基于锁模激光的相干多普勒激光雷达研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相干多普勒激光雷达是测量遥感风场和运动目标速度的有力工具。相干多普勒激光雷达的发射源普遍使用单纵模激光器,而锁模激光所具有的宽频谱、窄脉宽、高峰值功率等特性使其在作为相干激光雷达发射源方面具有潜在的应用价值。本文从理论上和实验上对基于锁模激光的相干多普勒激光雷达进行了研究。
     理论上,在单频外差探测原理的基础上,考虑了具有m+1个模式、纵模间隔为ω的本振光,与发生了Δω频移的信号光相干拍频后的理论模型,证明了相位差恒定的锁模激光可以实现相干混频,并可以通过低通滤波或FFT频谱分析的方式检测出差频信号。利用这一理论模型进行了数值模拟计算,分析了信号光在不同的频移值时的拍频波形,讨论了实现相干探测本振光与信号光应满足的条件。
     基于相干多普勒激光雷达系统对发射光源的要求,进行了锁模激光器的实验研究。通过使用不同的锁模器件得到锁模激光输出,其中主动锁模和调Q主动锁模都获得了单脉冲宽度在百皮秒量级、锁模深度100%、锁模几率95%以上的稳定的锁模脉冲序列输出。对被动锁模、主动锁模、调Q主动锁模的激光输出特性进行了对比研究,主动锁模脉冲序列包络时间较长但峰值功率较低,而调Q主动锁模峰值功率高但包络时间较短,不同类型的激光输出为后续的相干测速实验提供了多种选择。
     利用声光移频器模拟外差探测中信号光发生的多普勒频移,进行了锁模激光拍频实验研究,并与单纵模激光拍频实验结果进行了比较。使用锁模激光在频移为30~80MHz的范围内进行了拍频实验研究,拍频波形及信号处理的结果均与理论分析相符,测量结果的相对误差在0.5%以下。分别使用脉宽为10ns和16ns的调Q单纵模脉冲进行拍频,在信号光频移为150MHz时测量结果的相对误差分别为3.7%和1.6%。对比实验结果发现,调Q单纵模脉冲由于有限的脉宽限制了拍频后包络的数量,导致误差相对较大,而锁模脉冲序列由于具有较长包络时间,在测量较低频移值时仍具有较高的精度,即测量低速目标时更具有优势。在具有较长包络时间的同时,锁模激光还具有高峰值功率和窄脉宽的特点。使用光纤耦合的方式进行了相干拍频实验,得到了稳定的相干拍频波形,FFT频谱分析的结果与设定值和理论分析相符。
     设计并建立了相干多普勒激光雷达测速系统,利用高速旋转的圆盘模拟外差探测时的运动目标,通过相干拍频并滤波的方式得到了信号光的多普勒频移值,算得系统的视向速度误差小于0.4m/s。通过改变锁模激光器谐振腔内调Q晶体的初始透过率,讨论了不同包络宽度的探测光对测量结果的影响。其中包络时间较长的探测光回波信号较弱,但是测量结果更为稳定;包络时间较短的探测光回波信号较强,但是单次测量的相对误差可能较大,可以通过多次测量取平均的方式降低误差。针对拍频波形无法辨别目标方向的问题,使用了对本振光附加频移的超外差方法,实验结果表明可以根据此方法获知目标的速度和方向信息。在转盘顺时针旋转和逆时针旋转时进行了相干拍频实验,获得的频差值与实际值相符,均值的相对误差分别小于2%和1%,根据频差值获得的视向速度曲线与实际速度曲线吻合较好。
Coherent Doppler LIDAR (laser and infrared radar) has been proved aneffective tool for measuring the velocity of wind fields and moving targets by meansof remote sensing. Single longitudinal mode (SLM) laser is generally used in thecoherent Doppler LIDAR system as an emitter, and mode-locked laser, with thecharacteristics of wideband spectrum, narrow pulse width and high peak power, is apotential source for coherent detection. In this dissertation, a coherent DopplerLIDAR system based on the mode-locked laser is studied theoretically andexperimentally.
     According to the heterodyne detection theory of SLM laser, a theoretical modelof coherent beat frequency between two mode-locked lasers is discussed, in whichthe longitudinal mode number of the local oscillator is m+1, the longitudinal modespacing is ω, and the frequency shift of the signal laser is Δω. The derivation resultindicates that mode-locked laser is able to realize coherent frequency mixing whenthe phase difference is constant, and the difference frequency signals can beobtained after low-pass filtering or FFT spectral analysis. Accordingly, thenumerical simulation method has been employed, the waveforms of signal laserschanging with different frequency shifts have been analyzed, and the conditions torealize coherent detection have been discussed as well.
     The experimental studies on the mode-locked laser have been conducted for thepotential of being a laser source of coherent Doppler LIDAR. Mode-locked laseroutputs have been obtained by applying different mode-locked devices. For theactively mode-locked laser as well as the actively mode-locked Q-switched laser,steady outputs with the characteristics of hundreds of picoseconds duration,100%modulation depth, and over95%mode-locked probability have been obtained. Thecomparison between the actively mode-locked laser and the actively mode-lockedQ-switched laser indicates that the actively mode-locked pulse train has a longduration and the pulse peak power is low, while the actively mode-lockedQ-switched pulse train has a high peak power and a short duration. Mode-lockedlasers with different output characteristics provide different emitters for thesubsequent coherent velocity measurement experiments.
     The coherent beat frequency experiment has been conducted by using anacousto-optic frequency shifter (AOFS) simulating Doppler shift in the heterodynedetection. In the30~80MHz frequency shift range, the beat frequency waveformsas well as the results after signal processing are consistent with the theoreticalanalysis, and the relative errors of the results measured are less than0.5%, and the beat frequency experiments have been conducted by using Q-switched SLM lasersof10nanoseconds pulse width and16nanoseconds pulse width respectively, and therelative errors obtained are3.7%and1.6%accordingly when the frequency shiftvalue of the signal laser is set at150MHz. The results indicate that the envelopenumbers of beat frequency waveforms are limited due to the narrow pulse width ofthe Q-switched SLM laser, and the relative errors are large. For the mode-lockedlaser, with a wide envelope, the measurement accuracy is high even when measuringsmall frequency shift, which means the mode-locked laser is more dominate inmeasuring low velocity moving targets. In addition, the mode-locked laser has highpeak power and narrow pulse width. The coherent beat frequency experiment basedon fiber coupling has been conducted. The FFT spectrum analysis results of beatfrequency waveforms obtained are consistent with the set values as well astheoretical analysis.
     A laser Doppler velocimetry has been designed and set up. In the system, ahigh-speed rotating disk is used to simulate the moving target, and the Doppler shiftvalue has been obtained after beat frequency and filtering. The radial velocity erroris less than0.4m/s through calculation. By means of changing the initialtransmittance of the Q-switch crystal, the effects of different envelope widths of theprobe lasers on measuring results have been discussed. The echo signal of the probelaser with a wider envelope is weaker, but the measuring result is more stable; theecho signal of probe laser with a narrower envelope is stronger, and the relativeerror of single measurement is probably bigger, which can be reduced by averagingthe values of repeated measurements. A superheterodyne method is used by adding afrequency shift to the local oscillator, since moving directions of the target areunable to be distinguished according to the beat frequency waveforms. Experimentalresults indicate that the direction and velocity information are available. Thecoherent beat frequency experiment indicates that the frequency shift value isconsistent with the actual value no matter the disk rotates clockwise orcounterclockwise. The average relative errors are less than2%and1%respectively.The gained line-of-sight velocity curve based on the frequencydifference fits well with actual velocity curve.
引文
[1] Yeh Y, Cummins H Z. Localized Fluid Flow Measurements with a He-NeLaser spectrometer[J]. Applied Physics Letters,1964,4:176-178.
    [2] Geiser, Martial H, Diermann, et al. Compact Laser Doppler ChoroidalFlowmeter[J]. Journal of Biomedical Optics,1999,4(4):459-464.
    [3] Lawrence, Eric M, Speller, et al. Laser Doppler Vibrometry for OpticalMEMS[J]. SPIE,2002,48(27):80-87.
    [4] Bostrova N K, Sidorov V V, Matrusor S G, et al. Laser Doppler Flowmetry as aMethod for Evaluating the Microwave Radiation Effect on CuaneousMicrocirculation[J]. Critical Reiews in Bionmedical Engineering,2001,29(3):549-556.
    [5] Bazilevskii, Yu S, Chicherin I A, et al. Application of Laser DopplerAnemometry to investigation of the Turbulent Boundary LayerCharacteristics[J]. Optoelectronics Instrumentation and Data processing,2000,5:37-40.
    [6] Koch G J, Beyon J Y, Gibert F, Barnes B W, et al. Side-line Tunable LaserTransmitter for Differential Absorption Lidar Measurements of CO2: Designand Application to Atmospheric Measurements[J]. Applied Optics,2008,47(7):944-956.
    [7] Bruneau D, Gibert F, Flamant P H, et al. Complementary Study of DifferentialAbsorption Lidar Optimization in Direct and Heterodyne Detections:Erratum[J]. Applied Optics,2007,46(3):428.
    [8] Xia H, Zhang C. Ultrafast Ranging Lidar Based on Real-Time FourierTransformation[J]. Optics Letters,2009,34(14):2108-2110.
    [9] Fiorani L, Colao F, Palucci A. Measurement of Mount Etna plume byCO2-Laser-Based Lidar[J]. Optics Letters,2009,34(6):800-802.
    [10] Rodrigo P J, Pedersen C. Peduction of Phase-Induced Intensity Noise in aFiber-Based Coherent Doppler Lidar Using Polarization Control[J]. OpticsExpress,2010,18(5):5320-5327.
    [11] Gordienko V M, Koryabin A V, Kravtsov N V, et al. Wind Doppler Lidar with1.5μm Fiber Laser[J]. Laser Physics Letters,2008,5(5):390-303.
    [12] Ishii S, Mizutani K, Fukuoka H, et al. Coherent2μm Differential Absorptionand Wind Lidar with Conductively Cooled Laser and Two-Axis ScanningDevice[J]. Applied Optics,2010,49(10):1809-1817.
    [13] Yu J, Petros M, Chen S, et al. Development of a Coherent DifferentialAbsorption Lidar for Range Resolved Atmosperic CO2Measurements[R].NASATechnical Reports,2010,20100025999:1-4.
    [14] Menzies R T, Hardesty R M. Coherent Doppler Lidar for Measurements ofWind Fields[J]. IEEE Journal of Quantum Electronics,1989,77(3):449-462.
    [15] Huffaker R M, Hardesty R M. Remote Sensing of Atmospheric WindVelocities Using Solid-State and CO2Coherent Laser Systems[J]. IEEEJournal of Quantum Electronics,1996,84(2):181-204.
    [16] Gordienko V M, Putivskii Y Y. Coherent Doppler TEA CO2Lidar for WindVelocity Measurement[J]. Quantum Electronics,1994,24(3):266-272.
    [17] Yu J, Singha U N, Barnesa J C, et al. A High Energy2μm Laser for MultipleLidar Applications[C]. Proc. of SPIE,2001,4153:70-77.
    [18] Della V G, Galzerano G, Toncelli A, et al. Novel Solid-state Lasers for LidarApplications at2μm[C]. Proc. of SPIE,2005,5958:1H-1-1H-8.
    [19] Huber R, Eigenwillig C M, Biedermann B R, et al. K-space linear Fourierdomain mode locked laser and applications for optical coherencetomography[J]. Optics Express,2008,16(12):8916-8937.
    [20] Wang J, Jiang S D, Paulsen K D, et al. Broadband frequency-domainnear-infrared spectral tomography using a mode-locked Ti:sapphire laser[J].Appl. Optics,2009,48(10): D198-D207.
    [21] Schibli T R, Kim J, Kuzucu O, et al. Attosecond active synchronization ofpassively mode-locked lasers by balanced cross correlation[J]. Optics Letters,2003,28:947-949.
    [22] Schroder T, Lemmerz C, Reitebuch O, et al. Frequency jitter and spectralwidth of an injection-seeded Q-switched Nd:YAG laser for a Doppler windlidar[J]. Applied Physics B: Lasers and Optics,2007,87(3):437-444.
    [23] Wulfmeyer V, Randall M, Brewer A, et al.2-mu m Doppler lidar transmitterwith high frequency stability and low chirp[J]. Optics Letters,2000,25(17):1228-1230.
    [24] Yao B Q, Chen F, Zhang C H, et al. Room temperature single-frequency outputfrom a diode-pumped Tm,Ho:YAP laser[J]. Optics Letters,2011,36(9):1554-1556.
    [25] Morvan L, Lai N D, Dolfi D, et al. Building blocks for a two-frequency laserlidar-radar: a preliminary study[J]. Applied Optics,2002,41(27):5702-5712.
    [26] Piracha M U, Nguyen D, Ozdur I, et al. Simultaneous ranging and velocimetryof fast moving targets using oppositely chirped pulses from a mode-lockedlaser[J]. Optics Express,2011,19(12):11213-11219.
    [27]华卿,周维虎,许艳.飞秒激光频率梳绝对测距技术综述[J].计测技术,2012,32(1):1-5.
    [28]周小林,孙东松,钟志庆,等.多普勒测风激光雷达研究进展[J].大气与环境光学学报,2007,2(3):161-168.
    [29] Huffaker R M. Laser Dippler detection systems for gas velocitymeasurements[J]. Appl. Opt.1970a,9:1026-1039.
    [30] Huffaker R M, Jelalian A V, Thomson J A L. Laser-Doppler system fordetection of aircraft trailing vortices[C]. Proc. of the IEEE,1970b,58:322-326.
    [31] Fukuda T, Matsuura Y, Mori T. Sensitivity of Coherent Range ResolvedDifferential Absorption Lidar[J]. Applied Optics,1984,23(12):2026-2032.
    [32] Roadcap J R, Laird M H, Murphy E A, et al. Heterodyne CO2DIAL and ItsMeasurements[C]. SPIE,1997,3127:201-211.
    [33] Senft D C, Pierrottet D F. Development of A High Speed Wavelength AgileCO2Local Oscillator for Heterodyne DIAL Measurements[C]. SPIE,2002,4722:72-77.
    [34] Kane T J, Kozlovsky W J, Byer R L, et al. Coherent Laser Radar at1.06μmUsing Nd:YAG Lasers[J]. Optics Letters,1987,12(4):239-247.
    [35] Chan K P, Killinger D K. Short-pulse, Coherent Doppler Nd:YAG Lidar[J].Optical Engineering,1991,30(1):49-54.
    [36] Strand O T, Berzins L V, Goosman D R, et al. Veloeimetry using heterodynetechniques[C]. Proc. of SPIE,2005,5580:593-599.
    [37] Strand O T, Goosman D R, Martinez C, et al. Compact system for high-speedvelocimetry using heterodyne techniques[J]. Rev. Sci. Instrum.2006,77(083108):1-8.
    [38] Henderson S W, Hannon S M. Advanced Coherent Lidar System for WindMeasurements[C]. Proc. of SPIE,2005,5887(1):1-10.
    [39] Phillips M W, Henderson S W, Poling M, et al. Coherent LIDAR developmentfor Doppler wind measurement from the International Space Station[C]. Proc.of SPIE,2001,4153:376-384.
    [40]王遨游.2μm相干激光测风雷达光学系统的测试方法与实验研究[D].哈尔滨:哈尔滨工业大学,2011:4.
    [41] Grady J K, Mulugeta P, Bruce W B, et al. Validar: a testbed for advanced2-micron Doppler lidar[C]. Proc. of SPIE,2004,5412:87-98.
    [42]李磊,赵长明,高岚,等.变光外差为电外差的双频激光探测[J].光学学报,2007,27(2):249-252.
    [43] Li J, Yang S H, Zhang H Y, Hu D X, et al. Diode-pumped room temperaturesingle frequency Tm:YAP laer[J]. Laser Physics Letters,2010,7(3):203-205.
    [44]张海洋,赵长明,蒋奇君,等.基于相干激光雷达的激光微多普勒探测[J].中国激光,2008,35(12):1981-1985.
    [45]张海洋,赵长明,杨苏辉.激光微多普勒探测系统中降低相位噪声影响的方法研究[J].光子学报,2011,40(5):753-757.
    [46]张海洋,赵长明,蒋奇君,等.1.06μm相干激光雷达动目标多普勒信号探测[J].光子学报,2009,38(3):507-511.
    [47]王建银.连续外差激光多普勒测风雷达[D].成都:四川大学,2007:21-40.
    [48]张文睿,曾晓东,满祥坤.激光外差实验研究[J].红外与激光工程,2008,37:146-148.
    [49]高龙,王春晖,李彦超,等.1.55μm相干激光测风雷达平衡式探测接收实验[J].光子学报,2010,39(6):1064-1069.
    [50]宋凝芳,杨德钊,孙鸣捷,等.散斑噪声对相干激光雷达系统性能的影响[J].中国激光,2011,38(10):1005001.
    [51]杨德钊,宋凝芳,林志立,等.目标表面对FMCW激光雷达拍频信号的影响分析[J].北京航空航天大学学报,2011,37(9):1127-1131.
    [52]王希涛,刘秉义,吴松华,等.高精度1.55μm全光纤激光相干测速实验及数据分析[J].激光与光电子学进展,2011,48:060301.
    [53]竹孝鹏,刘继桥,刁伟峰,等.相干多普勒测风激光雷达研究[J].红外,2012,33(2):8-12.
    [54]吴晓丽,韩海年,王薇,等.差频产生中红外飞秒激光脉冲的研究进展[J].物理,2009,38(4):261-266.
    [55] Jones D J, Diddams S A, Ranka J k, et al. Carrier-Envelope Phase Control ofFemtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis[J].Science,2000,288:635-639.
    [56] Barros M R X, Miranda R S, Jedju T M, et al. High-repetition-ratefemtosecond mid-infrared pulse generation[J]. Optics Letters,1995,20(5):480-482.
    [57] Song J, Xia J F, Zhang Z, et al. Mid-infrared pulses generated from the mixingoutput of an amplified, dual-waelength Ti:sapphire system[J]. Optics Letters,2002,27(3):200-202.
    [58] Foreman S M, Jones D J, Ye J. Flexible and rapidly configurable femtosecondpulse generation in the mid-IR[J]. Optics Letters,2003,28(5):370-372.
    [59] Erny C, Moutzouris K, Biegert J, et al. Mid-infrared difference-frequencygeneration of ultrashort pulses tunable between3.2and4.8μm from a compactfiber source[J]. Optics Letters,2007,32(9):1138-1140.
    [60] Murdoch S G, Leonhardt R, Harvey J D. Tuneable THz beat frequencygeneration in optical fibers[J]. Optics Communications,1996,130:25-28.
    [61] Pelusi M D, Liu H F, Novak D. THz optical beat frequency generation from asingle mode locked semiconductor laser[J]. Appl. Phys. Lett.1997,71(4):449-451.
    [62] Kobayashi Y, Yoshitomi D, Kakehata M, et al. Long-term optical phaselocking between femtosecond Ti:sapphire and Cr:forsterite lasers[J]. OpticsLetters,2005,30(18):2496-2498.
    [63] Huang Y C, Solntsev A S, Wang T D, et al. Generation of fs laser pulses from aps pulse-pumped optical parametric amplifier with a beat-wave seed signal[J].Optics Communications,2009,282:2250-2254.
    [64] Joo K N, Kim S W. Absolute distance measurement by dispersiveinterferometry using a femtosecond pulse laser[J]. Optics Express,2006,14(13):5954-5960.
    [65] Joo K N, Kim Y, Kim S W. Distance measurements by combined method basedon a femtosecond pulse laser[J]. Optics Express,2008,16(24):19799-19806.
    [66] Joo K N, Ellis J D, Buice E S, et al. High resolution heterodyne interferometerwithout detectable periodic nonlinearity[J]. Optics Express,2010,18(2):1159-1165.
    [67] Yokoyama S, Hagihara Y, Yasui T, et al. A Distance Meter using aSub-Terahertz Intermode Beatin an Optical Frequency Comb[J]. IEEE Laserand Electro-Optics,2008,4(9):1-2.
    [68] Lee J, Kim Y J, Lee K, et al. Time-of-fight measurement with femtosecondlight pulses[J]. Nature Photonics,2010,4(10):716-720.
    [69] Baltuska A, Wei Z Y, Pshenichnikov M S, et al. Optical pulse compression to5fs at a1-MHz repetition rate[J]. Optics Letters,1997,22(2):102-104.
    [70] Wei Z Y, Kobayashi Y, Torizuka K. Relative carrier-envelope phase dynamicsbetween passively synchronized Ti:sapphire and Cr:forsterite lasers[J]. OpticsLetters,2002,27(23):2121-2123.
    [71]韩海年,赵研英,张炜,等. PPLN晶体差频测量飞秒激光脉冲的载波包络相移[J].物理学报,2007,56(5):2756-2759.
    [72]孙敬华, Gale B J S, Reid D T.同步抽运飞秒光参量振荡器中的载波-包络相位控制及其应用[J].科学通报,2008,53(1):14-22.
    [73] Sun J, Gale B J S, Reid D T. Composite frequency comb spanning0.4-2.4mmfrom a phase-controlled femtosecond Ti:sapphire laser and synchronouslypumped optical parametric oscillator[J]. Optics Letters,2007,32(11):1414-1416.
    [74] Sun J, Gale B J S, Reid D T. Coherent synthesis using carrier-envelope phasecontrolled pulses from a dual-color femtosecond optical parametricoscillator[J]. Optics Letters,2007,32(11):1396-1398.
    [75]管致中,夏恭恪.信号与线性系统(第三版)[M].北京:高等教育出版社,2002:133-141.
    [76] Ma L S, Bi Z Y, Bartels A, et al. Optical Frequency Synthesis and Comparisonwith Uncertainty at the10-19Level[J]. Science,2004,303:1843-1845.
    [77]周金龙,董小鹏,李伟文,等.光子学技术生成微波信号[J].电子技术,2008,4:62-64.
    [78]张诚,陈章渊,胡薇薇.毫米波光载无线系统的结构优化[J].中兴通讯技术,2009,15(3):29-34.
    [79] Zhang C, Hong C, Li M J, et al.60GHz Millimeter-wave generation bytwo-mode injection-locked Fabry-Perot laser using second-order sidebandinjection in radio-over-fiber system[C]. Proceedings of the2008Conferenceon Lasers and Electro-optics and Quantum Electronics and Laser Science(CLEO/QELS’008), May4-9,2008, San Jose, CA, USA. Piscataway, NJ,USA:IEEE,2008:J W A99.
    [80]许艳,周维虎,刘德明,等.基于飞秒激光器光学频率梳的绝对距离测量[J].光电工程,2011,38(8):79-83.
    [81] Brunel M, Vallet M. Pulse-to-pulse coherent beat note generated by a passivelyQ-switched two-frequency laser[J]. Optics Letters,2008,33(21):2524-2526.
    [82] Morvan L, Alouini M, Grisard A, et a1. Two optronic identificationtechniques:1idar-radar and muhispectral polarimetric imaging[C]. Proc. SPIE,2004,5613:76-81.
    [83]范志刚.光电测试技术[M].北京:电子工业出版社,2004:120-122.
    [84]周炳琨,高以智,陈倜嵘,等.激光原理[M].北京,国防工业出版社,2000:235-237.
    [85]克希耐尔W.固体激光工程[M].孙文,江泽文,程国祥,译.北京:科学出版社,2002:454-507.
    [86]王骐,王春晖,尚铁梁.高斯本振光和爱里斑信号光相干探测的外差效率[J].中国激光,2003,30:183-186.
    [87]马宗峰,张春熹,张朝阳,等.光学外差探测信噪比研究[J].光学学报,2007,27(5):889-892.
    [88]周健,冯庆奇,龙兴武,等.激光多普勒测速仪信噪比及多普勒电流的研究[J].光电工程,2009,36(6):46-51.
    [89]石顺祥,许海平,孙艳玲,等.固体激光光折变自适应光外差探测技术研究[J].光学学报,2002,22(12):1457-1460.
    [90] Mocker H W, Collins R J. Mode competition and self-locking effects in aQ-switched ruby laser[J]. Appl. Phys. Lett.,1965,7:270-273.
    [91] DeMaria A J, Stetser D A, Heynau H. Self mode-locking of lasers withsaturable absorbers[J]. Appl. Phys. Lett.,1966,8:174-176.
    [92]王加贤,张文珍,王清月,等.在平凹腔Nd:YAG激光器中Cr4+:YAG被动锁模的特性研究[J].中国激光,1999,26(1):1-5.
    [93]张志海,邢歧荣,王加贤,等.采用Cr4+:YAG为可饱和吸收体的Nd:YAG调Q锁模[J].光电子激光,1999,10(6):508-511.
    [94] Jimenez M B, Laborde C C, Rodriguez D S, et al. Actively mode-locked fiberring laser by intermodal acousto-optic modulation[J]. Optics Letters,2010,35(22):3781-3783.
    [95] Laborde C C, Diez A, Pinar M D, et al. Mode locking of an all-fiber laser byacousto-optic superlattice modulation[J]. Optics Letters,2009,34(7):1111-1113.
    [96] Massey G A. Laser Mode Control by Internal Modulation Using the TransverseElectrooptic Effect in Quartz[J]. Applied Optics,1966,5(6):999-1001.
    [97]刘妍.锁模脉冲拍频实验研究[D].哈尔滨:哈尔滨工业大学,2009:19-20.
    [98]蓝信钜,等.激光技术[M].北京:科学出版社,2005:141-142.
    [99] Wang S, Rhee H, Wang X, et al. LD end pumped actively mode locked andpassively Q-switched Nd:YAP laser at1341nm[J]. Opt Commun,2010,283(4):570-573.
    [100]Chen Y F, Cai S W. Simultaneous Q-switch and mode-locking in adiode-pumped Nd:YVO4-Cr4+:YAG Laser[J]. IEEE Jounal QuantumElectronics,2001,37(4):580-586.
    [101]张行愚,赵圣之,王青圃,等. Cr4+:YAG调Q特性的理论和实验研究[J].光学学报,1998,18(9):1180-1185.
    [102]Lin L, Ouyang B, Leng Y, et al. Mode-locked Nd:YAG laser using Cr4+:YAGcrystal at1.064μm[C]. CLEO, CTuK36, Optical Society of America, Baltimore,MD,1999:134.
    [103]Ma Y F, Yu X, Tittel F K, et al. Diode-pumped continuous-wave and passivelyQ-switched1.06mu m YVO4/Nd:GdVO4laser[J]. Optics Communications,2012,285(7):1911-1914.
    [104]Jazi M E, Baghi M D, Hajimahmodzadeh M, et al. Pulse Nd:YAG passiveQ-switched laser using Cr4+:YAG crystal[J]. Optics and Laser Technology,2012,44(3):522-527.
    [105]Thomas G M, Damzen M J. Passively Q-switched Nd:YVO4laser with greaterthan11W average power[J]. Optics Express,2011,19(5):4577-4582.
    [106]Muller M, Squier J, Brakenhoff G J. Measurement of femtosecond pulses inthe focal point of a high-numerical-aperture lens by two-photon absorption[J].Optics Letters,1995,20(9):1038-1040.
    [107]Oughstun K, Xiao H. Influence of precursor fields on ultrashort pulseautocorrelation measurements and pulse width evolution[J]. Optics Express,2001,8(8):481-491.
    [108]Wang L F, Yang G C. Influence of laser pulse on the autocorrelation functionof H in a strong electric field[J]. Chinese Optics Letters,2009,7(1):1-4.
    [109]Wang C Y, Kuznetsova L, Gkortsas V M, et al. Mode-locked pulses frommid-infrared Quantum Cascade Lsers[J]. Optics Express,2009,17(15):12929-12943.
    [110]Wang J T, Zhou J, Zang H G, et al. Conducively cooled250-Hz singlefrequency Nd:YAG laser[J]. Chinese Optics Letters,2010,8(7):670-672.
    [111]Liu Q, Lei M, Gong M L, et al. High-energy single longitudinal mode1nsall-solid-state266nm lasers[J]. Applied Physics B-Lasers and Optics,2007,89(2-3):155-158.
    [112]王衍勇,刘俭辉,李世忱,等.稳定的简单结构被动调Q单脉冲单纵模激光器[J].中国激光,2004,31(5):531-534.
    [113]Steinmetz A, Nodop D, Limpert J, et al.2MHz repetition rate,200ps pulseduration from a monolithic, passively Q-switched microchip laser[J]. AppliedPhysics B-Lasers and Optics,2009,97(2):317-320.
    [114]邓明.用于CO2激光外差探测的声光移频器研究[D].成都:电子科技大学,2008:16。
    [115]宋宝安.基于角度调谐F-P标准具的测风激光雷达若干问题研究[D].哈尔滨:哈尔滨工业大学,2009:94.
    [116]杨选民,黄宗华,易名,等.超外差式激光多普勒测振[J].应用激光,1981,1:35-37.
    [117]陆钟楠,高求是,张淑仪.非对称型外差激光探针[J].中国激光,1992,19(2):102-106.
    [118]陈艳,赵洋.调频激光干涉绝对距离测量技术及其信号处理[J].航空计测技术,1997,2:31-35.
    [119]Dandliker R, Thalmann R, Prongue D. Two-wavelength laser interferometryusing superheterodyne detection[J]. Optics Letters,1988,13(5):339-341.
    [120]Gelmini E, Minoni U, Docchio F. Tunable, double-wavelength heterodynedetection interferometer for absolute-distance measurements[J]. Optics Letters,1994,19(3):213-215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700