161-71.
    E J Underwood. Trace elements in human and animal nutrition (4th ed), Academic Press, New York,1977, 109–31.
    Elizabeth M Wien, Raymond P. Glahn and Darrell R. Van Campen. Ferrous iron uptake by rat duodenal brush border membrane vesicles: Effects of dietary iron level and competing minerals (Zn+2, Mn+2 and Ca+2). The Journal of Nutritional Biochemistry,1994, 5(12):571-577.
    Fabisiak J P, Borisenko G G,Liu S X, et a1. Redox sensor function of metallothioneins. Methods Enzymol, 002, 353:268-281.
    Fairweather-tait S J,Southon S.Studies of iron:zinc interactions in adult rats and the effect of iron fortification of two commercial infant weaning products on iron and zinc status of weaning rats. J Nutr,1989,119:599~606
    Faure P, Roussel A, Coudray C,et al. Zinc and insulin sensitivity. Biol trace Elem Res, 1992, 32: 305-310
    Favier A E. The role of zinc in reproduction:Hormonal mechanisms. Biol trace Elem Res,l99l,2(32): 363-365.
    Ferrley H N. The Enzyme. Academic Press , Ine ,1971. 2 :417.
    G W Evans, C I Grace, and H J Votava.A proposed mechanism of zinc absorption in the rat. American Journal of Physiology,1975, 228(2):501-505.
    Gatlin D M,John P O,John S. Dietary zinc requirement of the red drum. Aquaculture,199l,92:259-265.
    Gatlin D M,Wilson R P. Dietary zinc requiment of fingerling channel catifish. J Nutr, 1983, l13: 630-635.
    Gatlin D M,Wilson R P. Zinc supplementation of practical channel catifish diets. Aquaculture, 1984,41:31-36.
    Giugliano, Millward D J. Growth and zinc homeostasis in the severely Zn-deficient rat. Br J Nutr, 1984,52:545-560.
    Góth L. A simple method for determination of serunl catalase activity and revision of reference range. Gin Chim Acta, 1991, 196(2-3): l43-151.
    Hamre K, Kolas K, Sandnes K, Julshamn K, Kiessling A.Feed intake and absorption of lipid oxidation products in Atlantic salmon (Salmo salar) fed diets coated with oxidised fish oil. Fish Physiol. Biochem. , 2001,25:209–219.
    Hughes S G. Nutritional eye diseases in salmonides:a review. Prog Fish-Cult, 1985,47:81-85.
    Hülya Karadede, Erhanünlü. Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 2000, 41(9): 1371-1376.
    Hung S S O. Effect of oxidized fish oil on the vitamin E, vitamin C, and essential fatty acid status of rainbow trout(Salmo gairdneri). Ph.D. Thesis, University of Guelph, Guelph, Ontario. 1980.
    J M Pérès, F Bureau, D Neuville, P Arhan, D Bouglé. Inhibition of zinc absorption by iron depends on their ratio. J Trace Elem Med Biol. 2001 ,15 (4):237-41.
    Jeng S S, Sun L T . Effects of dietary zinc levels on zinc concentrations in tissues of common carp. J Nutr ,1981 ,111:134-140.
    Johnson P E, Korynta E D.Effects of copper, iron, and ascorbic acid on manganese availability to rats. Proc Soc Exp Biol Med,1992 ,199(4):470-80.
    Kiron V, Cunji A, Okamoto N,et al.Dietary nutrient dependent variations Oilnatur al-killer activity of the leucocytes of rainbow trout. Fishpathol,1993( 28 ):71-76.
    Knox D, C B. Cowey, and J. W. Adron.Effects of dietary zinc intake upon copper metoblism in rainbow trout(Oncorhynchus mykiss). Aquaculture, 1984,40:199-207.
    L M Desjardins, B.D. Hicks and J.W. Hilton, Iron catalysed oxidation of trout diets and its effect on the growth and physiological response of rainbow trout. Fish Physiology and Biochemistry, 1987,3: 173–182.
    Lall S P. The minerals(M)// Halver. Fish nutrition(C).New York:Academic press,1989:219-257.
    M I Yousef,H A EI Hendy,F M EI-Demerdash,et a1. Dietary zinc deficiency induced-changes in the activity of enzymes and the levels of free radicals,lipids and protein electrophoretic behavior in growing rats. Toxicology, 2002, 175: 223- 234.
    M Kondoh,K Kamada,M Kuronaga,et a1.Antioxidant property of metallothionein in fasted mice. Toxicology Letters, 2003, 143:301-306.
    M L Storey and J L. Greger. Iron, Zinc and Copper Interactions: Chronic versus Acute Responses of Rats. The Journal of Nutrition,1987,1434-1442.
    Maage A, Julshamn K. Assessment of zinc status in juvenile Atlantic salmon (Salmo salar) by measurement of whol body and tissue levels of zinc. Aquaculture ,1993,117: 179–191.
    Mai K, He G, X W. Studies on postprandial changes of digestive status and free amino acids in the viscera of Haliotis discus hannai Ino. J. Shellfish Res, 1998, 17:717-722.
    Mai K, J P Mercer, J Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis mberculam L and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth. Aquaculture, 1995a, 136:165-180.
    Mai K, J P Mercer, J Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis tuberculata L and Haliotis discus hannai Ino. II. Response of abalone to various levels of dietary lipid. Aquaculture, 1995b, 134:65-80.
    Mai K, Tan B. Iron methionine (FeMet) and iron sulfate (FeSO4) as sources of dietary iron for juvenile abalone, Haliotis discus hannai Ino. J. Shellfish Research, 2000, 19(3): 861-868.
    Marklund S, Marklund G. Involvement of the superoxide all -ion radical in the autoxidation of pyrogallol and a convenient assay for superoxide dismulase. Eur J Biochem, 1974, 47(3) :469 -474.
    May J M, Contreggi. The mechanism of the insulin-like effects of ionic zinc. J Biol Chem, 1982, 257: 4362-4368.
    Mills C F. Dietary interactions involving the trace elements. Ann Rev Nutr, l985,5: 173.
    Mount D R, Barth A K, Garrison T D, Barten K A, Hockett J R. Dietary and waterborne exposure of rainbow trout (Oncorhynchus mykiss) to copper, cadmium, lead and zinc using a live diet. Environ Toxicol Chem , 1994, 13:2031–2041.
    Nair K M, Brahmam G N, Ranganathan S, Vijayaraghavan K, Sivakumar B, Krishnaswamy K. Impact evaluation of iron & iodine fortified salt. Indian J Med Res. 1998, 108:203-11.
    Ogino C, Yang C Y. Requirement of carp for dietary zinc. Bull JprI Sce Sei Fisll,1979, 45:967-969.
    Oliveres L,Vega Lic V, Anzulovich A C, et a1. Vitamin A deficiency modifies antioxidant defense and essential element contents in rat heart. Nutrition Research,2000, 8(20):1139-1150.
    Om A S,Chuang K W. Dietary zinc deficiency alters 5a-reduction and aromtization of testosterone and androgen and estrogen reccptors in rat liver. J Nutr, 1996, l26: 842-850.
    Overnell J, Fletcher TC, McIntosh R. The apparent lack of effect of supplementary dietary zinc onzinc metabolism and metallothionein concentrations in the turbot,Scophthalmus maximus (Linnaeus). J Fish Biol ,1988,33:563-570.
    Pimemal J L, J L Greger.Iron metabitism in chicks fed various levels of zinc and copper. J Nutr Biochem,1992,3:140-145.
    Pokorny J. Major factors affecting autoxidation. In: Chan H.W.S. (Ed.), Autoxidation of Unsaturated Lipids. Academic Press, London. 1987.
    Pom-Ngam, Satoh, Takenchi, et a1. Effect of the ratio of phcephorus to caeium on zinc availability to rainbow trout in high phcephorus diet. Nippon Suisan Gakkaishi, 1993, 59:2065-2070.
    R T M. Baker, P Martin, S J Davies.Ingestion of sub-lethal levels of iron sulphate by African catfish affects growth and tissue lipid peroxidation. Aquatic Toxicology 1997, 40:51:61.
    Rossella Serra , Gloria Isani, Otello Cattani and Emilio Carpené.Effects of different levels of dietary zinc on the gilthead, Sparus aurata during the growing season. Biological Trace Element Research, 1996, 107-116.
    Salo-Vaananen P, Ollilainen V, Mattila P, et al. Simultaneous HPLC analysis of fat-soluble vitamins in selected animal products after small-scale extraction. Food Chemistry, 2000, 71:535-543.
    Sealey W M, Lim C, Klesius P H. Influence of the dietary level of iron methionine and iron sulfate on immune response and resistance of channel catfish to Edwardsiella ictaluri. J World Aquac Soci, 28(2): 142-149
    Serra F, Isani G, Cattani O, Carpene E Effects of different levels of dietary zinc on gilthead, Sparus aurata during the growing season. Biol. Trace Elem. Res., 1996, 51:107–116.
    Shi H N,Scott M E,Stevenson M,et a1. Energy restriction and miilopoiesis in the zinc-deficiency impair the function of murine T cells and antigen-presenting cells during gastrointestinal nematode infection. J Nutr, 1998, 128: 20-2 7.
    Shim K F, Lee T L. Zinc requirement of the guppy(Poecilia reticulata Peters). J. Aqua. Tropics, 1993, 8:81–90.
    Solomons N W. Competitive interaction of iron and zice in the dietary. Consequences for human nutrition. J Nutr, 1986, 116: 927.
    Solomons,Agabiti N,Story ML,et al.Studies on the iron vailabity of zinc in humans effects of heme and noheme iron on the absorption of zinc[J].Am J Clin Nutr,1981,34:475
    Stahl J L, Greger J L, Cook M E.Zinc, copper and iron utilisation by chicks fed various concentrations of zinc. Br Poult Sci ,1989 ,30(1):123-34.
    Sun L T, Jeng S S. Accumulation of zinc from diet and its release in common carp. Fish Physiol. Biochem.,1999, 20:313–324.
    Sun L T, Jeng S S. Comparative zinc concentrations of tissues of common carp and other aquatic organisms. Zool. Stud, 1998,37: 184–190.
    Sutton W R and Nelson V E . Studies on zinc. Proc Soc Exp Biol Med,1937 ,36: 211-213.
    Tarladgis B G, Watts B M, Younathan M T. A distillation method for the quantitative determinationof malondialdehyde in rancid foods. J. Am. Chem. Oil Soc. , 1960, 37, 44–48.
    Wien E M,R P Glahn. Ferrous iron uptake by rat duodenal brush border nlelllhrall~vesicles effects of dletzry iron level and competing minerals(Zn+2,Mn+2 and Ca+2 ). J Nutr Biochem, 1994, 5:571-577.
    陈竞春,石安静.贝类免疫生物学研究概况.水生生物学报,1996,20(1):71-78.
    黄周英,陈奕欣,赵扬,左正宏,陈美,王重刚.三丁基锡对文蛤鳃酸性磷酸酶、碱性磷酸酶和Na+,K+-ATP酶活性的影响.海洋环境科学.2005,24(3):56-59.
    贾秀英,陈志伟.镉对鲤鱼磷酸酶性的影响.上海环境科学,1998,17(8):40-41.
    蓝伟光,等.重金属对真鲷生理生化作用的研究.海洋学报,1993 ,15 (1) :92 - 97.
    李爱杰.水产动物营养与饲料学.中国农业出版社,1996,83.
    李继红,朱国标.生化指标及小肠上皮模结构在热应激中的变化规律.成都军区医院学报,2003,5 (1):12-1 4。.
    李少菁,等.重金属对日本对虾子虾存活及代谢酶活力的影响.台湾海峡,1998 ,17 (2):115 - 119.
    阮晓,郑春霞,王强,周疆明,邹岩.重金属在罗非鱼淡水白鲳和鲤鱼体内的蓄积.农业环境保护,2001,20(5):357-359.
    宋善俊主编.临床压师手册上海上海科学技术出版社,1991.185-200.
    苏传福,罗莉,文华,盛小洒,李珊珊.日粮铁对草鱼生长、营养成分和部分血液指标的影响.淡水渔业,2007,37(1):48-52.
    万敏,麦康森,马洪明,徐玮,刘付治国.硒和维生素E对皱纹盘鲍血清抗氧化酶活力的影响.水生生物学报,2004,28(5):496-503.
    魏万权,李爱杰,李德尚,张榭令,孙宗哲.饲料中添加铁对牙鲆幼鱼生长的影响.水产学报,1999,23:100-103.
    杨兴斌,杨会宜.补硒与锌对梭曼中毒大鼠乙酰胆碱酯酶活力和抗氧化力的影响.中国药理学与毒理学杂志,2003,17(2):117-120.
    虞泽鹏,乐国伟,施用晖,侯丽.不同锌源对断奶小鼠生长及机体抗氧化能力的影响.畜牧与兽医.2005,37(4):1-3.
    詹付凤,赵欣平.重金属镉对鲫鱼碱性磷酸酶和酸性磷酸酶活性的影响.四川动物,2007,26(3):641-643.
    张洪渊,等.金属离子和脲对背角无齿蚌碱性磷酸酶的影响.四川大学学报(自然科学版) ,1996 ,33 (1) :100 - 105.
    赵克然,杨毅军,曹道俊.氧自由基与临床.北京:中国医药科技出版社,2000:529-538.
    周丽玲,黄连珍.缺锌对大鼠脂质过氧化及抗氧化系统的影响.营养学报,1999,21(2):181-185.
    朱忠勇实用医学检验学北京:人民军医出版社,1997,368-378.
    Association of Official Analytical Chemists (AOAC). Official Methods of Analysis, 1995, 16th ed. AOAC, Arlington, VA.
    Chen H, Attieh Z K, Su T, Syed B A, Gao H, Alaeddine R M, Fox T C, Usta J, Naylor C E, Evans R W, McKie A T, Anderson G J, Vulpe C D. Hephaestin is a ferroxidase that maintains partial activity in sex linked anemia mice. Blood , 2004, 103: 3933–3939.
    Chen M H, Chen C Y. Bioaccumulation of sediment-bound heavy metals in grey mullet, Liza macrolepis. Mar. Pollut. Bull.,1999,39: 239–244.
    Chvapil M, Aronson A L, Peng Y M. Relation between zinc and iron and peroxidation of lipids in liver homogenate in CaEDTA-treated rats. Exp Mol Pathol, 1974, 20(2):216-27.
    Cousins R J. Absorption, transport, and hepatic metabolism of copper and zinc: special reference to metallothionein and ceruloplasmin. Physiol. Rev.,1985, 65, 238-308.
    Cowey C B, Degener E, Tacon A G J, Youngson A, Bell J G. The effect of vitamin E and oxidized fish oil on the nutritoin of rainbow trout(Salmo gairdneri) grown at natural, varying water temperatures. Br. J. Nutr, 1984, 51: 443-451.
    Crowe A, E H Morgan. Iron and copper interact during their uptake and deposition in the brain and other organs of developing rats exposed to dietary excess of the metals(J). J Nutr, 1996, 126:183-194.
    Dallinger R. The flow of copper through a terrestrial food chain.Ш. Selection of an optimum copper diet by isopods.Oeocologia, 1997,30: 273-277.
    Fabisiak J P, Borisenko G G,Liu S X, et a1. Redox sensor function of metallothioneins. Methods Enzymol, 2002, 353:268-281.
    Ferrley H N. The Enzyme. Academic Press , Ine ,1971. 2 :417.
    Frieden E. Coeruloplasmin,a link between copper and iron metabolism. Nutr. Rev. 1970,28:87-91.
    Fuentealba I, Davis R, Elmes M, Jasani B, Haywood S. Mechanisms of tolerance in the copper-loaded rat liver. Exp. Mol. Pathol.,1993, 59: 71-84.
    Galiazzo F, Schiesser A, Rotilio G. Oxygen-independent induction of enzyme activities related to oxygen metabolism in yeast by copper. Biochim Biophys Acta, 1988, 965(1): 46-51.
    Góth L. A simple method for determination of serunl catalase activity and revision of reference range. Gin Chim Acta, 1991, 196(2-3): l43-151.
    Gunstone, F.. Fatty Acid and Lipid Chemistry. Blackie Academic and Professional, London, 1996,1–33.
    Halliwell B, Gutteridge J M. Oxygen toxicity, oxygen radicals, transition metals and disease. J. Biochem., 1984, 219, 1–4.
    Hamre K, Kolas K, Sandnes K, Julshamn K, Kiessling. A..Feed intake and absorption of lipid oxidation products in Atlantic salmon (Salmo salar) fed diets coated with oxidised fish oil. Fish Physiol. Biochem. , 2001,25:209–219.
    Harris E D. Regulation of Antioxidant Enzymes. J Nutr, 1992, 122: 625-626.
    Hülya Karadede, Erhanünlü. Concentrations of some heavy metals in water, sediment and fish species from the Atatürk Dam Lake (Euphrates), Turkey. Chemosphere, 2000, 41(9): 1371-1376.
    Hung S S O. Effect of oxidized fish oil on the vitamin E, vitamin C, and essential fatty acid status of rainbow trout(Salmo gairdneri). Ph.D. Thesis, University of Guelph, Guelph, Ontario. 1980.
    Johnson P E, Korynta E D.Effects of copper, iron, and ascorbic acid on manganese availability to rats. Proc Soc Exp Biol Med,1992 ,199(4):470-80.
    Johnson. M. and Murphy, C. Adverse effects of high dietary iron and ascorbic acid on copper status in copper-deficient and copper-adequate rats . Am. J. Clin. Nutr ,1988, 47:96-101.
    Kaare Julshamn, Knut-Jan Andersen, Ole Ringdal, Jan Brenna. Effect of dietary copper on the hepatic concentration and subcellular distribution of copper and zinc in the rainbow trout (Salmo gairdneri). Aquaculture, 1988, 73(1-4): 143-155.
    Knox D, Cowey C B, Adron J W. Effect of dietary copper: zinc ratio on rainbow trout Salmo gairdneri. Aquaculture, 1982, 27: 111-119.
    Knox D, Cowey C B, Adron J W. Effect of dietary zinc intake upon copper metabolism in rainbow trout(Salmo gairdneri). Aquaculture, 1984, 40:199-207.
    L M Desjardins, B D Hicks and J W Hilton, Iron catalysed oxidation of trout diets and its effect on the growth and physiological response of rainbow trout. Fish Physiology and Biochemistry, 1987,3: 173–182.
    Lanno R P, Slinger S J, Hilton J W. Effects of ascorbic acid on dietary copper in rainbow trout(Salmo gairdneri Richardson). Aquaculture, 1985a ,49:269–287.
    Lanno R P, Slinger S J, Hilton J W. Maximum tolerable and toxicity levels of dietary copper in rainbow trout (Salmo gairdneri Richardson). Aquaculture , 1985b, 49:257–268.
    M Kondoh,K Kamada,M Kuronaga,et a1.Antioxidant property of metallothionein in fasted mice. Toxicology Letters, 2003, 143:301-306.
    Mai K, He G, X W. Studies on postprandial changes of digestive status and free amino acids in the viscera of Haliotis discus hannai Ino. J. Shellfish Res, 1998, 17:717-722.
    Mai K, J P Mercer, J Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis mberculam L and Haliotis discus hannai Ino. IV. Optimum dietary protein level for growth. Aquaculture, 1995a, 136:165-180.
    Mai K, J P Mercer, J Donlon. Comparative studies on the nutrition of two species of abalone,Haliotis tuberculata L and Haliotis discus hannai Ino. II. Response of abalone to various levels of dietary lipid. Aquaculture, 1995b, 134:65-80.
    Mai K, Tan B. Iron methionine (FeMet) and iron sulfate (FeSO4) as sources of dietary iron for juvenile abalone, Haliotis discus hannai Ino. J. Shellfish Research, 2000, 19(3): 861-868
    Marklund S, Marklund G. Involvement of the superoxide anion radical in the autoxidation ofpyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 1974, 47(3):469-474.
    Mills C F. Dietary interactions involving the trace elements. Ann Rev Nutr, l985,5: 173.
    Nair KM, Brahmam GN, Ranganathan S, Vijayaraghavan K, Sivakumar B, Krishnaswamy K. Impact evaluation of iron & iodine fortified salt. Indian J Med Res. 1998, 108:203-11.
    O’Dell B L. Biochemistry of copper. Symposium on trace element. Medical Clinicals of North America, 1976 (60): 697-703.
    Ogino C, Yang G Y. Requriements of carp and rainbow trout for dietary manganese and copper. Bulletin of the Japanese Society of Scientific Fisheries, 1980, 46(4): 455-458.
    Oliveres L,Vega Lic V, Anzulovich A C, et a1. Vitamin A deficiency modifies antioxidant defense and essential element contents in rat heart. Nutrition Research,2000, 8(20):1139-1150.
    Ouzounidou, G., Ilias, I., Tranopoulou, H., Karataglis, S., 1998.Amelioration of copper toxicity by iron on spinach physiology.
    Philip G. Reeves and Lana C. S. DeMars.Copper Deficiency Reduces Iron Absorption and Biological Half-Life in Male Rats. The Journal of nutrition.2004, 134:1953-1957
    Pokorny J. Major factors affecting autoxidation. In: Chan H.W.S. (Ed.), Autoxidation of Unsaturated Lipids. Academic Press, London. 1987.
    Prohaska J R. Changes in Cu/Zn-superoxide dismutase, cytochrome c oxidase, glutathione peroxidase and glutathione transferase activities in copper-deficient mice and rats. J Nutr, 1991;121:355-363
    R T M Baker, P Martin, S J Davies. Ingestion of sub-lethal levels of iron sulphate by African catfish affects growth and tissue lipid peroxidation. Aquatic Toxicology 1997, 40:51-61.
    Rossella Serra, CLORIA Isani, Otello Cattani, Emillo Carpeni. Effects of different levels of dietary zinc on the gilthead, Sparus aurata during the growing season. Biological trace element research ,1996, 51:107-116.
    Salo-Vaananen P, Ollilainen V, Mattila P, et al. Simultaneous HPLC analysis of fat-soluble vitamins in selected animal products after small-scale extraction. Food Chemistry, 2000, 71:535-543.
    Sargent J, Bell G, McEvoy L, Tocher D, Estevez A. Recent developments in the essential fatty acid nutrition of fish.Aquaculture, 1999, 177, 191–199.
    Sealey W M, Lim C, Klesius P H. Influence of the dietary level of iron methionine and iron sulfate on immune response and resistance of channel catfish to Edwardsiella ictaluri. J World Aquac Soci, 28(2): 142-149.
    Solomons N W. Competitive interaction of iron and zice in the dietary. Consequences for human nutrition. J Nutr, 1986, 116: 927.
    Solomons, Agabiti N, Story ML, et al. Studies on the iron vailabity of zinc in humans effects of heme and noheme iron on the absorption of zinc.Am J Clin Nutr,1981,34:475
    Sutton W R and Nelson V E . Studies on zinc. Proc Soc Exp Biol Med,1937 ,36: 211-213.
    Tarladgis, B.G., Watts, B.M., Younathan, M.T.. A distillation method for the quantitative determination of malondialdehyde in rancid foods. J. Am. Chem. Oil Soc. , 1960, 37, 44–48.
    Thomson A B R, C Shaver Effect of varying iron stores on site of intestinal absorption of cobalt and iron. Ant of Physiol,1971, 220: 674-678.
    Uki N, A Kemuyama, T Watanabe. Development of semipurified test diets for abalone. Bull. Jap. Soc. Sci.Fish., 1985, 51: 1825-1833.
    V F Marijic, B Raspor. Age- and tissue-dependent metallothionein and cytosolic metal distribution in a native Mediterranean fih, Mullus barbatus, from the Eastern Adriatic Sea, Comp Biochem Physiol C, 2006, 143:382–387.
    Vulpe C D, Kuo Y M, Murphy T L, Cowley L, Askwith C, Libina N, Gitschier J, Anderson G J. Hephaestin, a ceruloplasmin homologue implicated in intestinal iron transport, is defective in the sla mouse. Nat. Genet., 1999, 21:195–199.
    White, A.R., Barnham, K.J., Huang, X., Voltakis, I., Beyreuther, K.,Masters, C.L., Cherny, R.A., Bush, A.I., Cappai, R.. Iron inhibits neurotoxicity induced by trace copper and biological reductants. J. Biol. Inorg. Chem. 2004, 9, 269–280.
    Yu S W, A Reynen. Incressing intake of iron in reduce status, absoption and biliary excretion of copper in the rats(J). Br J Nutr, 1994, 71:887-895.
    陈竞春,石安静.贝类免疫生物学研究概况.水生生物学报,1996,20(1):71-78.
    黄周英,陈奕欣,赵扬,左正宏,陈美,王重刚.三丁基锡对文蛤鳃酸性磷酸酶、碱性磷酸酶和Na+,K+-ATP酶活性的影响.海洋环境科学.2005,24(3):56-59.
    贾秀英,陈志伟.镉对鲤鱼磷酸酶性的影响.上海环境科学,1998,17(8):40-41.
    蓝伟光,等.重金属对真鲷生理生化作用的研究.海洋学报,1993 ,15 (1) :92 - 97.
    李爱杰.水产动物营养与饲料学.北京:中国农业出版社,1996.58-60,83.
    李继红,朱国标.生化指标及小肠上皮模结构在热应激中的变化规律.成都军区医院学报,2003,5 (1):12-14.
    李少菁,等.重金属对日本对虾子虾存活及代谢酶活力的影响.台湾海峡,1998,17 (2):115 - 119.
    宋善俊主编.临床压师手册上海上海科学技术出版社,1991.185-200.
    苏传福,罗莉,文华,盛小洒,李珊珊.日粮铁对草鱼生长、营养成分和部分血液指标的影响.淡水渔业,2007,37(1):48-52.
    万敏,麦康森,马洪明,徐玮,刘付治国.硒和维生素E对皱纹盘鲍血清抗氧化酶活力的影响.水生生物学报,2004,28(5):496-503.
    王蔚芳.皱纹盘鲍矿物元素(K、Mg、Se、Cu)及糖类营养生理的研究.中国海洋大学硕士论文.2007.
    魏万权,李爱杰,李德尚,张榭令,孙宗哲.饲料中添加铁对牙鲆幼鱼生长的影响.水产学报,1999,23:100-103.
    杨兴斌,杨会宜.补硒与锌对梭曼中毒大鼠乙酰胆碱酯酶活力和抗氧化力的影响.中国药理学与毒理学杂志,2003,17(2):117-120.
    詹付凤,赵欣平.重金属镉对鲫鱼碱性磷酸酶和酸性磷酸酶活性的影响.四川动物,2007,26(3):641-643.
    张洪渊,等.金属离子和脲对背角无齿蚌碱性磷酸酶的影响.四川大学学报(自然科学版) ,1996 ,33 (1) :100 - 105.
    张文清,海春旭,龚书明.锰对大鼠肝微粒体脂质过氧化模型的影响.解放军预防医学杂志.1993,11:225—226.
    赵克然,杨毅军,曹道俊.氧自由基与临床.北京:中国医药科技出版社,2000.529-538.
    周明,李湘琼.日粮铜水平对铁、锌生物效价影响的研究.安徽农业大学学报,1996.23(2):137-140.
    朱忠勇。实用医学检验学.北京:人民军医出版社,1997,368-378.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700