固体碱催化剂上丙酮气相缩合制异佛尔酮反应性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用不同方法制备了多种固体碱催化剂体系,包括采用柠檬酸法、共沉淀方法制备了具有不同镁铝比复合氧化物,采用浸渍法制备了氧化镁、氧化钙等负载型催化剂;详细考察了各种催化剂上丙酮气固相自缩合制异佛尔酮的反应性能,同时结合多种测试手段对催化剂的结构及表面性质(碱性)进行了表征,并与催化剂反应性能进行了关联;另外,还对催化剂的活性中心性质及活化机制等问题进行了探讨。
     以柠檬酸为有机添加剂,采用溶胶凝胶路线合成了具有不同Mg/Al比的镁铝氧化物催化剂,并考察了催化剂上丙酮气相缩合制备异佛尔酮的反应性能。催化剂的表征结果表明柠檬酸在合成过程中对得到具有一定孔性的镁铝氧化物催化剂体系起到了关键的作用;催化性能研究结果表明Mg1.0AlO-CA催化剂具有相对较好的反应活性,碱金属离子的修饰能够改善Mg1.0AlO-CA催化剂的反应性能,主要原因可能是由于引入一定量的碱金属离子能对催化剂表面的碱中心性质产生影响。
     采用共沉淀法以不同滴加方式制备了一系列镁铝复合氧化物催化剂,镁铝比及滴加方式对催化剂的反应性能影响较大,其中以反滴方式制备的Mg1.0AlO-2催化剂具有相对较好的反应活性及稳定性,结合催化剂的结构与表面性质(碱性)表征结果可以推断催化剂的表面具有一定量的密度匹配的弱碱和强碱中心是丙酮缩合制异佛尔酮的反应活性中心,强碱中心密度相对较高更有利于提高催化剂的稳定性。
     分别以氧化铝、活性炭为载体采用浸渍法制备了氧化镁、氧化钙等负载型催化剂,活性组分的负载量、载体类型对催化反应性能有较大影响。当以活性炭(如杏壳炭)为载体时,负载量为10 wt%的MgO及12 wt%的CaO催化剂具有相对较好的反应性能,可能是由于炭载体表面存在一定数量的官能团与MgO及CaO之间的相互作用,能够对MgO及CaO的高分散起到了关键作用。
Isophorone,the first generation of derivative of acetone chemistry, is a high boiling point solvent and fine chemical intermediate, and is widely used in medicine, pesticide, paint and other industries. There are two ways to prepare isophorone by the aldol self-condensation of acetone: one is liquid-phase condensation in alkaline solution at a certain pressure, and the other is gas-phase aldol condensation on solid catalysts. The former way is used in foreign industrial process, and has advantages of simple catalyst systems and higher selectivity to isophorone, etc., However, there are still some problems: the reaction is performed under pressure and difficult to control operation, alkaline solution (such as potassium hydroxide solution) is prone to corrose the equipment and difficult to separate and recover. While, gas-phase aldol condensation of acetone could solve the above problem, and has some advantages, such as easy operation, environmental friendly, etc., it is considered a ideal way to product isophorone. Some solid basic catalysts have been reported for the aldol condensation of acetone, including alkaline oxides, (VO)2P2O7, CsOH/SiO2, Mg-Al oxides, etc., but the reaction activity and stability of these catalysts is low, this is a problem which need to be resolved further.
     In this work, various solid base catalyst systems are prepared in diffenent methods, including Mg/Al mixed oxides with different Mg/Al ratios prepared using a citric acid route, co-precipitation methods and supported catalysts prepared by traditional impregnation method, and the catalytic performances of obve catalysts has been investigated in the aldol condensation of acetone. The relationship between the structure, surface texture (base property) and the catalytic performance of catalysts was studied by combining different characterization means of XRD, CO2-TPD, FTIR, etc. The nature of active sites of the catalysts and the reaction mechanism were also discussed. The main experimental results and conclusions are as follows:
     1. The catalytic performances of aldol condensation of acetone over the catalysts of Mg-Al mixed oxides prepared in a citric acid route
     Adding small organic molecules during the synthesis process is useful to improve the structure and surface properties of materials and enhance catalytic activity and stability. Here, Mg-Al mixed oxides (denoted as MgxAlO-CA hereafter) with various Mg/Al molar ratios, were prepared by a sol-gel route in the presence of citric acid. The characterization results of XRD show that the change of Mg/Al ratio could affect the structure of catalysts, when Mg/Al ratio is less than 1.0, the sample has MgAl2O4 structure, when Mg/Al ratio is greater than or equal to 1.0, an additional MgO phase appears and the diffraction intensity of MgO gradually increase with the increase of Mg content. The characterization results of N2 adsorption-desorption show that Mg-Al oxides exhibit the higher surface area and have a significant amount of interparticle mesoporosity. We consider that the coordination between Mg2+, Al3+ and citric acid plays a key role to obtain porosity Mg-Al oxides with cetain porosity. The characterization result of CO2-TPD show that Mg/Al ratio has a large effect on the base property of Mg-Al mixed oxides. The reaction results of aldol condensation of acetone shows that Mg/Al ratio has a certain effect on the of catalysts. Among the catalysts, Mg1.0AlO-CA sample has relatively higher reactivity (78%) and selectivity of isophorone (61%). Additionally, the promotion of alkali ion improves the catalytic activity of Mg1.0AlO-CA, the main reason is that the addition of certain amount of alkali ion has effect on the texture of base sites.
     2. The catalytic performances of aldol condensation of acetone over the catalysts of Mg-Al mixed oxides prepared in co-precipitation methods
     Series of binary metal oxide catalysts prepared by co-precipitation method were investigated the catalytic performances of the aldol condensation of acetone, the reaction results show that Mg1.0AlO catalyst has relatively high catalytic performance. Mg-Al mixed oxides (denoted as MgxAlO-1, MgxAlO-2) with various Mg/Al molar ratios, were prepared by co-precipitation method in different dropping manners. The characterization results of XRD show that the change of Mg/Al ratio and dropping manner could affect the crystalline phase of catalysts, and MgO phase and MgAl2O4 spinel phase appear and the diffraction intensity of MgO gradually increase with the increase of Mg content, the diffraction intensity of MgO phase and MgAl2O4 spinel phase is relatively higher for MgxAlO-2 samples prepared by back-titration method. The results of aldol condensation of acetone show that Mg/Al ratio and dropping manner have a certain effect on the catalytic performance of catalysts. Among them, Mg1.0AlO-2 catalyst prepared by back-titration has relatively higher reactivity (87%) and stability (the reaction activity is still 65% after reaction for 85 h). The characterization result of TG-DTA show that carbon deposition form easily on the surface of Mg1.0AlO-1 sample and lead to the fast decline of the reactivity. The characterization results of CO2-TPD show that the Mg1.0AlO-1 and Mg1.0AlO-2 sample have a certain amount of weak base and strong base sites, and the density of strong base sites on the surface of Mg1.0AlO-2 is relatively higher. Combining with the reaction results, it may be inferred that the co-existence of a certain amount of weak basic centers and strong basic centers on the surface of Mg-Al oxides may play an important role for improving the activity and stability of these catalysts.
     3. The catalytic performances of gas-phase aldol condensation of acetone over supported solid base catalysts
     Solid base supported catalysts were prepared by the traditional impregnation and were tested the catalytic properties of aldol condensation of acetone. When the carrier is activated carbon (from almond nutshells), the characterization results of XRD show that MgO, CaO characteristic diffraction peaks appears respectively when MgO loading is higher than 15 wt% and CaO loading is more than 10 wt%. The reaction results show that 12 wt%CaO catalyst has relatively higher reactivity and selectivity to isophorone, it is because of that a certain amount of basic centers and appropriate intensity of basic sites on the catalysts surface are favor to improve the catalytic performance of aldol condensation of acetone. For 10 wt%MgO supported samples, the type of carrier has a large effect on the reactivity, when Al2O3 was used as the carrier, the catalytic performance of 10 wt%MgO/Al2O3 is relatively higher. Additionally, the loading of MgO has a certain effect on the reactivity, when the loading of MgO is less than 15 wt%, the catalytic performance of samples has a little change, when the loading of MgO is higher than 15 wt%, the catalytic properties declines sharply, it is because of that the MgO crystal on the surface of Al2O3 is larger and the intensity of basic centers is relatively higher.
引文
[1].王玉环,王国甲,肖军华,马骏.丙酮在固体碱催化剂上的缩合反应[J].高等学校化学学报, 1993, 10: 1448-1450
    [2].戚蕴石.丙酮化学发展的发展现状[J].石油化工, 1986,15(7) : 439-452
    [3].吴沫.以丙酮为原料的醛醇缩合衍生物[J].精细石油化工, 1990, 1: 23-31
    [4].张育川.异佛尔酮(3,5,5-三甲基-2-环己烯-1-酮)[J].精细与专用化学品, 2000, 7: 22-23
    [5].李平.异佛尔酮的合成及应用[J].四川化工与腐蚀控制, 1999, 1(2) : 54-55
    [6].崔小明.异佛尔酮开发前景广阔[J].化工生产与技术, 1999, 2: 42
    [7].鲁荆林.异佛尔酮的合成与应用[J].吉化科技, 1997, 5(3): 10-13
    [8].毛丽秋,李谦和,尹笃林.丙酮液相一步法合成异佛尔酮[J].湖南师范大学自然化学学报, 2000, 23(3) : 67-71
    [9].党明岩,左继成.镁铝复合氧化物催化剂气相法合成异佛尔酮[J].辽宁化工, 2002, 31(9) : 373-375
    [10].鲁荆林.丙酮在镁-铝催化剂上的缩合反应历程及动力学特征[J].石化技术与应用, 2002, 20(1) : 15-18
    [11].叶启亮,周文勇,孙浩,房鼎业.异佛尔酮及氧化异佛尔酮合成工艺的研究进展[J].化工进展, 2002, 21(10) : 718-722
    [12].杜冰,佟伯峰,姜冬梅,鲁荆林.镁-铝醇醛催化剂上丙酮缩合反应的研究[J].齐鲁石油化工, 2003, 31(4) : 283-285
    [13].吕咏梅.异佛尔酮合成技术进展与应用开发[J].化学推进剂与高分子材料,2004, 2(4) : 20-22
    [14].丛享滋,李玉琴.我国异氰酸酯工业四十年[J].聚氨酯工业, 1994, (4): 6-10
    [15].刘益军,李绍维.聚氨酯胶粘剂讲座[J].聚氨酯工业, 1994, (3) : 46-50
    [16].刘如华.聚氨酯涂料及其应用[J].聚氨酯工业, 1996, (2) : 3-6
    [17].刘凯.聚氨酯材料在油墨工业中的应用[J].聚氨酯工业, 1994, (2): 3-7
    [18].奚若明.中国化工医药产品大全[M].科学出版社, 1990, 2: 11-12
    [19].徐静莉,石秀敏,王树江,贺岩峰.固体碱催化丙酮Aldol缩合反应[J].吉林工学院学报, 2001, 22(3) : 29-31
    [20].陈冠荣.化工百科全书[M].化学工业出版社, 1994, 421
    [21]. H.G,弗兰克.工业芳烃化学[M].中国石化出版社, 1994, 114
    [22].黄洪周.世界精细化工产品技术经济手册[M].化学工业部科学技术情报研究所, 1988, 923-924
    [23].徐克勋.精细有机化工原料及中间体[M].北京化学工业出版社, 1998
    [24].黄洪周.世界精细化工手册(续编)[M].化学工业部科学技术情报研究所, 1986
    [25].日本,8683の化学商品[M].化学工业日报社, 1983
    [26].中国化工时刊[M]. 1996, (8) : 22
    [27]. YOSHIDA, Yukio. [P]. JP 08245485, 1995
    [28]. YOSHIDA, Yukio. [P]. JP 08245486, 1995
    [29]. FUKADA I, MATSUBA K. [P]. JP 09169687, 1997
    [30]. FUKADA I, MATSUBA K. [P]. JP 09169688, 1997
    [31].王奎敏,李文祯,黄建元.异佛尔酮工业生产的模拟试验[J].化学世界1996, (9) : 473-476
    [32]. MEISTER LUCIUS AND BRUNING. Verfahren zur darstellung von isophorone. [P]. DE 134,982, 1902
    [33]. BALLARD S.A., HAURY C.E.. Production of isophorone and related products, [P]. US 2,399,976, 1944
    [34]. BALLARD S.A., HAURY V.E.. Production of isophorone. [P]. US 2,344,226, 1946
    [35]. FIFE J.G.. Production of isophorone and homo-isophorones. [P]. GB 583,863, 1947
    [36]. SOCIETE INDUSTRIELLE DES DERIVES DELACETYLENE. Isophorone and its homologues. [P]. GB 733,650, 1955
    [37]. SCHMITT K.. [J]. Chem. Ind., 1966, 18(4): 204
    [38]. KOHAN G., PALMER I., GRACINO N.. Autocondensation of acetone. [P]. GB 1,133,510, (1968)
    [39].黄操胜,王洪瑞,蔡东航,位民等.不饱和酮-异佛尔酮的制备[J].精细化工, 1989, 6(5): 42-43
    [40]. TEISSIER R., KERVENNAL J.. Process for obtaining isophorone [P]. US 5,849,957, (1998)
    [41].里米·泰瑟,雅克斯·克文纳尔。制备异佛尔酮(3,5,5-三甲基-2-环己烯-1-酮)的方法,[P]. China,CN 1065232C, (2001)
    [42]. MASCOLO G., MARINO O.. A new synthesis and characterization of magnesium-aluminum hydroxides [J]. Mineral. Mag., 1980, 43(329): 619-621
    [43]. VAUGHN T. H.. [P] US 2,183,127, 1938
    [44]. PAPA, ANTHONR, et al. Catalyst and it’s use for the preparation of isophorone and mesityl oxide from acetone. [P]. EP 146,927, 1985
    [45]. ISAO F., KATSUHIKO M.. Preparation of dehydrated condensates of acetone with zeolite catalysts. [P]. JP 9,059,204, 1997
    [46]. ISAO F., KATSUHIKO M.. Preparation of dehydratation-condensation products of acetone using cation-exchanged zeolites. [P]. JP 9,151,152, 1997
    [47]. ISAO F., KATSUHIKO M.. Preparation of dehydratation-condensation products of acetone using silylated cation-exchanged zeolites. [P]. JP 9,151,153, 1997
    [48]. ISAO F., KATSUHIKO M.. Preparation of isophorone. [P]. JP 9,157,207, 1997
    [49]. ISAO F., KATSUHIKO M.. Preparation of isophorone from acetone in the presence of magnesia containing alkali metals. [P]. JP 9,169,587, 1997
    [50]. ISAO F., KATSUHIKO M.. Preparation of isophorone from recovered acetone using magnesium oxide containing alkali metals. [P]. JP 9,169,688, 1997
    [51]. KOMATSU T., MITSUHASHI M., YASHIMA T.. Aldol condensation catalyzed by acidic zeolites [J]. Stud. Surf. Sci. Catal., 2002, 142: 667-674
    [52]. STEVENS M. G.,DENISE C. AND HENRY C. F.. Oxidized caesium nanoporous carbon materials: solid-base catalysts with highly-dispersed active sites [J]. Chem. Commun., 1999, 275-276
    [53]. BEJ S. K.,THOMPSON L. T.. Acetone condensation over molybdenum nitride and carbide catalysts [J]. Appl. Catal. A: General, 2004, 264: 141-150
    [54]. TANNER R., GILL P.,WELLS R.,et al.. Aldol condensation reactions of acetone and formaldehyde over vanadium phosphate catalysts: Comments on the acid-base properties [J]. Phys. Chem. Chem. Phys., 2002, 4: 688-695
    [55]. THOMAS L., TANNER R., GILL P., HUTCHINGS G., et al. Aldol condensation reactions of acetone over alkali-modified vanadium phosphate catalysts [J]. Phys. Chem. Chem. Phys., 2002, 4: 4555-4560
    [56]. DI COSIMO J. I., DíEZ V. K., APESTEGUíA C. R.. base catalysis for the synthesis ofα,β-unsaturated ketones from the vapor-phase aldol condensation of acetone [J]. Appl. Catal. A: General, 1996, 137: 149-166
    [57]. Di Cosimo J. I., Apesteguía C. R.. Study of the catalyst deactivation in the base-catalyzed oligomerization of acetone [J]. J Mol. Catal. A:Chemical, 1998, 130: 177-185
    [58]. REICHLE W.T., Catalyst for aldol condensation. [P].US 4,086,188, 1978
    [59]. Reichle W. T., Pulse microreactor examination of the vaporphase aldol condensation of acetone [J]. J. Catal., 1980, 63: 295-306
    [60]. REICHLE W.T., Catalyzed aldol condensation. [P]. US 4,476,324, 1984
    [61]. REICHLE W.T., Catalysts for aldol condensation. [P]. US 4,458,026, 1984
    [62]. SCHUTZ A.A.. Basic mixed oxide. [P]. US 4,970,191, 1990
    [63]. SCHUTZ A.A.. Process for aldol condensation. [P]. US 5,055,620, 1991
    [64]. SCHUTZ A.A., CULLO L.A.. Process for making efficient anionic clay catalyst, catalysts made thereby, and method of making isophorone. [P]. US 5,153,156, (1992)
    [65]. SCHUTZ A.A., CULLO L.A.. Method of making isophorone. [P]. US 5,202,496, 1993
    [66]. ISHINO M., FUKAO M., SASAKI K., SUZUKAMO G., et al.. Aldol condensation dehydration catalyst, a process for preparing the same and a process for preparing an aldol condensation dehydrate using the process. [P]. US 5,243,081, 1993
    [67]. GREBINOSKI M.C., GLASSMAN D., ELIAS C.L., SCHUTZ A.A.. Isophorone Poreess. [P]. US 5,352,839, 1994
    [68]. FUKAO M., SASAKI K., SUZUKAMO G., ISHINO M., et al.. Aldol condensation dehydration and catalyst therefore. [P]. EP 597,693, 1994
    [69]. UEDA H., TAKAMOTO T., OKADA K., Process of aldol condensation bygas-phase reaction. [P]. US 5,334,770, 1994
    [70]. BRAITHWAITE J., COLAKYAN M.. Preparation of isophorone using a magnesium-aluminum mixed oxide catalyst. [P]. EP 640,387, 1995
    [71]. BRAITHWAITE J., COLAKYAN M.. Preparation of isophorone, [P]. EP 5,627,303, 1997
    [72]. KELKAR C.P., SCHUTZ A.A.. Ni-, Mg- and Co-containing hydrotalcite-like materials with a sheet-like morphology: synthesis and characterization [J]. Micro. Mater., 1997, 10: 163-172
    [73]. KELKAR C.P., SCHUTZ A.A.. Effcient hydrotalcite-based catalyst for acetone condensation toα-isophorone-scale up aspects and process development [J]. Appl. Clay Sci., 1998, 13: 417-432
    [74]. RAMANAMURTY K.V., SALVAPATI G.S.. Catalytic cyclocondensation of acetone to isophorone [J]. Indian J. Chem. Sect B-Org., 1999, 38 (1) : 24-28
    [75]. WANG F. Z., YANG K., CHAI Y. M., GAO P. C. Acetone gas phase condensation on Mg-Al composite oxides catalysts prepared via Mg-Al hydrotalcites precursor [J]. Chinese J. Inorg. Chem., 2008, 24(9): 1417-1423
    [76].刘艳侠,孙鲲鹏,徐贤伦.阳离子掺杂水滑石的制备及其在合成异佛尔酮制备中的应用[J].分子催化, 2008, 22(3) : 205-208
    [77]. DI COSIMO J. I., DíEZ V. K., APESTEGUíA C. R.. Synthesis ofα,β-unsaturated ketones over thermally activated Mg-Al hydrotalcite [J]. Appl. Clay Sci., 1998, 13: 433-449
    [78]. BAILEY W. A.. [P]. US 2,373,510. 1941
    [79]. IPATIEFF V. N.. [P]. US 2,419,142. 1944
    [80]. CANNING A.S., JACKSON S.D., MCLEOD E., et al. Aldol condensation of acetone over CsOH/SiO2: A mechanistic insight using isotopic labelling [J]. Appl. Catal. A, 2005, 289: 59-65
    [81]. LIPPERT S., BAUMANN W., THOMKE K.. Secondary reactions of the base-catalyzed aldol condensation of acetone [J]. J. Mol. Catal., 1991, 69: 199-214
    [82]. REICHLE W. T.. Pulse microreactor examination of the vapor-phase aldol condensation of acetone [J]. J. Catal., 1980, 63: 295-306
    [83]. SALVAPATI G. S., RAMANAMURTY K. V., JANARDARANO M.. Selective catalytic self -condensation of acetone [J]. J. Mol. Catal., 1989, 54: 9-30
    [84]. VELOSO C. O., MONTEIRO J. L. F., SOUZA-AGUIAR E. F.. Aldolcondensation of acetone over alkali cation exchanged zeolites [J]. Stud. Surf. Sci. Catal., 1994, 84: 1913-1920
    [85]. PAULIS M., MARTN M., SORIA D. B., et al.. Preparation and characterization of niobium oxide for the catalytic aldol condensation of acetone [J]. Appl. Catal. A: General, 1999, 180: 411-420
    [86]. DíEZ V.K., APESTEGUíA C.R., DI COSIMO J.I.. Effect of the acid-base properties of Mg-Al mixed oxides on the catalyst deactivation during aldol condensation reactions [J]. Lat. Am. Appl. Res., 2003, 33: 79-86
    [87]. ZAMORA M., LOPEZ T., MELENDREZ R., et al.. Oligomerization of acetone over titania-doped catalysts (Li, Na, K and Cs): Effect of the alkaline metal in activity and selectivity [J]. Catal. Today, 2005, 107~108: 289-293
    [88]. ZAMORA M., LóPEZ T., GMEZ R., et al.. Acetone gas phase condensation on alkaline metals doped TiO2 sol-gel catalysts [J]. Appli. Surf. Sci., 2005, 252: 828-832
    [89]. TANABE K.. Catalysis by Acid and Bases [J]. Elsevier Amsterdam, 1985
    [90].田部浩三.新固体酸和碱及其催化作用[M]. 1992
    [91]. HATTORI. H. Heterogeneous Basic Catalysis [J]. Chem. Rev., 1995, 95: 537-558
    [92].陈忠明,陶克毅.固体碱催化剂的研究进展[J].化工进展, 1994, 2: 18-25
    [93].魏彤,王谋华,魏伟,孙予罕,钟炳.固体碱催化剂[J].化学通报, 2002, 9: 594-600
    [94]. LIN X. G., CHUAH K., JAENICKE S.. Base-functionalized MCM-41 as catalysts for the synthesis of monoglycerides [J]. J. Mol. Catal. A : Chem., 1999, 150: 287-294
    [95]. COLLUCCIA S., BOCCUZZI F., GHIOTTI G., et al.. [J]. Faraday Trans., 1982, 78(1): 2111-2119
    [96]. TANABE K., MISONO M., ONE Y., et al. Studies in the Surface Science and Catalysis (Vod. 51) [M]. Amsterdam: Elsevier, 1989: 27-30
    [97].赵雷洪,郑小明,费金华.稀土氧化物固体碱催化机的表面性质Ⅰ:稀土氧化物表面活性中心的表征[J].催化学报, 1996, 17(3): 227-231
    [98]. TANABE K., HOLDERICH W. F.. Industrial application of solid acid-base catalysts [J]. Appl. Catal. A: General, 1999, 181: 399-434
    [99]. FU Y., BABA T., ONO Y.. Vapor-phase reactions of catechol with dimethylcarbonate. PartⅡ. Selective synthesis of guaiacol over alumina loaded with alkali hydroxide [J]. Appl. Catal. A: General, 1998, 166: 425-430
    [100]. ZHU J. H., WANG Y., CHUN Y., et al.. Dispersion of potassium nitrate and the resulting basicity on alumina and zeolite NaY [J]. Faraday Trans, 1998, 94: 1163-1169
    [101]. HANDA H., BABA T., ONO Y., [J]. J. day Trans. 1998, 94: 451-454
    [102]. BORDAWEJAR S. V., DOSJOCIL E. J., DAVIS R. J.. Microcalorimetric Study of CO2 and NH3 Adsorption on Rb- and Sr- Modified Catalyst Supports [J]. Langmuir, 1998, 14: 1734-1738
    [103].赵增国.氧化异佛尔酮的合成研究[J].精细化工, 1998, 15(4): 42-45
    [104].舒学军,朱百鸣,宋才生.相转移催化合成香料烟酮及中间体异佛尔酮[J].化学通报, 2002, 8: 560-562
    [1]. LIPPERT S., BAUMANN W., THOMKE K.. J. Mol. Catal. [J], 1991, 69: 199-214
    [1].王玉环,王国甲,肖军华,马骏.丙酮在固体碱催化剂上的缩合反应.高等学校化学学报, [J]. 1993, 10: 1448-1450
    [2].党明岩,左继成.镁铝复合氧化物催化剂气相法合成异佛尔酮.辽宁化工, [J]. 2002, 31(9): 373-375
    [3]. FUKAO M., SASAKI K., SUZUKAMO G., et al.. Magnesium oxide-based aldol condensation dehydration catalyst [P]. EP: 0597693, 1994-05-18
    [4]. REICHLE W. T.. Pulse microreactor examination of the vaporphase aldol condensation of acetone [J]. J. Catal., 1980, 63: 295-306
    [5]. TANABE K., ZHANG G., HATTRI H.. Addition of metal cations to magnesium oxide catalyst for the aldol condensation of acetone [J]. Appl. Catal. 1989, 48: 63-69
    [6]. DI COSIMO J. I., DíEZ V. K., APESTEGUíA C. R.. Base catalysis for the synthesis ofα,β-unsaturated ketones from the vapor-phase aldol condensation of acetone [J]. Appl. Catal. A: General, 1996, 137: 149-166
    [7]. DI COSIMO J. I., APESTEGUíA C. R.. Study of the catalyst deactivation in the base-catalyzed oligomerization of acetone [J]. J Mol. Catal. A:Chemical, 1998, 130: 177-185
    [8]. DI COSIMO J. I., DíEZ V. K., APESTEGUíA C. R.. Synthesis ofα,β-unsaturated ketones over thermally activated Mg-Al hydrotalcite [J]. Appl. Clay Sci., 1998, 13: 433-449
    [9]. BEJ S. K.,THOMPSON L. T.. Acetone condensation over molybdenum nitride and carbide catalysts [J]. Appl. Catal. A: General, 2004, 264: 141-150
    [10]. KELKAR C.P., SCHUTZ A.A.. Effcient hydrotalcite-based catalyst for acetone condensation toα-isophorone-scale up aspects and process development [J]. Appl. Clay Sci., 1998, 13: 417-432
    [11]. STEVENS M. G.,DENISE C. AND HENRY C. F.. Oxidized caesium nanoporous carbon materials: solid-base catalysts with highly-dispersed active sites [J]. Chem. Commun., 1999,275-276
    [12]. TANNER R., GILL P.,WELLS R.,et al.. Aldol condensation reactions of acetone and formaldehyde over vanadium phosphate catalysts: Comments on the acid-base properties [J]. Phys. Chem. Chem. Phys., 2002, 4: 688-695
    [13]. THOMAS L., TANNER R., GILL P., HUTCHINGS G., et al. Aldol condensation reactions of acetone over alkali-modified vanadium phosphate catalysts [J]. Phys. Chem. Chem. Phys., 2002, 4: 4555-4560
    [14].刘艳侠,孙鲲鹏,徐贤伦.阳离子掺杂水滑石的制备及其在合成异佛尔酮制备中的应用[J].分子催化, 2008, 22(3) : 205-208
    [15]. WANG F. Z., YANG K., CHAI Y. M., GAO P. C. Acetone gas phase condensation on Mg-Al composite oxides catalysts prepared via Mg-Al hydrotalcites precursor [J]. Chinese J. Inorg. Chem., 2008, 24(9): 1417-1423
    [16]. CANNING A.S., JACKSON S.D., MCLEOD E., et al. Aldol condensation of acetone over CsOH/SiO2: A mechanistic insight using isotopic labelling [J]. Appl. Catal. A, 2005, 289: 59-65
    [17]. DíEZ V.K., APESTEGUíA C.R., DI COSIMO J.I.. Effect of the acid-base properties of Mg-Al mixed oxides on the catalyst deactivation during aldol condensation reactions [J]. Lat. Am. Appl. Res., 2003, 33: 79-86
    [18]. LIU, Q., WANG, A., WANG, X., ZHANG, T. Mesoporousγ-alumina synthesized by hydro-carboxylic acid as structure-directing agent [J]. Microporous Mesoporous Mater., 2006, 92: 10-21
    [19].张志刚,袁媛,刘昌胜.溶胶-凝胶法制备纳米氧化镁[J].硅酸盐学报, 2005, 33(8): 968-974
    [20]. GANG LIU, MINGJUN JIA, ZHOU ZHOU, WENXIANG ZHANG, TONGHAO WU AND DAZHEN JIANG. Synthesis of amorphous mesoporous aluminophosphate materials with high thermal stability using a citric acid route [J]. Chem. Commun., 2004, 1660–1661
    [21]. GANG LIU, ZHENLU WANG, MINGJUN JIA, XIUJING ZOU, XIAOMEI ZHU, WENXIANG ZHANG, AND DAZHEN JIANG. Thermally Stable Amorphous Mesoporous Aluminophosphates with Controllable P/Al Ratio: Synthesis, Characterization, and Catalytic Performance for Selective O-Methylation of Catechol [J]. J. Phys. Chem. B, 2006, 110: 16953-16960
    [22]. DíEZ V.K., DI COSIMO J.I., APESTEGUíA C.R.. Study of the citral/acetone reaction on MgyAlOx oxides: Effect of the chemical composition on the catalyst activity, selectivity and stability [J]. Appl. Catal. A: General, 2008, 345: 143-151
    [23]. ZAMORA M., LóPEZ T., MELENDREZ R., et al.. Oligomerization of acetone over titania-doped catalysts (Li, Na, K and Cs): Effect of the alkaline metal in activity and selectivity [J]. Catal. Today, 2005, 107~108: 289-293
    [1]. DI COSIMO J. I., DíEZ V. K., APESTEGUíA C. R.. Synthesis ofα,β-unsaturated ketones over thermally activated Mg-Al hydrotalcite [J]. Appl. Clay Sci., 1998, 13: 433-449
    [2]. WANG F. Z., YANG K., CHAI Y. M., GAO P. C. Acetone gas phase condensation on Mg-Al composite oxides catalysts prepared via Mg-Al hydrotalcites precursor [J]. Chinese J. Inorg. Chem., 2008, 24(9): 1417-1423
    [3].闻雷,孙旭东,马伟民.共沉淀法制备YAG超细粉及透明陶瓷[J].功能材料, 2004, 1(35): 89-91
    [4].陈晓春,王玮,杨建红,刘业翔.共沉淀-煅烧法制备MgAl2O4超细粉体材料[J].粉末冶金材料科学与工程, 1994, 2(4):310-314
    [5].刘希饶,王淑菊,郭俐聪.氧化铝基表层镁铝尖晶石的研究[J].催化学报,1994, 15(1): 1-7
    [6]. DíEZ V.K., DI COSIMO J.I., APESTEGUíA C.R.. Study of the citral/acetone reaction on MgyAlOx oxides: Effect of the chemical composition on the catalyst activity, selectivity and stability [J]. Appl. Catal. A: General, 2008, 345: 143-151
    [7]. CAINA LUAN, DUORONG YUAN, XIULAN DUAN, e tal.. Synthesis and characterization of Co2+: MgAl2O4 nanocrystal [J]. J Sol-Gel Sci Techn, 2006, 38: 245-249
    [8]. ZAWRAH M.F.. Investigation of lattice constant, sintering and properties of nano Mg–Al spinels [J]. Mater. Sci. and Eng. A, 2004, 382: 362-370
    [9] THOMAS L., TANNER R., GILL P.,ET AL.. Aldol condensation reactions of acetone over alkali-modified vanadium phosphate catalysts [J]. Phys. Chem. Chem. Phys., 2002, 4: 4555-4560
    [10] DI COSIMO J.I., APESTEGUíA C.R.. Study of the catalyst deactivation in the base-catalyzed oligomerization of acetone [J]. J. Mol. Catal. A, 1998, 130: 177-185
    [11] ZAMORA M., LOPEZ T., MELENDREZ R., et al.. Oligomerization of acetone over titania-doped catalysts (Li, Na, K and Cs): Effect of the alkaline metal in activity and selectivity [J]. Catal. Today, 2005, 107~108: 289-293
    [1]. MARCIAL Z., TESSY L., RICARDO G., et al.. Acetone gas phase condensation on alkaline metals doped TiO2 sol–gel catalysts [J]. Appl. Sur. Sci., 2005, 252: 828-832
    [2]. DI COSIMO J. I., DIEZ V. K., APESTEGUIA C.. Base catalysis for the synthesis ofα,β-unsaturated ketones from the vapor-phase aldol condensation of acetone [J]. Appl. Catal. A, 1996,137: 149-166
    [3]. CAVANI F., TRIFFIRO F., VACCARI A.. Hydrotalcite-type anionic clays: Preparation , properties and application [J]. Catal. Today, 1991, 11 (2): 173-301
    [4]. PINES H, STALICK W M. Base-catalyzed Reaction of Hydrocarbon and Related Compound. New York: Academic Press, 1977
    [5].肖小明.固体超强碱催化剂及其在有机合成中的应用[J].石油化工,1994,23(5): 342-345
    [6]. TANABE K. Catalysis by Acids and Base [J]. Elsevier Amesterdam, 1985, 20(1): 4-10
    [7]. SHEN Z. L., JIANG X. Z., ZHAO W. J.. A new catalytic transesterification for the synthesis of ethyl methyl carbonate [J]. Catal. Lett., 2003, 91: 63-67
    [8]. DUBEY A., Synthesis and catalytic applications of CMK-LDH (layered double hydroxides) nanocomposite materials [J]. Green Chem. 2007, 9: 424-426
    [9]. CLIMENT M. J., COMA A., IBORRA S., PRIMO J.. Base catalysis for fine chemicals production: Claisen-Schmidt condensation on zeolites and hydrotalcites for the production of chalcones and flavanones of pharmaceutical interest [J]. J. Catal. 1995, 151: 60-66
    [10]. DREXLER M. T., AMIRIDIS M. D., in: M.E. Ford (Ed.), Catalysis of Organic Reactions, Dekker, New York, 2000, p. 451
    [11]. HARGROVE-LEAK S. C., AMIRIDIS M. D., Substitution effects in the heterogeneous catalytic synthesis of flavanones over MgO[J]. Catal. Comm., 2002, 3: 557-563
    [12]. DREXLER M. T. AMIRIDIS M. D.. Kinetic Investigation of the Heterogeneous Synthesis of Flavanone over MgO [J]. Catal. Lett. 2002, 79: 175-181
    [13]. DREXLER M. T., AMIRIDIS M. D.. The effect of solvents on theheterogeneous synthesis of flavanone over MgO [J]. J. Catal., 2003, 214: 136
    [14]. LICHTENBERGER J., HARGROVE-LEAK S. C., AMIRIDIS M. D., In situ FTIR study of the adsorption and reaction of 2′-hydroxyacetophenone and benzaldehyde on MgO [J]. J. Catal., 2006, 238: 165-176
    [15]. LIU Z., CORTéS-CONCEPCIóN J. A., MUSTIAN M., AMIRIDIS M. D.. Effect of basic properties of MgO on the heterogeneous synthesis of flavanone [J]. Appl. Catal. A: Gen., 2006, 302: 232-236
    [16]. CHOUDARY B. M., RANGANATH K. V. S., YADAV J., KANTAM M. L.. Synthesis of flavanones using nanocrystalline MgO [J]. Tetrahedron Lett., 2005, 46: 1369-1371
    [17]. KANTAM M. L., PAL U., SREEDHAR B., CHOUDARY B. M., An efficient synthesis of organic carbonates using nanocrystalline magnesium oxide [J]. Adv. Synth. Catal., 2007, 349: 1671-1675
    [18]. DOSSIN T. F., REYNIERS M. F., MARIN G. B., Kinetics of heterogeneously MgO-catalyzed transesterification [J]. Appl. Catal. B: Environmental, 2006, 61: 35-45
    [19]. CHOUDARY B. M., MULUKUTLA R. S., KLABUNDE K. J.. Benzylation of aromatic compounds with different crystallites of MgO [J]. J. Am. Chem. Soc., 2003, 125: 2020-2021
    [20]. CHOUDARY B. M., RANGANATH K. V. S., PAL U., KANTAM M. L., SREEDHAR B.. Nanocrystalline MgO for asymmetric Henry and Michael reactions [J]. J. Am. Chem. Soc., 2005, 127: 13167-13171
    [21]. CHOUDARY B. M., CHAKRAPANI L., RAMANI T., KUMAR K. V., KANTAM M. L.. Direct asymmetric aldol reaction catalyzed by nanocrystalline magnesium oxide [J]. Tetrahedron, 2006, 62: 9571-9576
    [22]. CHOUDARY B. M., KANTAM M. L., RANGANATH K. V. S., MAHENDER K., SREEDHAR B.. Bifunctional nanocrystalline MgO for chiral epoxy ketones via Claisen-Schmidt condensation-asymmetric epoxidation reactions [J]. J. Am. Chem. Soc., 2004, 126: 3396-3397
    [23]. CHOUDARY B. M., MAHENDAR K., KANTAM M. L., RANGANATH K. V. S., ATHAR T., The one-pot Wittig Reaction: A facile synthesis of a,b-unsaturated esters and nitriles by using nanocrystalline magnesium oxide [J]. Adv. Synth. Catal., 2006, 348: 1977-1985
    [24]. TSUJI H., YAG F.I, HATTORI H., et al.. Self-condensation of n-butyraldehydeover solid base catalysts [J]. J. Catal., 1994, 148: 759-770
    [25]. SHEN J. Y., KOBE J. M., CHEN Y., et al.. Synthesis and surface acid/base properties of magnesium-aluminum mixed oxides obtained from hydrotalcites [J]. Langmuir, 1994, 10: 3902-3908
    [26].江德恩,赵璧英,谢有畅,硝酸镁在γ-Al2O3上的热分解及MgO/γ-Al2O3的碱性[J].物理化学学报, 2000, 16 (2): 105-110
    [27]. DE-EN JIANG, BI-YING ZHAO, YOU-CHANG XIE. Structure and basicity ofγ-Al2O3 supported MgO and its application to mercaptan oxidation [J]. Appl. Catal. A: Gen., 2001, 219: 69-78
    [28]. BARRAULT J., BANCQUART S., POUILLOUX Y., CHIMIE C. R.. Selective glycerol transesterification over mesoporous basic catalysts [J]. Comptes Rendus Chimie, 2004, 7: 593-599
    [29]. LI E., RUDOLPH V., Transesterification of vegetable oil to biodiesel over MgO-functionalized mesoporous catalysts [J]. Energy & Fuels, 2008, 22: 145-149
    [30]. WEI Y.L., WANG Y.M., ZHU J.H., WU Z.Y.. In-situ coating of SBA-15 with MgO: Direct synthesis of mesoporous solid bases from strong acidic system [J]. Adv. Mater., 2003, 15: 1943-1945
    [31].魏一伦,曹毅,朱建华,颜学武. MgO/SBA-15固体碱介孔材料的研制[J].无机化学学报, 2003, 19(3) : 233-239
    [32]. SVETLANA BASHKOVA, ANDREY BAGREEV, ANDTERESA J, et al., Adsorption of methyl mercaptan on activated carbons [J]. Environ. Sci. Technol., 2002, 36: 2777-2782
    [33].李德恭,赵瑞卿,活性炭吸附去除液相的硫醇的研究[J].交通环保, 2002, 23 (3) : 12-15
    [34]. KIRM I., MEDINA F., SUEIRAS J. E., SALAGRE P., CESTEROS Y.. Hydrogenation of styrene oxide in the presence of supported platinum catalysts to produce 2-phenylethanol [J]. J. Mol. Catal. A: Chem., 2007, 261: 98-103
    [35]. BASI?SKA A., K?PI?SKI L., DOMKA F., The effect of support on WGSR activity of ruthenium catalysts [J]. Appl. Catal. A: Gen., 1999, 183: 143-153
    [36]. KIRM I., MEDINA F., RODRíGUEZ X., CESTEROS Y., SALAGRE P., SUEIRAS J.E.. Preparation of 2-phenylethanol by catalytic selective hydrogenation of styrene oxide using palladium catalysts [J]. J. Mol. Catal. A: Chem., 2005, 239:215-221
    [37]. AMORIM C., YUAN G., PATTERSON P. M., KEANE M. A.. Catalytic hydrodechlorination over Pd supported on amorphous and structured carbon [J]. J. Catal., 2005, 234: 268-281.
    [38]. DEMIREL-GüLEN S., LUCAS M., CLAUS P., Liquid phase oxidation of glycerol over carbon supported gold catalysts [J]. Catal. Today, 2005, 102-103: 166-172
    [39].杜彬,梅华,刘晓勤,姚虎卿, MgO/C-CoPcS催化剂的制备及其催化氧化脱硫醇性能[J].工业催化, 2007, 15 (8) : 50-54
    [40].韩志华,曹林,CaCO3纳米线的制备及表征[J].无机材料学报,2006,20(6): 1349-1352
    [41]. LIU G., JIA M., ZHOU Z., ZHANG W., WU T., JIANG D., Synthesis of amorphous mesoporous alminophosphates materials with high thermal stability using citric acid route [J]. Chem. Commun., 2004, 1660-1661.
    [42]. LIU G., WANG Z., JIA M., ZOU X., ZHU X., ZHANG W., JIANG D., Thermally stable amorphous mesoporous aluminophosphates with controllable P/Al Ratio: synthesis, characterization and catalytic performance for selective O-methylation of catechol [J]. J. Phys. Chem. B, 2006, 110: 16953-16960.
    [43]. LIU G., JIA M., ZHOU Z., WANG L., ZHANG W., JIANG D., Synthesis and pore formation study of amorphous mesoporous aluminophosphates in the presence of citric acid [J]. J. Colloid Interface Sci., 2006, 302: 278-286.
    [44]. MARTIJN K., VANDER LEE A., JOSVAN DILLEN H., BITTER KRIJN P., DE JONG. Deposition precipitation for the preparation of carbon nanofiber supported nickel catalysts [J]. J Am. Chem. Soc., 2005, 127: 13573-13582
    [45]. KATSUMI K., KATSUYUKI M., KAZUYUKI S., SORY C., TAKAOMI S.. Enhancement effect of micropore filling for supercritical methane by magnesia dispersion [J]. Langmuir, 1993, 9: 1165-1167
    [46].KANEKO K.. Anomalous micropore filling of nitric oxide on alpha-iron hydroxide oxide-dispersed activated carbon fibers [J]. Langmuir, 1987, 3: 357-363
    [47]. WANG Z. M., YAMASHITA N., WANG Z. X., HOSHINOO K., KANOH H.. Air oxidation effects on microporosity, surface property, and CH4 adsorptivity of pitch-based activated carbon fibers [J]. J Colloid Inter. Sci., 2004, 276: 143-150
    [48]. WANG Z. M., WANG Z. X., YAMASHITA N., HOSHINOO K., KANOH H..Changes in microporosity and CH4 adsorptivity of preoxidized pitch-based activated carbon fibers by Mg deposition [J]. J Colloid Inter. Sci., 2004, 276: 151-158

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700