长波段掺铒光纤超荧光光源研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
掺铒光纤超荧光光源(SFS)由于其优异的特性已经广泛应用于密集波分复用系统、光纤传感系统和光纤陀螺中。特别地,掺铒SFS是高精度光纤陀螺的首选光源之一。过去十几年中,人们研究了基于C波段(1525-1565nm)放大自发辐射的掺铒SFS,通过结构的合理设计与参数优化,获得了稳定的平均波长输出特性。然而,C波段的SFS由于自然荧光谱的尖峰结构导致超荧光线宽过窄,必须通过设计线宽扩展方案来获得较大线宽的超荧光。L波段(1565-1605nm)的掺铒SFS具有更平坦的输出光谱,L波段的自然荧光谱在40nm范围具有内在的平坦性,光谱纹波一般不会超过1dB,因此其相应线宽也较C波段宽,较大的光源线宽可以减少光纤陀螺系统相干噪声、光纤瑞利散射引起的位相噪声以及光克而效应引起的位相漂移,因此L波段SFS更适合作为高精度光纤陀螺的理想光源。据文献调研,迄今为止的研究都没有报道具有平均波长稳定特性的L波段SFS。本文正是以平均波长稳定的L波段SFS为研究目标,拟通过设计新型光源结构,使L波段SFS中心波长具有高的稳定性,与此同时还将考虑将L波段SFS线宽的拓展特性。当然,光纤通信业务的飞速发展对带宽的要求使得本论文研究的高效率线宽拓展的L波段SFS在密集波分复用系统中也将得到很好的应用。
     本文的工作主要包括以下三个部分:
     首先,以传统的两级级联前向抽运结构为研究目标,通过光源结构的优化设计,使得L波段SFS输出功率得到有效的提高以及线宽得到有效的拓展。提出一种同步抽运技术,克服两级独立抽运引起的平均波长的飘动。在此基础上,发展了基于一段非抽运光纤的单前向抽运结构的稳定L波段SFS。
     其次,对具有高抽运转换效率的单级双向抽运结构进行研究,采用同步抽运技术获得平均波长随总抽运功率飘动稳定的L波段SFS。针对单级双向抽运的L波段SFS在线宽上的可调性较差的不足,提出了基于一段非抽运光纤的改进型双向同步抽运结构的L波段SFS。
     第三,创新性地提出一种采用后向抽运的两级级联的掺铒光纤L波段SFS的新型结构,运用同步抽运技术对两级掺铒光纤按比例进行同时后向抽运,从而实现高效率且平均波长稳定的L波段SFS输出。在此基础上,发展了基于一段非抽运光纤的单后向抽运结构,我们讨论了非抽运光纤对光源输出特性的影响,通过分析和研究,获得了单抽运结构的新型L波段稳定SFS。
     本论文以福建省新世纪人才项目和福建省自然科学基金等项目为研究背景,论文的研究成果为顺利完成这些项目起到了重要作用。
     本文创新点和特色:
     1.在国际上首次提出并实现利用掺铒光纤中放大自发辐射获得具有平均波长稳定特性的L波段超荧光光源,L波段的SFS具有光谱平坦度好、光谱输出线宽大、输出功率高等优点,是应用于高精度光纤陀螺的理想光源。
     2.创新性地提出一种采用后向抽运的两级级联的掺铒光纤L波段SFS的新型结构,运用同步抽运技术对两级掺铒光纤按比例进行同时后向抽运,从而实现高效率且平均波长稳定的L波段SFS输出。
     3.基于非抽运光纤的改进型单抽运结构(单前向和单后向)实现高稳定的L波段SFS,克服了同步抽运结构带来的结构复杂以及较为严格的结构参数要求,从而使得L波段SFS应用于高精度光纤陀螺向实用化发展迈进。
Erbium-doped superfluorescent fiber source (SFS) has been widely used in dense wavelength division multiplexing (WDM) systems, optical sensor systems and fiber optic gyroscopes (FOG) for its excellent characteristics. In particular, the erbium-doped SFS is the best choice for the source of high precious FOG. In the past decades, the conventional band (C-band, 1525-1565nm) SFS based on erbium-doped fiber (EDF) amplified spontaneous emission (ASE) has been intensity researched. The mean wavelength stable SFS was achieved by designing the source configuration and optimizing the structural parameters. However, the scheme to broaden the spectral linewidth should be taken into account in the C-band SFS because the linewidth in C-band is narrow for the reason of the intrinsic peak spectrum around 1532nm.
     The long wavelength band (L-band, 1565-1605nm) SFS has the advantage of much more flat output spectrum. The spectrum is intrinsically flat about 40nm in the L-band with less than 1dB ripples. Therefore, the spectral linewidth in the L-band is much broader than the C-band. As been well known, the coherent noise, phase noise caused by the Rayleigh scattering, and phase drift caused by Kerr effect can be reduced by use of the source with broader linewidth in the FOG. Therefore, the L-band SFS is more suitable for application in the high precious FOG than the C-band SFS for the advantage of broader linewidth. However, there are no reports on the mean wavelength stable L-band SFS up to date to the best of our knowledge. It is the goad of this thesis to develop the mean wavelength stable L-band SFS. The configurations have been designed to achieve the L-band SFS with the characteristics of mean wavelength stability and broadening spectral linewidth as well. The high efficiency and linewidth broadening L-band SFS is also useful in the DWDM systems applications with the requirement of linewidth in rapid development of fiber optics communication.
     This thesis includes the following three parts:
     Firstly, the characteristics of output power was improved and the linewidth was broadened by designing and optimizing the conventional cascaded forward pumped two-stage L-band SFS configuration. A kind of synchronous pump technique was proposed to avoid the mean wavelength vibration caused by the individual pump to the two stages. Furthermore, a new single forward pumped L-band SFS with a segment of un-pumped fiber was developed to obtain the mean wavelength stability.
     Secondly, the high efficiency bi-directionally pumped one-stage L-band SFS was investigated. The mean wavelength stable L-band SFS was achieved with the usage of synchronous pump technique in the bi-directionally pumped configuration. An improved bi-directionally pumped configuration with a segment un-pumped fiber was proposed and demonstrated to improve the tenability of linewidth.
     Thirdly, a novel cascaded backward pumped two-stage L-band SFS was presented and realized for the first time. Characteristics of high pumping efficiency and mean wavelength stability was achieved in the proposed cascaded backward pumped L-band SFS with the usage of synchronous pump technique. Furthermore, a new single backward pumped stable L-band SFS with a segment of un-pumped fiber was developed. Analysis of the effect of the un-pumped fiber on the output characteristics was carried out to achieve a practical mean wavelength stable L-band SFS with one pump.
     The Background of this thesis includes a fund of New Century Excellent Talents in Fujian Province University and a project of Fujian Provincial National Science Foundation of China. The research achievements of this thesis partially contributed to fulfill these projects successfully.
     The innovation points and highlights of this thesis include:
     1. It has been put forward and realized for the first time that mean wavelength stable L-band SFS based on amplified spontaneous emission in erbium-doped fiber. The L-band SFS is a good candidate for the source used in the FOG since it poccesses the characteristics of good spectral flatness, broad spectral linewidth and high output power.
     2. A novel cascaded backward pumped two-stage L-band SFS was presented and realized for the first time. Characteristics of high pumping efficiency and mean wavelength stability was achieved in the proposed cascaded backward pumped L-band SFS with the usage of synchronous pump technique.
     3. The high mean wavelength stable L-band SFS with one pump, i.e. improved single forward or backward pumped configuration with an un-pumped fiber, was proposed. The single pumped stable L-band SFS is superiors to the synchronous pumping technique in the aspects on avoiding the complicated configuration and rigorous requirement of structural parameters. As a results, it makes much practical progress of the L-band SFS used in the high precious FOG.
引文
1.R.J.Mears,L.Reekie,I.M.Jauncie,and D.N.Payne.High-gain rear-earth doped fiber amplifier at 1.54um [C].OFC,1987,3:167.
    2.E.Desurvier,J.R.Simpson,and P.C.Becker.High-gain erbium-doped travelingwave fiber amplifier [J].Opt.Lett.,1987,12:888-890.
    3.D.Derickson.Fiber Optical Test and Measurement [M],Prentice Hall PTR,New Jersey,1988.
    4.P.F.Wysocki,M.J.F.Digonnet and B.Y.Kim.Wavelength stability of a high-output broadband,Er-doped superfluorescent fiber source pumped near 980nm [J].Opt.Lett.,1991,16:961-963.
    5.E.Desurvire,J.R.Simpson.Amplification of spontaneous emission in erbium- doped single-mode fibers [J].Journal of lightwave technology,1989,7:835-845.
    6.P.F.Wysocki,M.J.F.Dlgonnet and B.Y.Kim.Spectral characteristics of high-power 1.5μm broad-band superluminescent fiber sources [J].IEEE Photon.Technol.Lett.,1990,2:178-180.
    7.D.C.Hall,W.K.Burns.Wavelength stability optimization in Er-doped superfluorescent fiber sources [J].Electron.Lett.,1994,30:653-654.
    8.P.F.Wysocki,M.J.F.Digonnet,B.Y.Kim,H.J.Shaw.Characteristics of erbium-doped superfluorescent fiber sources for interferometrics sensor applications [J].Journal of lightwave technology,1994,12:550-567.
    9.D.C.Hall,W.K.Burns,R.P.Moeller.High stability Er-doped superfluorescent fiber source [J].Journal of Lightwave Technol.,1995,13:1452-1460.
    10.L.A.Wang,CD.Chen.Stable and broadband Er-doped superfluorescent fiber sources using double- pass backward configuration [J].Electron.Lett.,1996,32:1815-1817.
    11.L.A.Wang,C.D.Chen.Characteristics comparison of Er-doped double-pass superfluorescent fiber sources pumped near 980 nm [J].IEEE Photon.Technol.Lett.,1997,9:446-448.
    12.H.J.Patrick,A.D.Kersey,W.K.Burns and R.P.Moellers.Erbium-doped superfluorescent fiber sources with long period fiber grating wavelength stabilization [J].Electronis Letters,1997,33:2061-2063.
    13.L.A.Wang,C.D.Su.Modeling of a double-pass backward Er-doped superfluorescent fiber source for fiber-optic gyroscope applications[J].Journal of Lightwave Technology,1999,17:2307-2315.
    14.D.M.Dagenais,L.Goldberg.Wavelength stability characteristics of a high-power amplified superfluorescent source[J].Journal of Lightwave technology,1999,17:1415-1421.
    15.P.Z.Zatta,D.C.Hall.Ultra-high-stability two-stage superfluorescent fibre sources for fibre optic gyroscopes[J].Electron.Lett.,2002,38:406-408.
    16.H.G.Park,M.Digonnet,and G.Kino.Er-doped superfluorescent fiber source with a 0.5-ppm long-term mean-wavelength stability[J].Journal of Lightwave Technol.,2003,21:3427-3433.
    17.S.C.Tsai,C.M.Lee,S.Hsu and Y.K.Chen.Characteristics comparison of single-pumped L-band erbium-doped fiber amplified spontaneous emission sources[J].Opt.Quantum Electron.,2002,34:1111-1117.
    18.S.Hsu,T.C.Liang,Y.K.Chen.Optium configuration and design of L-band erbium-doped superfluorescent fiber source[J].Jpn.J.Appl.Phys.,2002,41:3724-3729.
    19.S.C.Tsai,T.C.Tsai,P.C.Law,and Y.K.Chen.High-power flat L-band erbium-doped fiber ASE source using dual forward-pumping scheme[J].Opt.Quantum Electron.,2003,35:161-167.
    20.S.C.Tsai,T.C.Tsai,P.C.Law,and Y.K.Chen.High pumping-efficiency L-band erbium-doped fiber ASE source using double-pass bidirectional-pumping configuration[J].IEEE Photon.Technol.Lett.,2003,15:197-199.
    21.S.P.Chen,Y.G.Li,J.P.Zhu,H.Wang,Y.Zhang,T.W.Xu,R.Guo,K.C.Lu.Watt-level L-band superfluorescent fiber source[J].Optics Express,2005,13:1531-1536.
    22.W.C.Huang,X.L.Wang,Z.P.Cai,H.Y.Xu,and C.C.Ye.A pump power insensitive high stability L-band erbium-doped superfluorescent fibre source[J].J.Opt.A:Pure Appl.Opt.,2005,7:179-182.
    23.W.C.Huang,X.L.Wang,B.R.Zheng,H.Y.Xu,C.C.Ye,Z.P.Cai.A stable and wideband L-band erbium superfluorescent fiber source using improved bi-directional pumping configuration[J].Optics Express,2007,15:9778-9783.
    24.J.H.Lee,U.C.Ryu,N.Park.Passive erbium-doped fiber seed photon generator for high power Er~(3+)-doped fiber fluorescent sources with an 80rim bandwidth[J]. Opt.Lett.,1999,24:279-281.
    25.M.O.Bereut,W.A.Apellana,IIDIiFONSO de Faria,and H.I.Fragnito.Extended band erbium amplified spontaneous emission source[C].Laser and Eleclro-Optics Europe,2000,244.
    26.R.P.Espindola,G.Ales,J.Park.80 nm spectrally flattened high power erbium amplified spontaneous emission fiber source[J].Electron.Lett.,2000,36:1263-1265.
    27.W.C.Huang,P.K.A.Wai,H.Y.Tam.One-stage erbium ASE source with 80 nm bandwidth and low ripples[J].Electron.Lett.,2002,38:956-957.
    28.W.C.Huang,H.Ming.Simulation analysis of one-stage C+L-band erbium-doped fiber ASE source with double-pass bi-directional pumping configuration[J].Chin.Opt.Lett.,2004,2:125-127.
    29.H.Lin,C.H.Chang.High power C+L-band eribum ASE source using optical circulator with double-pass and bi-dircetional pumping configuration[J].Optics Express,2004,12:6135-6140.
    30.W.C.Huang,B.R.Zheng,X.L.Wang,M.H.Sun,H.Y.Xu,Z.ECai.Low ripple and high efficiency C+L-band erbium-doped fiber amplified spontaneous emission sources using dual-forward pumping configuration[J].Optical engineering,2008,47:35003.
    31.P.F.Wysocki.Broadband erbium-doped fiber sources for the fiber-optic gyroscope[D].Stanford University,1992,21-23.
    32.钱景仁,程旭,朱冰.掺铒光纤超荧光宽带光源的实验研究[J].中国激光,1998,25(11):989-992.
    33.沈林放,钱景仁,高稳定宽频带掺铒光纤超荧光光源[J],光学学报,2001,21(3):300-304.
    34.沈林放,钱景仁.两级后向结构铒光纤超荧光光源的理论分析[J].量子电子学报,2000,17(4):345-349.
    35.钱景仁,陈登鹏.前向抽运两级双程掺铒光纤宽带光源[J].中国激光,2001,28(12):1075-1078.
    36.余有龙,谭华耀,钟永康.一种高功率宽带光源的研制[J].中国激光,2001,28(1):71-73.
    37.李乙钢,刘伟伟,付成鹏.大功率掺Yb双包层光纤宽带超荧光光源[J].光学学报,2001,21(10):1171-1173.
    38.杨利,钱景仁.宽带掺铒光纤超荧光光源的波长稳定性[C].2002海峡两岸三地无线科技研讨会.2002.
    39.黄文财,明海,谢建平,吴云霞.L波段掺铒光纤超荧光光源和放大器研究[J].光电工程,2002,29(6):50-52
    40.侯国付,李乙钢,付成鹏,吕福云,吕可诚.掺稀土元素光纤超荧光光源[J].激光杂志,2002,23(1):17-20.
    41.范小波,郝素君,陈志勋.基于双程后向结构的掺铒超荧光光纤光源[J].光纤与电缆及其应用技术,2002,3:29-31.
    42.肖瑞,冯莹,唐波.林亚风.用于高精度光纤陀螺的宽带掺铒光纤光源[J].光电子技术与信息,2003,16(1):40-43.
    43.邢丽峰,冯莹,肖瑞.宽带掺铒光纤超荧光光源[J].激光与光电子学进展,2003,40(12):37-40.
    44.郭玉彬,王天枢,李军,白冰,李晓滨,胡贵军.一种高掺铒光纤超荧光辐射源[J].半导体光电,2003,24(5):316-318.
    45.邢丽峰,肖瑞,冯莹.双程后向结构掺铒光纤超荧光光源研究[J].激光技术,2004,28(2):221-224.
    46.肖瑞,冯莹.掺饵光纤光源的模拟算法与改进[J].量子电子学报,2004,21(3):360-366.
    47.高伟清.掺铒光纤超荧光光源[J].光子技术,2004,4.
    48.高伟清,蒙红云.一种新颖的反射结构高功率超宽带光纤光源[J].中国激光,2004,31(5):591-594.
    49.郭玉彬,王天枢,李军,白冰,李晓滨,胡贵军.铒/镱共掺光纤的超荧光研究[J].半导体光电,2004,25(1):39-42.
    50.蒋俏峰,刘小明,倪屹,王青.采用Sagnac反馈环的高效率宽带L-波段放大自发辐射源[J].中国激光,2004,31(6):709-712.
    51.李家方,陈胜平,吕可诚,李乙钢,冯鸣,闹培光,李静.掺铒光纤宽带光源的优化及光谱分割实验研究[J].光电子技术,2004,24(2):104-109.
    52.郭小东,乔学光,贾振安,傅海威,王小凤.一种高功率掺铒光纤超荧光光源[J].光子学报,2004,33(11):1298-1300.
    53.郭小东,乔学光,贾振安,王小凤.高功率宽带掺铒超荧光光源[J].光电工 程,2004,31(9):18-22.
    54.高峰,闾晓琴.宽带光源[J].导航与控制,2005(4):33-33.
    55.王秀琳,黄文财,明海.宽带、高稳定掺铒光纤超荧光光源[J].激光与光电子学进展,2005,42(5):32-36.
    56.黄文财,王秀琳,明海.高功率宽带掺铒光纤超荧光光源研究[J].量子电子学报,2005,22(1):95-97.
    57.孔令峰,楼祺洪,周军,薛冬,董景星,魏运荣.瓦级双包层光纤超荧光光源的实验研究[J].中国激光,2005,32(6):757-760.
    58.李乙钢,徐团伟,陈胜平,朱剑平,王华,张赟,吕可诚.大功率L波段全光纤超荧光光源[J].光子学报,2005,15(9):1013-1017.
    59.包焕民,王衍勇,姜骁骏,杨天新,葛春风,倪文俊,李世忱,隋展,李明中,丁磊.基于铋基铒纤的新型宽带超荧光光源[J].光通信技术,2004,10:51-52.
    60.孙听,张贵忠,张良.宽带超荧光光纤光源的设计与实验[J].量子电子学报,2005,22(3):461-463.
    61.郭小东,乔学光,贾振安 傅海威 王小凤.一种C+L波段高功率掺铒光纤宽带光源[J].中国激光,2005,32(5):609-612.
    62.郭小东,乔学光,贾振安,王小凤.光纤光栅传感器用的高功率宽带光源[J].传感器技术,2005,24(1):75-80.
    63.郭小东,乔学光,贾振安,傅海威,周红,赵大壮,王小凤,刘颖刚.一种简单的高功率L波段超荧光光源[J].激光技术,2005,29(4):364-369.
    64.郭小东,乔学光,贾振安,傅海威,王小凤.新颖的高平坦度高功率掺铒光纤光源[J].光电子·激光,2005,16(1):14-16.
    65.郭小东,乔学光,贾振安,傅海威,周红,赵大壮,刘颖刚,王小凤.基于光纤环形镜的双级双程L波段高功率ASE光源[J].光电子·激光,2005,16(6):665-669.
    66.刘颖刚,乔学光,贾振安,冯德全.新颖的高功率L-波段掺铒光纤超荧光光源[J].光学技术,2006,32(5):653-655.
    67.王蓟,赵崇光,刘洋,王国政,王立军.L波段高掺铒光纤超荧光光源[J].发光学报,2006,27(6):1011-1014.
    68.强则煊,韩一石,张旭苹.新型三段高性能的长波段掺铒光纤超荧光光源的 研究[J].光子学报,2006,35(5):701-704.
    69.王秀琳.一种高效率的L波段掺铒光纤ASE宽带光源[J].光子学报,2006,35(3):428-230.
    70.杨和钱,贾振安,乔学光,刘颖刚,习聪玲.传感用高功率高稳定性掺铒光纤超荧光光源[J].光通信研究,2007,6:40-42.
    71.干秀琳,黄文财.新颖的双通道输出高功率掺铒光纤宽带光源[J].光子学报,2007,36(1):124-126.
    72.付博,陈淑芬.光纤陀螺SFS光源温度稳定性及驱动控制研究[J].光学技术,2007,33(5):785-790.
    73.李颖娟,刘延虎,黄皓,郭栓运,蒋萧村,薛烽,吉成辉.光纤陀螺用掺铒超荧光光纤光源输出特性研究[J].应用光学,2008,29(6):984-989.
    74.陈登鹏.长周期光纤光栅和掺铒光纤超荧光光源[D].中国科学技术大学博士论文,2001.
    75.蔡宗鉴.高功率长波段放大白发性辐射光纤光源之研究[D].台湾国立中山大学硕士学位论文,2002.
    76.谢馨莹.掺铒光纤光源平均波长稳定性之研究[D].台湾中原大学颂士学位论文,2002.
    77.肖瑞.掺铒光纤光源研究[D],国防科学技术大学硕士学位论文,2002.
    78.巨养峰.光纤超荧光光源和固体激光器件[D].中国科学院研究生院博士论文,2003.
    79.黄文财.C+L波段平坦的掺铒光纤宽带光源和光谱分割梳状多波长光源研究[D].中国科技大学博士学位论文,2003.
    80.王颖.可调谐掺铒光纤激光器及超荧光光纤光源的研究[D].天津大学硕士学位论文,2004.
    81.刘少辉,C+L波段宽带ASE光源研究[D]。吉林大学硕士学位论文,2006.
    82.孙良勇,宽带掺铒光纤超荧光光源的研究[D].天津大学硕士学位论文,2006.
    83.孙明皓.级联掺铒光纤超荧光光源特性研究[D].厦门大学硕士学位论文,2007.
    84.张莹.超荧光光源及其光谱分割的研究[D].吉林大学硕士学位论文,2008.
    85.郑本瑞.宽带掺铒光纤超荧光光源的特性研究[D].厦门大学硕士学位论文, 2008.
    86.J.S.Lee,Y.C.Chung,and D.J.Digiovanni.Spectrum-sliced fiber amplifier light source for multichannel WDM applications [J].IEEE Photon.Technol.Lett.,1993,5:1458-1461.
    87.C.D.Su,L.A.Wang.Multivvavelength fiber sources based on double-pass superfluorescent fiber sources [J].J.Lightwave Technol.,2000,18:708-714.
    88.P.F.Wysocki,M.J.F.Digonnet,B.Y.Kim.Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications [J].J.Lightwave Technol.,1994,12:550-567.
    89.M.E.Bray,R.T.Elliot,K.P.Jones.Comparison of erbium amplifier measurement using a high power amplified spontaneous emission source or using an ITU grid [C].OFC,2001,3:WI2-1.
    90.W.K.Burns,C.Chen and P.R.Moeller.Fiber-optic gyroscopes with broad-band sources [J].J.Lightwave Technol.,1983,LT-1:98-105.
    91.K.Takada,T.Kitagawa,W.Shimizu and M.Horiguchi.High-sensitivity low coherence reflectometer using erbium-doped superfluorescent fibre source and erbium-doped power amplifier [J].Electron.Lett.,1993,29:365-367.
    92.G.Sagnac."L'erther lumineux demontre par l'effet du vent relative d'dans un interferometer en rotation uniforme [J].Compte-rendus de 1' Academie des Sciences,1913,95:708-710.
    93.R.A.Bergh,H.C.Lefevre and H.J.Shaw.An overview of fiber-optic gyroscopes [J].IEEE J.Lightwave Technol.,1984,LT-2:91-107.
    94.V.Vali and R.W.Shorthill.Fiber ring interferometer [J].Appl.Opt.,1976,15:1099-1100.
    95.P.Myslinski,C.Barnard,X.Pan,Q.Wu,J.Chrostovvski.Applications of rear-doped fibres [J].IEEE,1993,290-294.
    96.P.F.Wysocki,M.J.F.Digonnet,B.Y.Kim,H.J.Shaw.Characteristics of erbium-doped superfluorescent fiber sources for interferometric sensor applications [J].J.Lightwave Technol.,1994,12:550-567.
    97.R.Zhu,Y.H.Zhang,Q.L.Bao.A novel intelligent strategy for improvine measurement precision of FOG [J].IEEE Transaction,2000,49:1183-1188.
    98.J.L.Wagener,M.J.F.Digonnet,H.J.Shavv.A high-stability fiber amplifier source for the fiber optic gyroscope [J].J.Lightwave Technol.,1997,15:1689-1694.
    99.B.L.Danielson and C.D.Whittenberg.Guided-wave reflectometry with micrometer resolution[J].Appl.Opt.,1987,26:2836-2842.
    100.W.V.Sorin and D.M.Baney.Measurement of Rayleigh backscattering at 1.55um with 32um statial resolution[J].IEEE Photon.Yechnol.Lett.,1992,4:374-376.
    101.K.Takada,H.Yamada and M.Horguchi.Loss distribution measurement of silicabased waveguides by using a jiggedness-free optical low coherence reflectometer[J].Electron.Lett.,1994,30:1441-1443.
    102.K.Takada,M.Yamada and S.Mitachi.Optical low coherence reflectometer with a 47-dB dynamic range achieved by using a Fluoride-based Erbium-doped fiber amplifier[J].J.Lightwave Technol.,1998,16:593-597.
    103.P.Y.Fonjallaz,H.G.Limberger,R.P.Salathe,C.Zimmer and H.H.Gilgen.Direct determination of main fiber Bragg grating parameters using OLCR[C].IEE Proc.Optoelectron.,1994,141-144.
    104.U.Wiedmann,P.Gallion,Y.Haouen and C.Chabran.Analysis of distributed feedback lasers using optical low-coherence reflectometry[J].J.Lightwave Technol.,1998,16:864-869.
    105.M.H.Reeve,A.R.Hunwicks,W.Zhao,S.G.Methley,L.Bickers,and S.Hornung.LED spectral slicing for single-mode local loop application[J].Electron.Lett.,1988,24:389-390.
    106.T.E.Chapruan,S.S.Wagner.R.C.Menendez,H.E.Tohme,and L.A.Wang.Broadband multichannel WDM transmission with superluminescent diodes and LEDs[C].Global Telecommunications Conference,1991,612-618.
    107.J.S.Lee,Y.C.Chung,and D.J.DiGiovanni.Spectrum-sliced fiber amplifier light source for multichannel WDM application[J].IEEE photon.Technol.Lett.,1993,5:1458-1461.
    108.J.H.Han,S.J.Kim,J.S.Lee.Transmission of 4×2.5-Gb/s spectrum-sliced incoherent light channels over 240kin of dispersion-shifted fiber with 200-GHz channel spacing[J].IEEE photon.Technol.Lett.,1999,11:901-903.
    109.J.H.Han,J.S.Lee,S.S.Lee,T.Y.Yun,H.K.Kim,C.H.Lee,S.Y.Shin.2.5Gb/s transmission of spectrum-sliced fiber amplifier light source channels over 200km of dispersion-shifted fibre[J].Electron.Lett.,1995,31:989-991.
    110.曹昌祺.超荧光的基本概念--多原子的合作自发辐射,1988.
    111.沈柯.关于超荧光[J].激光,1981,9:545-550.
    112.郭玉彬,霍佳雨.光纤激光器及其应用[M].北京:科学出版社,2008,21-26.
    113.H.Haken,M.C.Wolf.Atomic and Quantum Physics [M].Second edition,Springer-Verlag,New York,1987.
    114.K.Patek.Glass Lasers [M].CRC Press,Buter worth,London,1970.
    115.K.Liu,M.Digonnet,K.Fesler,B.Y.Kim,and H.J.Shaw.Broadband diode-pumped fiber laser [J].Electron.Lett.,1988,24:838-840.
    116.J.F.Massicott,R.Wyatt,and B.J.Ainslie.Low noise operation of Er~(3+) doped silica fiber amplifier around 1.6um wavelength region [J].Electron.Lett.,1992,28:1924-1925.
    117.D.C.Hanna and A.C.Tropper.Silica fiber laser oscillators,optical fiber laser and amplifier [M].Edited by P.W.FR,1990.
    118.D.C.Hanna,R.M.Percival,I.R.Perry,R.G.Smart,P.J.Cuni,and A.C.Tropper.An ytterbium-doped monomode fiber laser:Broadly tunable operation from 1.010-1.162um and three-level operation at 974 nm [J].J.Mod.Opt.,1990,37:517-525.
    119.W.J.Miniscalco.Erbium-doped glass for fiber amplifiers at 1550nm [J].J.Lightwave Technol,1991,9:234-250.
    120.E.Desurvire.Erbium-doped Fiber Amplifiers [M].John Wiley,New York,1994.
    121.C.B.Layne,W.H.Lowdermilk,and M.J.Weber.Multiphoton ralaxation of rare-earth ions on oxide glass [J].Phys.Rev.B,1977,16:10-12.
    122.R.S.Quimby,W.J.Miniscalco,B.A.Thompson.Up conversion and 980nm excited state absorption in erbium doped glass [C].Proc.SP1E,1992,1789:50-57.
    123.L.A.Riseberg and M.J.Weber.Relaxation phenomena in rare-earth luminescence [M].Progress in Optics,Vol.XIV,edited by E.Wolf,North-Holland,1976.
    124.P.F.Wysocki,R.F.Kalman,M.J.F.Digonnet,and B.Y.Kim.A comparison of 1.48 pm and 980 nm pumping for Er-doped superfluorescent fiber sources [C].Proc.SPIE,1991,1571:1581-04.
    125.P.F.Wysocki,J.L.Wagener,MJ.Digonnet,H.J.Shaw.Evidence and modeling of paired ions and other loss mechanisms in erbium-doped silica fibers [C].Proc.SPIE,1992,1789:66-79.
    126.J.L.Wagencr,P.F.Wysocki,M.J.F.Digonnet,and H.J.Shaw.Modeling of ion pairs in erbium-doped fiber amplifiers [J].Opt.Lett.,1994,19:347-349.
    127.E.Desurvire,Erbium-doped Fiber Amplifiers [M].John Wiley,New York,1994.
    128.E.Desurvire.Study of the complex atomic susceptibility of EDFA's [J].J.Lightwave Technol.,1990,8:1517-1527.
    129.OASIX v3.0:Lucent Technologies erbium doped fiber devices simulation software.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700