添加钾离子对低盐度水体养殖凡纳滨对虾(Litopenaeus vannamei)的生长与生理特性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以凡纳滨对虾(Litopenaeus vannamei, Boone)为试验对象,研究了低盐度水体单独添加或与饲料同时添加钾离子(K~+)对凡纳对虾生长、存活、氮代谢、渗透调节及免疫功能的影响。研究内容包括:(1)稀释海水(盐度为4)中添加不同水平的K~+对凡纳滨对虾生长、存活、氮代谢、渗透调节及免疫力的影响;(2)低盐度井水(盐度为4)中添加不同水平的K~+对凡纳滨对虾生长、存活、渗透调节及免疫力的影响;(3)低盐度井水和饲料中同时添加K~+对凡纳滨对虾生长、存活、氮代谢、渗透调节及免疫力的影响及协同效应。研究结果如下:
     (1)为研究稀释海水中添加不同水平的K~+对凡纳滨对虾生长、存活、氮代谢、渗透调节及免疫力的影响,本试验在稀释海水(盐度为4)中K~+添加水平分别为0、10、20、40和80mg/L,配制成5种不同K~+水平的水体分别为K0、K10、K20、K40和K80组,随机选取600尾初始体重为0.23±0.01g的凡纳滨对虾幼虾分别饲养在装有上述5种不同K~+水平水体的玻璃纤维钢桶(350L)中,每个处理设3个重复,每个重复40尾虾苗,饲养试验持续8W,投喂以鱼粉、豆粕和花生粕为蛋白源的实用饲料(粗蛋白40%、粗脂肪9%)。
     试验结果表明:稀释海水中添加K~+显著影响凡纳滨对虾的生长(P<0.05),增重率、特定生长率和蛋白质效率均随着水体中K~+的增加先升高后降低,K40组获得最大增重率,K10、K20和K40组的特定生长率显著高于K80组(P<0.05)。水体中添加K~+对凡纳滨对虾的耗氧率、排氨率和精氨酸酶活性均有显著性影响(P<0.05),K40和K80组的耗氧率显著高于其余各组(P<0.05),K40组的排氨率显著低于K0和K80组(P<0.05);血清中K~+、Na~+和Cl-含量和渗透压均随着水体中K~+添加量的增加而显著升高(P<0.05),鳃丝的Na~+-K~+-ATPase活性呈现相同的趋势,而血清中的血蓝蛋白含量则随着水体中K~+添加量的增加而显著降低(P<0.05)。水体中K~+对凡纳滨对虾血细胞数量(THC)、血细胞O2-含量、血清蛋白含量(PC)、碱性磷酸酶(ALP)、酚氧化酶(PO)和超氧化物歧化酶(SOD)活性有显著性影响(P<0.05),均随着水体中K~+添加量的增加而先升高后降低。研究结果说明:在本试验条件下,低盐度海水(盐度为4)中K~+添加量为10~40mg/L,亦即水体中K~+含量达到70~110mg/L时,有利于促进凡纳滨对虾生长和维持健康。
     (2)为研究人工低盐度井水中添加不同水平的K~+对凡纳滨对虾生长、存活、氮代谢、渗透调节及免疫力的影响,本试验分别在低盐度井水(盐度为4)中K~+添加水平分别为0、10、20、40、60和80mg/L,配制成6种不同K~+水平的水体分别为K0、K10、K20、K40、K60和K80组,随机选取720尾初始体重为0.22±0.02g的凡纳滨对虾幼虾分别饲养在装有上述6种不同K~+水平水体的玻璃纤维钢桶(350L)中,每个处理设3个重复,每个重复40尾虾苗,饲养试验持续8W,投喂以鱼粉、豆粕、花生粕为蛋白源的实用饲料(粗蛋白40%、粗脂肪9%)。
     试验结果表明:低盐度井水中添加K~+对凡纳滨对虾的生长影响显著(P<0.05),增重率、特定生长率和成活率随着水体中K~+的增加呈先升高后降低,K20、K40和K60组均获得较高的增重率和成活率,K40组的饲料系数最低并显著低于K0和K80组。水体中添加K~+对凡纳滨对虾耗氧率、排氨率、精氨酸酶活性、尿酸和尿素氮含量均有显著影响(P<0.05),K40组的耗氧率和排氨率均显著低于K0和K80组(P<0.05),K40组的尿素氮含量显著低于K80组(P<0.05),K40和K60组的精氨酸酶活性显著低于K80组(P<0.05)。血清中K~+含量和鳃丝的Na~+-K~+-ATPase活性随着水体中K~+的增加而显著升高(P<0.05),但是K80组的Na~+-K~+-ATPase活性显著低于K60组(P<0.05),而血蓝蛋白含量却随着水体中K~+的增加而显著降低(P<0.05)。水体中K~+对凡纳滨对虾的THC、血细胞O2-含量、ALP、溶菌酶(LSZ)和PO活性有显著影响(P<0.05),随着水体中K~+的增加呈现先升高后降低的趋势,SOD活性却随着水体中K~+的增加而升高。研究结果说明:在本试验条件下,低盐度井水(盐度为4)中K~+添加量为20~60mg/L,亦即水体中K~+含量达到56~107mg/L时有利于促进凡纳滨对虾生长和维持健康。
     (3)为研究低盐度井水和饲料中同时添加K~+对凡纳滨对虾生长、存活、氮代谢、渗透调节及免疫力的影响及协同效应,本试验分别在低盐度井水(盐度为4)中K~+添加水平分别为10、20和40mg/L,配制成3种不同K~+水平的水体,在第二章实用饲料的基础上添加K~+分别为0.0、0.3和0.6%,制成3种不同K~+水平的试验饲料(粗蛋白40%、粗脂肪8.5%)。随机选取1080尾初始体重为0.28±0.01g的凡纳滨对虾幼虾分别饲养在装有上述3种不同K~+水平水体的玻璃纤维钢桶(350L)中,每个处理设3个重复,每个重复40尾虾苗,饲养试验持续8W,分别投喂3种不同的试验饲料。
     水体和饲料中同时添加K~+的双因素正交试验研究表明,本试验条件下,水体和饲料中K~+对增重率、蛋白质效率和饲料系数有极显著的交互作用(P<0.01),当水体K~+添加量为10mg/L且饲料K~+添加量为0.6%时凡纳滨对虾的增重率、特定生长率、成活率和蛋白质效率均最高,饲料系数最低;水体和饲料中K~+对精氨酸酶活性有极显著的交互作用(P<0.01),当水体K~+添加量为10mg/L且饲料K~+添加量为0.6%时,及当水体K~+添加量为20mg/L且饲料K~+添加量分别为0.0和0.3%时,血清中精氨酸酶活性显著低于其它各组(P<0.05);水体和饲料中K~+对血清中Cl-含量有极显著的交互作用(P<0.01),其中血清Cl-含量随着饲料中K~+含量的增加呈先升高后降低,当饲料K~+添加量为0.3%且水体K~+添加量分别为10和20mg/L时血清中Na~+和Cl-含量均最高;水体和饲料中K~+对血细胞O2-含量、血清中ALP和LSZ活性有极显著的交互作用(P<0.01),饲料中添加K~+显著提高LSZ活性,当水体K~+添加量为40mg/L且饲料K~+添加量为0.3%时LSZ活性最高,而当水体中K~+添加量为10mg/L且饲料中K~+添加量为0.6%组的血细胞O2-含量最高。研究结果表明:低盐度井水和饲料中同时添加K~+对凡纳滨对虾生长、存活、氮代谢、渗透调节及免疫力和抗病力的均有不同程度的影响,并且水体和饲料中K~+有显著的协同效应。在本试验条件下,当低盐度井水(盐度为4)K~+添加量为10mg/L(总K~+含量为45mg/L),且饲料K~+添加量为0.6%(总K~+含量为1.93%)时,及当水体K~+添加量为20(总K~+含量为56mg/L)和40mg/L(总K~+含量为81mg/L),且饲料K~+添加量为0.3%(总K~+含量为1.60%)时,有利于促进凡纳滨对虾生长,提高其免疫力。低盐度井水和饲料同时添加K~+对凡纳滨对虾的生长和免疫力有显著的协同效应。
The objective of the present trials was to study effects of varying levels of potassium (K~+) supplementation to the low salinity waters or diets on growth, nitrogen metabolism, osmoregulation and immunity of juvenile shrimp, Litopenaeus vannamei (L. vannamei). The current studies include the followings : (1) Effects of varying levels of aqueous potassium on growth, nitrogen metabolism, osmoregulation and immunity of L. vannamei, reared in low salinity sea-waters (salinity=4). (2) Effects of varying levels of aqueous potassium on growth, nitrogen metabolism, osmoregulation and immunity of L. vannamei, reared in low salinity well-waters (salinity=4). (3) The interaction of aqueous and dietary potassium levels on growth, nitrogen metabolism, osmoregulation and immunity of L. vannamei, reared in low salinity well-waters (salinity=4). The results were surnmarized as follows:
     1. A 8-weeks growth trial was conducted to evaluate the effects of different aqueous K~+ levels (0, 10, 20, 40, and 80 mg/L, respectively) on growth, nitrogen metabolism, osmoregulation and immunity of L. vannamei reared in low salinity sea-waters (salinity=4). Juvenile L. vannamei with an average initial body weight of 0.23±0.01g were reared in the fiberglass tanks (350L) with five treatments low salinity sea-waters with different K~+ levels (K0, K10, K20, K40, and K80 treatment, respectively). The experiment consisted of five treatments with three replicate tanks per treatment, and each tank was stored with 40 larvaes. Shrimp were offered a experimental diet (40% crude protein, 9% crude lipid) with fish meal, soybean meal and peanut meal as the source of protein.
     Results of the growth trial indicated significant differences in growth among treatments (P<0.05). weight gain rate (WGR), specific growth rate (SGR) and protein efficiency ratio (PER) appeared to a peak with increasing K~+ concentration, K40 treatment of shrimp yielded the highest WGR among all treatments; K10, K20 and K40 treatment of SGR were significantly higher than K0 treatment. Significant differences in oxygen consumption, ammonia-N excretion and arginase specific activity were observed in the 8-weeks growth trial in low sea-waters with various levels of K~+ (P<0.05). The oxygen consumption of K40 and K80 treatment were significantly the higher than all other treatments; K40 treatment had significantly lower ammonia-N excretion when compared to K0 and K80 treatment. Hemolymph osmolality, K~+, Na~+ and Cl- content, Na~+-K~+-ATPase activity in the gill were significant differences among treatments, and appeared to increase with increasing K~+ levels, but a opposite effect was observed for the hemocyanin content. THC, O2- content, PC, ALP, PO and SOD activity were significantly difference among treatments (P<0.05), and there were a peak with increasing K~+ levels. The results suggested that aqueous K~+ could enhance the growth and immunity when the aqueous K~+ levels is supplemented with 10~40 mg/L (total K~+ 70~110 mg/L). Consequently, when aqueous K~+ should be maintained at adequate levels, the growth of L. vannamei will be better in low salinity sea-waters.
     2. A 8-weeks growth trial was conducted to evaluate the effects of different aqueous K~+ levels (0, 10, 20, 40, 60, and 80 mg/L, respectively) on growth, nitrogen metabolism, osmoregulation and immunity of L. vannamei reared in low salinity reconstituted well-waters (salinity=4). Juvenile L. vannamei with an average initial body weight of 0.22±0.02g were reared in the fiberglass tanks (350L) with six treatments low salinity well-waters with different K~+ levels (K0, K10, K20, K40, K60, and K80 treatment, respectively). The experiment consisted of six treatments with three replicate tanks per treatment, and each tank was stored with 40 larvaes. Shrimp were offered a experimental diet (40% crude protein, 9% crude lipid) with fish meal, soybean meal and peanut meal as the source of protein.
     Results of the 8-weeks growth trial indicated significant differences among treatments (P<0.05), WGR, SGR and survival rate appeared to a peak with increasing K~+ levels, but feed conversion efficiency (FCR) revealed the reverse trend. L. vannamei can ensure better growth in the K40 treatment than K0 treatment. The oxygen consumption, ammonia-N excretion, arginase specific activity, urea and uric acid content of hemolymph were significantly differences among treatments (P<0.05), The oxygen consumption and ammonia-N excretion of K40 treatment were significantly lower when compared to K0 and K80 treatment (P<0.05); K40 treatment of urea content was significantly lower than K80 treatment; arginase specific activity of K40 and K60 treatment were lower than all other treatments and was significantly different from the K80 treatment (P<0.05). Meanwhile, hemolymph K~+, hemocyanin content and Na~+-K~+-ATPase activity in the gill were significantly differences among treatments (P<0.05), and hemolymph K~+ appeared to increase with increasing aqueous K~+ levels, but a opposite effect was observed for the hemocyanin content. In addition, Na~+-K~+-ATPase activity was highest among treatments when K60 treatment. THC, O2- content, ALP, LSZ and PO activity had a significant peak change with increasing aqueous K~+ levels (P<0.05). However, SOD activity appeared to increase with increasing aqueous K~+ levels. The present study were observed that the optimum supplementation of aqueous K~+ was 20~60 mg/L (total K~+ 56~107 mg/L) of L. vannamei reared in low salinity well-waters. The results suggested a correlation between aqueous K~+ levels and the growth, survival and immunity of L. vannamei, K~+ should be maintained at adequate levels to ensure optimum growth.
     3. A two-factorial experiment was conducted to determine the effeets of aqueous K~+ levels and dietary K~+ levels on growth, nitrogen metabolism, osmoregulation and immunity of L. vannamei reared in low salinity reconstituted well-waters (salinity=4) were evaluated. Juvenile L. vannamei with an average initial body weight of 0.28±0.01g were reared in the fiberglass tanks (350L) with three different K~+ levels (10, 20, and 40 mg/L, respectively); Shrimp were offered three experimental diets (40% crude protein, 8.5% crude lipid) with three different K~+ levels (0.0, 0.3, and 0.6%, respectively) in the 8-weeks growth trial, respectively. The experiment consisted of nine treatments with three replicate tanks per treatment, each tank was stored 40 larvaes.
     The results showed that there were signifieant interaction between aqueous K~+ level and dietary K~+ level on the WGR, PER, FCR, hemolymph Cl- content, O2- content, ALP, LSZ, and arginase specific activity (P<0.01). When the supplementation of aqueous and dietary K~+ were 10 mg/L and 0.6%, respectively, L. vannamei showed better growth and arginase specific activity was lower than all other treatments; Hemolymph Cl- content appeared a peak with increasing dietary K~+ concentration, the supplementation of aqueous and dietary K~+ were 10 or 20 mg/L and 0.3% treatments respectively of hemolymph Na~+ and Cl- content had a highest from all other treatments. Significant differences in LSZ activity were observed in diets with various levels of K~+, and LSZ activity was the highest among all treatments when the supplementation of aqueous and dietary K~+ were 40 mg/L and 0.3%, respectively; However, the supplementation of aqueous and dietary K~+ were 10 mg/L and 0.6%, respectively, O2- content was the higher than all other treatments. In summary, the interaction between aqueous and dietary K~+ levels had signifieant effect on the growth, nitrogen metabolism, osmoregulation and immunity of L. vannamei in low salinity well-waters, the present study were observed that the optimum supplementation of aqueous K~+ was 10 mg/L (total K~+ 45 mg/L) and dietary K~+ was 0.6% (total K~+ 1.93%), or aqueous K~+ was 20 and 40 mg/L, respectively (total K~+ 56 and 81 mg/L, respectively) and dietary K~+ was 0.3% (total K~+ 1.60%), K~+ should be maintained at adequate levels to ensure optimum growth and immunity response of L. vannamei and might provide an osmoregulatory advantage. Meanwhile, these results indicated that dietary supplementation of K~+ had positively effect on improving growth of the shrimp while aqueous K~+ was not sufficient in low salinity well-waters. There was significant interactions between aqueous K~+ level and dietary K~+ level on growth, nitrogen metabolism, osmoregulation and immunity of juvenile L. vannamei were found
引文
董少帅,董双林,王芳,等. 2005. Ca2+浓度对凡纳滨对虾稚虾生长的影响[J].水产学报,29(2):211~215.
    房文红,王慧,来琦芳. 1995.不同盐度对中国对虾血淋巴渗透浓度和离子浓度的影响[J].上海水产大学学报,4(2):122~127.
    高才全,李春岭. 2003.钾离子浓度对南美白对虾的影响[J].河北渔业,(1):19.
    介子林,董双林,赵夕旦,等. 2007.滨海池塘咸水Na+/K+对凡纳滨对虾成活率和生长的影响[J].中国海洋大学学报,37(1):65~68.
    金彩霞. 2007.溶解氧对凡纳滨对虾血蓝蛋白合成、代谢和渗透调节的影响[D].中国海洋大学.
    Jin YK(金有坤)主编. 1986.淡水渔业水质分析法[M].上海:上海科技出版社.
    来琦芳,王慧,房文红. 2007.水环境中K+、Ca2+对中国明对虾幼虾生存的影响[J].生态学杂志,26(9):1359~1363.
    李二超. 2008.盐度对凡纳滨对虾的生理影响及其营养调节[D].华东师范大学.
    李二超,陈立侨,曾增,等. 2008.不同盐度下饵料蛋白质含量对凡纳滨对虾生长、体成份和肝胰腺组织结构的影响[J].水产学报,32(3):425~433.
    李华,李强,曲健凤,等. 2007.不同盐度下凡纳滨对虾血淋巴免疫生理指标比较[J].中国海洋大学学报,37(6):927~930.
    李强,李华,姜传俊,等. 2008.温度对凡纳滨对虾血淋巴免疫指标的影响[J].大连水产学院学报,23(2):132~135.
    李庭古. 2009.盐度对克氏原螯虾幼虾耗氧率和排氨率的影响[J].水产科学,28(11):698~700.
    李彦飞. 2009.注射病原菌、盐度变化对凡纳滨对虾血蓝蛋白合成、酚氧化酶活性的影响[D].中国海洋大学.
    梁萌青,王士稳,王家林,等. 2008.海水养殖与低盐养殖凡纳滨对虾生长性能、酶活及RNA/DNA比值的差异[J].海洋水产研究,29(4):69~73.
    梁萌青,王士稳,王家林,等. 2009.不同盐度对凡纳滨对虾血淋巴及肌肉游离氨基酸组成的影响[J].渔业科学进展,30(2):34~39.
    刘存歧,刘丽静,王军霞,等. 2007a.盐碱地渗水钙镁离子对凡纳滨对虾酶活力的影响[J].动物学杂志,42(2):129~133.
    刘存歧,刘丽静,张亚娟,等. 2007b.基于卤水的养殖用水中Ca2+/Mg2+对凡纳滨对虾生长及体内SOD和AKP的影响[J].水产科学,26(2):67~69.
    刘存歧,王军霞,张亚娟,等. 2008.盐碱地渗水盐度与钠钾比对凡纳滨对虾生长的影响[J].应用生态学报,19(6):1337~1342.
    刘慧杰,潘鲁青,胡发文. 2008.凡纳滨对虾在盐度变化下免疫机能评价的研究[J].海洋湖沼通报,2:159~166.
    牟海津,江晓路,刘树青,等. 1999.免疫多糖对栉孔扇贝酸性磷酸酶、碱性磷酸酶和超氧化物歧化酶活性的影响[J].青岛海洋大学学报,29(3):463~468.
    潘爱军,来琦芳,王慧,等. 2006.盐度突变对凡纳滨对虾组织碳酸酐酶活性的影响[J]. 上海水产大学学报,15(1):47~51.
    潘鲁青,姜令绪. 2002.盐度、pH突变对2种养殖对虾免疫力的影响[J].青岛海洋大学学报,32(6):903~910.
    潘鲁青,刘泓宇. 2005.甲壳动物渗透调节生理学研究进展[J].水产学报,29(1):109~114.
    潘鲁青,刘志,姜令绪. 2004.盐度、pH变化对凡纳滨对虾鳃丝Na+-K+-ATPase活力的影响[J].中国海洋大学学报,34(5):787~790.
    沈丽琼,陈政强,陈昌生,等. 2007.盐度对凡纳滨对虾生长与免疫功能的影响[J].集美大学学报(自然科学版),12(2):108~113.
    宋协法,刘鹏,葛长字. 2009.温度、盐度交互作用对凡纳滨对虾耗氧和氨氮、磷排泄的影响[J].渔业现代化,36(2):1~6.
    谭北平,周歧存,郑石轩,等. 2004.β-1,3/1,6-葡聚糖制剂对凡纳对虾生长及免疫力的影响[J].高技术通讯,14(5):73~77.
    王慧,房文红,来琦芳. 2000.水环境中Ca2+、Mg2+对中国对虾生存及生长的影响[J].中国水产科学,7(1):82~86.
    王慧,来琦芳,房文红. 2007. K+对中国明对虾幼虾生存及耗氧率、窒息点的影响[J].中国水产科学,14(3):493~497.
    王雷,李光友,毛远兴. 1995.中国对虾血淋巴中的抗菌、溶菌活力与酚氧化酶活力的测定及其特性研究[J].海洋与湖沼,26(2):179~184.
    王雷,李光友,毛远兴,等. 1994.口服免疫型药物对养殖中中国对虾病害防治作用的研究[J].海洋与湖沼,25(5):486~492.
    王淑生,柴晓贞. 2001.北方地区内陆平原盐碱地兑水养殖东方对虾试验[J].水产科学,20(5):25~26.
    王顺昌,许立. 2003.不同盐度下中华绒鳌蟹清总蛋白和血蓝蛋白含量的变化[J].淮南师范学院学报,5(3):24~26.
    王蔚芳. 2007.皱纹盘鲍矿物元素(K、Mg、Se、Cu)及糖类营养生理的研究[D].中国海洋大学.
    王维娜,孙儒泳,王安利,等. 2002.环境因子对日本沼虾消化酶和碱性磷酸酶的影响[J].应用生态学报,13(9):1153~1156.
    王维娜,牛东红,商利新,等. 2004.低温对日本沼虾耗氧率、排氨率和Na+-K+-ATPase比活力的影响[J].应用与环境生物学报,10(5):602~604.
    王兴强,马甡,董双林,等. 2006.饲料中添加氯化钠对凡纳滨对虾存活、生长和能量收支的影响[J].海洋科学,30(11):64~68.
    王义强,黄世蕉,赵维信,等. 1990.鱼类生理学[M].上海:上海科学技术出版社:23~161.
    吴新颖,梁萌青,薛长湖,等. 2008.饲料中添加盐对低盐养殖凡纳滨对虾肌肉常规营养成分及质构的影响[J].海洋水产研究,29(6):84~89.
    许兵,纪伟尚. 1993.中国对虾病原菌及其致病机理的研究[J].海洋学报,1(1):98~106.
    曾现英,徐高峰,张新峰. 2004.北方盐碱洼地养殖南美白对虾试验[J].淡水渔业,34(5):34~35.
    张硕,董双林. 2002.饵料和盐度对中国对虾幼虾能量收支的影响[J].大连水产学院学报,17(3):227~233.
    郑善坚.凡纳滨对虾淡化养殖水质规律研究[D].中国海洋大学,2006.
    仲霞铭,刘培廷,孙国铭. 2003.水体中Ca2+、Mg2+、K+对南美白对虾淡化苗生存的影响[J].水产养殖,24(4):36~46.
    邹中菊,姜虹霞,段德勇,等. 2004.盐度对罗氏沼虾代谢率的影响[J].华中师范大学学报(自然科学版),38 (1):82~84.
    朱长波,董双林,张建东,等. 2005.缺K+型低盐度水体Na+/K+比值对凡纳滨对虾幼虾生长和能量收支的影响[J].中国海洋大学学报,35(5):773~778.
    朱宏友,王广军,余德光,等. 2005.盐度变化对凡纳滨对虾一氧化氮合酶水平及病原敏感性的影响[J].湛江海洋大学学报,(6):90~93.
    Bindu R P, Diwan A D. 2002. Effects of acute salinity stress on oxygen consumption and ammonia excretion rates of the marine shrimp Metapenaeus monoceros[J]. Journal of Crustacean Biology, 22(1):45~52.
    Boyd C A, Boyd C E, Rouse D B. 2007. Potassium budget for inland, saline water shrimp ponds in Alabama[J]. Aquacultural Engineering, 36:45~50.
    Boyd C E, Thunjai T. 2003. Concentrations of major ions in waters of inland shrimp farms in China, Ecuador, Thailand, and the United States[J]. J. World Aquac. Soc., 34:524~532.
    Bray W A, Lawrence A L, Leung-Trujillo J R. 1994. The effect of salinity on growth and survival of Penaeus vannamei, with observations on the interaction of IHHN virus andsalinity[J]. Aquaculture, 122:133~146.
    Castilho P C, Martins I A, Bianchini. 2001. A gill Na+-K+-ATPase and osmoregulation in the estuarine crab, Chasmagnathus granulata Dana, 1851 (Decapoda, Grapsidae)[J]. Exp Mar Biol Ecol, 256:215~227.
    Chang C F, Chen H Y, Su M S. 2000. Immunomodulation by dietaryβ-1,3-glucan in the brooders of the black tiger shrimp, Penaeus monodon[J]. Fish & Shellfish Immunology, 10:505~514.
    Chen J C, Lai S H. 1993. Effects of temperature and salinity on oxygen consumption and ammonia-N excretion of juvenile Penaeus japonicus Bate[J]. J Exp Mar Biol Ecol, 165:161~170.
    Chen J C, Chen K W. 1996. Hemolymph oxyhemocyanin, protein levels, acid– base balance, and ammonia and urea excretion of Penaeus japonicus exposed to saponin at different salinity levels[J]. Aquat. Toxicol., 36:115~128.
    Chen J C, Chen J M. 1997. Arginase specific activity and nitrogenous excretion of Penaeus japonicus exposed to elevated ambient ammonia[J]. Mar Ecol Prog Ser, 153:197~202.
    Chen J C, Chia P G. 1997. Osmotic and ionic concentrations of Scyllaserata ( Forsk?l ) subjected to different salinity levels [J]. Comp Biochem Physiol, 117A:239~244.
    Chen J C, Chen C T, Cheng SY. 1994. Nitrogen excretion and changes of hemocyanin, protein and free amino acid levels in the hemolymph of Penaeus monodon exposed to ambient ammonia-N at different salinity levels[J]. Mar. Ecol., 110:85~94.
    Chen J C, Lin M N, Ting Y Y, et.al. 1995. Survival, haemolymph osmolality and tissue water Penaeus Chinensis juveniles acclimated to different salinity and temperature levels[J]. Camp. Biochem. Physiol, 110A(3):253~258.
    Cheng W, Chen J C. 2000. Effects of pH, temperature and salinity on immune parameters of the fresh water prawn Macrobrachium rosenbergii[J]. Fish & Shellfish Immunology, 10:387~391.
    Claybrook D L. 1983. Nitrogen metabolism. In: Mantel, L.H. (Ed.), The Biology of Crustacea: Vol. 5. Internal Anatomy and Physiological Regulation[M]. Academic Press, New York:163~213.
    Conover R J, Corner E D S. 1968. Respiration and nitrogen excretion by some marine zooplankton in relation to their life cycles[J]. J Mar Biol Assoc U K, 48:49~75.
    Davis D A, Beardenbach J, Lawrence A L. 1990. Qualitative effects of dietary mineral supplementation, salinity and substrate on growth and tissue mineralization for Penaeusvannamei[J]. World Aquaculture Society Meeting. Halifax, Canada.
    Davis D A, Lawrence A L, Gatlin D M. 1993. Response of Penaeus vannamei to dietary calcium, phosphorus and calcium: phosphorus ratio[J]. J. World Aquac. Soc., 24:504~515.
    Davis D A, Saoud I P, McGraw W J, et.al. 2002. Considerations for Litopenaeus vannamei reared in inland low salinity waters. In: Cruz-Suórez LE, Richque-Marie D, Tapia-Salazar M, Gaxiola-Cortés MG, Simoes N (Eds.), Advancesen Nutrición Acuícola VI. Memorias del VI Simposium International de Nutrición Acuícola. 3 al 6 de Setimbre del 2002. Cancún, Quintana Roo, México:73~90.
    Davis D A, Saoud I P, Boyd C E, et.al. 2005. Effects of potassium, magnesium, and age on growth and survival of Litopenaeus vannamei post-larvae reared in inland low salinity well waters in west Alabama[J]. J. World Aquac. Soc., 36:403~406.
    Deshimaru O, Yone Y. 1978. Requirement of prawn for dietary minerals[J]. Bull. Jpn. Soc. Sci. Fish. 44:907~910.
    Esparza-Leal H M, Ponce-Palafox J T, Valenzuela-Quiňónez W, et.al. 2009. The effect of low salinity water with different ionic composition on the growth and survival of Litopenaeus vannamei (Boone, 1931) in intensive culture[J]. Journal of Applied Aquaculture, 21:215~227.
    Fang L S, Tang C K, Lee D L, et.al. 1992. Free amino acid composition in muscle and hemolymph of the prawn Penaeus monodon in different salinities[J]. Nippon Suisan Gakkaishi, 58:1095~1102.
    Fielder D S, Bardsley W J, Allan G L. 2001. Survival and growth of Australian snapper, Pagrus auratus, in saline groundwater from inland New South Wales, Australia[J]. Aquaculture, 201:73~90.
    Forsberg J A, Neill W H. 1997. Saline groundwater as an aquaculture medium: physiological studies on the red drum, Sciaenops ocellatus[J]. Environmental Biology of Fishes, 49:119~128.
    Gilles R. 1977. Effects of osmotic stresses on the proteins concentration and pattern of Eriocheir sinensis blood[J]. Comparative Biochemistry and Physiology, PartA, 56(2):109~114.
    Gong H, Jiang D H, Lightner D V, et.al. 2004. A dietary modification approach to improve the osmoregulatory capacity of Litopenaeus vannamei cultured in the Arizona desert[J]. Aquaculture Nutrition, 10:227~236.
    Hanlon D P. 1975. The distribution of arginase and urease in marine invertebrates[J].Comp Biochem Physiol, 52B:261~264.
    Hashimoto T, Ohno N, Yadomae T. 1997. Subgrouping immunomodulatingβ-glucans bymonitoring IFN- and NO syntheses [J]. Drg Develop Res, 42(1):35~40.
    Hern?ndez-Lpez J, Gollas-Galvan T, Vargas-Albores F. 1996. Activation of theprophenoloxidase system of the brown Penaeus californiensis Holmes[J].CompBiochem Physiol, 113C:61~66.
    Huang J, Yang Y, Wang A. 2009. Reconsideration of phenoloxidase activity determinationin white shrimp Litopenaeus vannamei[J]. Fish & Shellfish Immunology, 1~5.
    Ikeda T. 1974. Nutritional ecology of marine zooplankton[J]. Mem Fac Fish HokkaidoUniv, 22:1~97.
    Jeuniaux C. 1971. Haemolymph arthropoda[M]//Chemical Zoology Arthropoda VI.Academic Press, New York:63~118.
    Jiang D H, William H N, Gong H. 2000. Effects of temperature and salinity on nitrogenousexcretion by Litopenaeus vannamei juveniles[J]. J Exp Mar Biol Ecol, 253:193~209.
    Karla M P, Alba I G G, Francisco V A. 2005. Different expression of Litopenaeusvannamei (Boone) haemocytes to Vibrio and abiotic particle inoculation[J]. AquacultureResearch, 36:912~919.
    Kanazawa A, Teshima S, Sasaki M. 1984. Requirements of the juvenile prawn for calcium,phosphorus, magnesium, potassium, copper, manganese, and iron[J]. Mem. Fac. Fish.Kagoshima Univ. 33:63~71.
    Lee W C, Chen J C. 2003. Hemolymph ammonia, urea and uric acid levels andnitrogenous excretion of Marsupenaeus japonicus at different salinity levels[J]. Journalof Experimental Marine Biology and Ecology, 288:39~49.
    Lee M H, Shiau Y S. 2003. Increase of dietary vitamin C improves haemocyte respiratoryburst response and growth of juvenile grass shrimp, Penaeus monodon, fed with highdietary copper[J]. Fish & Shellfish Immunology, (14):305~315.
    Li E C, Chen L Q, Zeng C, et.al. 2007. Growth, body composition, respiration and ambientammonia nitrogen tolerance of the juvenile white shrimp, Litopenaeus vannamei, atdifferent salinities[J]. Aquaculture, 265:385~390.
    Li P, Gatlin D M. 2003. Evaluation of brewers yeast (Saccharomyces cerevisiae) as a feedsupplement for hybrid striped bass (Morone chrysops×M. saxatilis) [J]. Aquaculture,219:681~692.
    Lin X T, Xie X Y, Zhong J X, et.al. 2000. Energy metabolism of adult femaleMacrobrachium rosenbergii[J]. Acta Sci Nat Univ Sunyatsen, (39):248~253.
    Liu H Y, Pan L Q, Lv F. 2008. Effect of salinity on hemolymph osmotic pressure, sodium concentration and Na+-K+-ATPase activity of gill of Chinese Crab, Eriocheir sinensis[J]. oceanic and coastal sea research, 17(1):77~82.
    Mantel L, Farmer L. 1983. The Biology of Crustacea[M]. New York: Academic Press. New York, 53~161.
    Mason R P, Mangum C P, Godette G. 1983. The influence of inorganic ions and acclimation salinity on hemocyanin-oxygen binding in the blue crab Callinectes Sapidus[J]. The Biological Bulletin, 164:104~123.
    Mayzand P. 1976. Respiration and nitrogen excretion of zooplankton IV :the influence of starvation on the metabolism and biochemical composition of some species[J]. Mar Biol, 7:47~58.
    Moullac G L, Haffner P. 2000. Environmental factors affecting immune responses in crustacea[J]. Aquaculture, 191:121~131.
    Nickerson K W, Van Holde K E. 1971. A comparison of molluscan and arthropod hemocyanin. I. Circular dichromism and absorption spectra[J]. Comp Biochem physiol, 39B:855~872.
    Pan L Q, Zhang L J, Liu H Y, et.al. 2007. Effects of salinity and pH on ion-transport enzyme activities, survival and growth of Litopenaeus vannamei postlarvae[J]. Aquaculture, 273:711~720.
    Panikkar N K. 1968. Osmotic behavior of shrimps and prawns in relation to their biology and culture[J]. FAO Fish Rep, 57:527~538.
    Partridge G J, Lymbery A J. 2008. The effect of salinity on the requirement for potassium by barramundi (Lates calcarifer) in saline groundwater[J]. Aquaculture, 278:164~170.
    Partridge G J, Lymbery A J, George R J. 2008. Finfish mariculture in inland Australia: A review of potential water sources, species, and production systems[J]. J. World Aquac. Soc., 39:291~310.
    Paul R, Pirow R. 1998. The physiological significance of respiratory proteins in invertebrates[J]. Zoology, 100:319~327.
    Penaflorida V D. 1999. Interaction between dietary of calium and phosphorus on growth of juvenile shrimp Penaeus monodon[J]. Aquaculture, 172 (3-4) 15:281~289.
    Ponce-Palafox J, Martinez-Palacios C A, Ross L G. 1997. The effects of salinity and temperature on the growth and survival rates of juvenile white shrimp, Penaeus vannamei, Boone, 1931[J]. Aquaculture, 57:107~115.
    Prangnell D I, Fotedar R. 2006. The growth and survival of western king prawns, Penaeuslatisulcatus Kishinouye, in potassium-fortified inland saline water[J]. Aquaculture, 259:234~242.
    Regnault M. 1987. Nitrogen excretion in marine and fresh water crustacea[J]. Biol. Rev. 62:1~24.
    Regnault M. 1992. Effect of air exposure on nitrogen metabolism in the crab Cancer pagurus[J]. J Exp Zool, 264:372~380.
    Rengpipat S, Rukpratanporn S, Piyatiratitivorakul S, et.al. 2000. Immunity enhancement on black tiger shrimp (Penaeus monodon) by a probiont bacterium (Bacillus S11)[J]. Aquaculture, 191:271~288.
    Rosas C, López N, Mercado P, Martínez E. 2001. Effect of salinity acclimation on oxygen consumption of juveniles of the white shrimp Litopenaeus vannamei[J]. Journal of Crustacean Biology, 21(4):912~922.
    Roy L A. 2006. Physiological and nutritional requirements for the culture of the Pacific white shrimp Litopenaeus vannamei in low salinity waters[J]. Doctoral dissertation. Auburn University, Auburn, Alabama.
    Roy L A, Davis D A, Saoud I P. 2006. Effects of lecithin and cholesterol supplementation to practical diets for Litopenaeus vannamei reared in low salinity waters[J]. Aquaculture, 257:446~452.
    Roy L A, Davis D A, Saoud I P, et.al. 2007a. Supplementation of potassium, magnesium and sodium chloride in practical diets for the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters[J]. Aquaculture Nutrition, 13:104~113.
    Roy L A, Davis D A, Saoud I P, et.al. 2007b. Effects of varying levels of aqueous potassium and magnesium on survival, growth, and respiration of the Pacific white shrimp, Litopenaeus vannamei, reared in low salinity waters[J]. Aquaculture, 262:461~469.
    Roy L A, Davis D A, Whitis G N. 2009. Pond-to-pond variability in post-larval shrimp, Litopenaeus vannamei, survival and growth in inland low salinity waters of west Alabama[J]. Aquaculture Research, 40:1823~1829.
    Roy L A, Davis D A, Saoud I P, et.al. 2010. Shrimp culture in inland low salinity waters[J]. Reviews in Aquaculture, 2:191~208.
    Saoud I P, Davis D A. 2005. Effects of betaine supplementation to feeds of Litopenaeus vannamei reared at extreme salinities[J]. North American Journal of Aquaculture, 67:351~353.
    Saoud I P, Davis D A, Rouse D B. 2003. Suitability studies of inland well waters forLitopenaeus vannamei culture[J]. Aquaculture, 217(1-4):373~383.
    Saoud I P, Roy L A, Davis D A. 2007. Chelated potassium and arginine supplementation in diets of Pacific white shrimp reared in low-salinity waters of west Alabama[J]. North American Journal of Aquaculture, 69:265~270.
    Shiau S Y. 1998. Nutrient requirements of penaeid shrimps[J]. Aquaculture, 164:77~93.
    Shiau S Y, Hsieh J F. 2001. Dietary potassium requirement of juvenile grass shrimp Penaeus monodon[J]. Fisheries Science, 67:592~595.
    Sowers A D, Young S P, Grosell M, et.al. 2006. Hemolymph osmolality and cation concentrations in Litopenaeus vannamei during exposure to artificial sea salt or a mixed-ion solution:Relationship to potassium flux[J]. Comp Biochem Physiol, 145A:176~180.
    Wang L U, Chen J C. 2005. The immune response of white shrimp Litopenaeus vannamei and its susceptibility to Vibrio alginolyticus at different salinity levels[J]. Fish & Shellfish Immunology, 18:269~278.
    Winkler A. 1986. Effects of inorganic sea water constitutes on branchial Na+-K+-ATPase activity in the crab Carcinus meanus[J]. Marine Biology, 92:537~544.
    Ye L, Jiang S G, Zhu X M, et.al. 2009. Effects of salinity on growth and energy budget of juvenile Penaeus monodon[J]. Aquaculture, 290:140~144.
    Zhu C B, Dong S L,Wang F, et.al. 2004. Effects of Na/K ratio in seawater on growth and energy budget of juvenile Litopenaeus vannamei[J]. Aquaculture 234:485~496.
    Zhu C B, Dong S L, Wang F. 2006a. The interaction of salinity and Na/K ratio in seawater on growth, nutrient retention and food conversion of juvenile Litopenaeus vannamei[J]. Journal of Shellfish Research, 25:107~112.
    Zhu C B, Dong S L, Wang F, et.al. 2006b. Effects of seawater potassium concentration on the dietary potassium requirement of Litopenaeus vannamei[J]. Aquaculture, 258:543~550.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700