光伏发电系统并网逆变控制实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和日益严峻的环境污染已经深深困扰了人类前进的步伐,成为了最迫切需要解决的世界性问题。风能、太阳能、生物能等新型的清洁能源因其无可比拟的优势而逐渐受到各国的共同关注,太阳能发电被公认是一种最具有潜力的新型替代能源。可以预料,在不久的将来,太阳能很快将会在基础型能源供应中占有相当重要的地位。
     太阳能发电技术就是通过光电效应由光伏电池板将太阳光转换成为电能的技术,而太阳能光伏并网发电系统则是需要将太阳能转换成为符合大电网并入要求的交流电,然后接入大电网实现并网发电运行。目前太阳能光伏并网发电系统的关键技术主要包括太阳能电池板效率、最大功率追踪和并网逆变几个方面,而并网逆变技术则是整个系统的核心技术。由于目前国内研究比较热门的为两级式光伏并网发电系统结构,因此本文针对该结构类型系统的后级并网逆变部分进行了如下研究:
     首先,对当前国内外太阳能光伏发电的发展形势进行了论述,指出了我国研究光伏并网发电技术的意义和优势,介绍了光伏并网发电系统的类型和并网发电技术指标。建立了两级式光伏并网发电系统的并网逆变器在不同坐标系下的数学模型,然后对基于电网电压空间矢量定向的并网控制策略进行了详细的推导与分析,为后续的并网控制实验提供了理论依据。比较了几种电网电压定向的实现方法,并确定采用基于电网电压过零点检测的硬件定向方案。介绍了光伏并网发电系统最大功率输出的能量关系以及并网电流的指令获取。在对逆变器开关管的脉冲宽度调制上采用了SVPWM调制技术,给出了在DSP控制器上实现软件方法SVPWM调制的具体步骤。
     在实验系统的设计方面,搭建了两级式光伏并网发电系统的后级并网逆变的硬件实验平台。介绍了以TMS320F2812为控制器的硬件平台构成,包括对主功率模块、驱动电路、保护电路及过零点检测电路的设计原理分析。按照系统控制策略实现算法设计编写了软件程序系统的主程序、中断子程序以及各个功能子模块程序,为实验平台调试提供了硬件和软件支持。
     在所设计的系统实验平台上进行了软、硬件系统调试,完成了独立系统实验和部分并网实验,采集了实验波形。通过对实验结果的分析可以看到,本文所采用的控制策略及程序编写是正确的,硬件系统能够可靠运行,为后续的进一步实验奠定了坚实基础。
Energy crisis and the increasingly serious problem of environmental pollution have perplexed the pace of human progress, and have became the most serious and urgent global problem. The new kinds of clean energy such as wind energy, solar energy, bio-energy and so on are widely focused because of their incomparable advantages. Solar energy has been recognized as the most potential type of substituted energy, we may expect, in the near future, solar energy will hold an important position in the basic energy supplies.
     Solar energy generation technology is based on photoelectric effect, by the PV panels, sunlight is converted into electricity. Solar photovoltaic power generation system convert solar energy to AC electricity that meets the grid requirements, and access to the large grid realize grid-connected operation. Recently, the key techniques of solar photovoltaic power generation system mainly include several aspects:efficiency of solar panels, maximum power point tracking and the control of grid-connected inverter. Grid-connected inverter technology is the core of the whole system. Nowadays, popular research in our country is two-stage PV grid-connected power generation system. In this paper, grid-connected inverter of this structure system is researched as follows:
     Firstly, The development of current situation about solar photovoltaic power generation at home and abroad is discussed, The significance and advantage of China's photovoltaic power generation technology are pointed out, types of grid-connected PV systems and the grid-connected technology standard are introduced. Secondly, the mathematical model of grid-connected inverter of two-stage PV grid-connected power generation system in different coordinates is established. Control strategy of grid-connecting based on the grid voltage space vector is extracted and analyzed detailed, provided theoretical support for the following grid-connecting control experiments. Several grid voltage orientation methods are compared, and then the hardware method that is based on the grid voltage zero crossing detection is used. The maximum power output and the obtaining method of the reference current in grid-connected PV system are introduced. Finally, SVPWM modulation technology is used in pulse width modulation of the inverter, the concrete steps of software method of SVPWM modulation in the DSP controller is given.
     In the experimental design, hardware experimental platform of the grid-connected inverter system is built, the compositions of hardware platform based on TMS320F2812includes power module, driving circuit, protection circuit and zero-crossing detection circuit, and design principles are introduced. Main program, interrupt subroutine, various sub-module programs are prepared according to control strategy algorithm. Better hardware and software support are provided for the following experiments.
     In this paper, software and hardware system have debugged on the designed experimental platform. Completed the independent experiments and some grid-connecting experiments, collected the waveforms of experiments. Through analysis the experimental results we can see, control strategies and procedures that used in the paper are right, hardware system can work reliably, these laid a foundation for the further experiments.
引文
[1]赵朝会.光伏发电技术的研究现状和应用前景[J].上海电机学院学报,2008,11(2):104-108.
    [2]孔慧,熊胜虎.全球光伏产业发展现状及发展趋势分析[J].太阳能,2009,6(12):10-13.
    [3]王长贵.中国太阳光伏发电发展现状与未来展望[J].1994-2012中国学术期刊电子出版社,2004(8):72-75.
    [4]查晓明,刘飞.光伏发电系统并网控制技术现状与发展(上)[J].变频器世界,2010,(2):37-41.
    [5]杜秀丽,黄琦,张昌华.基于微电网的并网逆变技术研究综述[J].浙江电力,2009,(4):17-21.
    [6]李潇潇,赵争鸣,田春宁.不可调度式光伏并网逆变系统综述[J].电气技术,2012,(1):1-5.
    [7]王继东,张小静,杜旭浩.光伏发电与风力发电的并网技术标准[J].电力自动化设备,2011,31(11):1-7.
    [8]王兆安,黄俊.电力电子技术(第4版)[M].北京:机械工业出版社,2003.
    [9]舒杰,傅诚,陈德明.高频并网光伏逆变器的主电路拓扑技术[J].电力电子技术,2008,42(7):79-81.
    [10]Shi-cheng Zheng, Pci-zhcn Wang, Lu-sheng Ge. Study on PWM Control Strategy of Photovoltaic Grid-connected Generation System[C]. Power Electronics and Motion Control Conference,2006, (3):14-16.
    [11]陈伯时.电力拖动自动控制系统[M].北京:机械工业出版社,2003.
    [12]唐亮.三相并网逆变器LCL滤波特性分析及控制研究[D].秦皇岛:燕山大学,2010.
    [13]沈欢庆.风力发电网侧逆变器控制系统的研究[D].上海:上海大学,2009.
    [14]窦伟,徐正国,彭燕昌等.三相光伏并网逆变器电流控制器研究与设计[J].电力电子技术,2007,41(1):85-86.
    [15]王要强,周杨.基于电网电压矢量定向的三相并网逆变系统设计[J].变频器世界,2011,(4):52-55.
    [16]赵振波,李和明.单位功率因数PWM整流器双闭环PI调节器设计[J].电工技术杂志,2003(5):68-71.
    [17]任晓鹏,焦翠坪,张喜军.基于DSP的电流无差控制光伏并网逆变器设计[J].电力电子技术,2009,43(11):26-27.
    [18]张皓,续明进,杨梅编著.高压大功率交流变频调速技术[M].北京:机械工业出版社,2006.
    [19]陈瑶.直驱型风力发电系统全功率并网变流技术的研究[D].北京:北京交通大学,2008.
    [20]Hilmy Awad, Jan Svensson, M J Bollen. Tuning software phase-locked loop for series-connecter converters [J]. IEEE Trans. on Power Electronics,2005,20(1):300-308.
    [21]Xi Wei, Yin Bo, Zhao Ziyan, etc. Sliding mode control of active power filters in three-phase four-wire system[J]. Power System Technology,2004,28(5):18-21.
    [22]Shieh J J, Pan CT, Cuey ZJ. Modeling and design of a reversible three phase switching mode rectifier [J]. IEE Electric Power Applications Proceedings,1997,144(6):89-396.
    [23]Shimizu T, Hirakata M, Kamezawa. Generation control circuit for photovoltaic modules. IEEE Tran. on Power Electronics,2001,16(3):293-300.
    [24]朱晓亮.基于电网电压定向三相并网逆变器的研究[D].南京:南京航空航天大学,2010.
    [25]梁双全.双馈发电励磁系统网侧变换器控制实验研究[D].太原:太原理工大学,2011.
    [26]冯轲.三相光伏逆变器及其孤岛检测方法研究[D].北京:北京交通大学,2009.
    [27]吕方,江燕兴,刘莉敏.太阳能发电[M].北京:化学工业出版社,2009.
    [28]刘凤君.现代逆变技术及应用[M].北京:电子工业出版社,2006.
    [29]苏奎峰,蔡昭权,吕强等.TMS320X281xDSP应用系统设计[M].北京:北京航空航天大学出版社,2008.
    [30]杨贵杰,孙力,崔乃政.空间矢量脉宽调制方法的研究[J].中国电机工程学报,2001,21(5):79-83.
    [31]苏奎峰,吕强,常天庆等.TMS320X281xDSP原理及C程序开发[M].北京:北京航空航天大学出版社,2008.
    [32]罗隆.IPM智能模块在PWM整流器系统中的应用[J].大众科技,2008,(5):145-146.
    [33]康怡,杨鲁发.IPM在光伏并网逆变器中的应用[J].现代电子技术,2009,(20):209-211.
    [34]徐长军,张宏权.IPM智能功率模块的设计与分析[J].世界电子元器件,2008,(9):82-84.
    [35]邢雪菲.基于DSP的有源滤波装置谐波检测及其控制策略的研究[D].太原:太原理工大学,2011.
    [36]曹天明.变速恒频双馈发电机励磁控制器实验研究[D].太原:太原理工大学,2010.
    [37]曹才开.开关电源保护电路的研究[J].电源世界,2005,(11):36-39.
    [38]董密,罗安.光伏并网发电系统中逆变器的设计与控制方法[J].电力系统自动化,2006,30(20):97-102.
    [39]孙德刚,孙光.光耦线性化与线性光耦器件的应用[J].现代电子技术,2007,(1):28-30.
    [40]W C Lee, D S Hyun, T K Lee. A novel control method for three-phase PWM rectifiers using a single current sensor[J]. IEEE Tran. On Power Electronics,2000,15(9):861-870.
    [41]童诗白,华成英.模拟电子技术基础[M].北京:高等教育出版社,2001.
    [42]尹勇,欧光军,关荣锋.DSP集成开发环境CCS开发指南[M].北京:北京航空航天大学出版社,2007.
    [43]Texas Instruments, TMS320C28x Optimizing C/C++ Compiler User's Guide, October 2005.
    [44]顾卫钢.手把手教你学DSP-基于TMS320X281X[M].北京:北京航空航天大学出版社,2011.
    [451王潞钢,陈林康,曾岳南.DSP C2000程序员高手进阶[M].北京:机械工业出版社,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700