SC-FDMA系统跨层动态子载波分配算法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信网络的飞速革新推动了多媒体技术的蓬勃发展,同时也使得有限的频域资源与用户不断增长的业务传输需求之间的矛盾日益突出。随着长期演进(Long TermEvolution,LTE)项目标准化工作的日臻完善,针对其无线资源管理模式的开发已成为业界关注的焦点。为此,动态子载波分配方案作为一种高效的频域资源调度手段,以其能够有效提升系统频谱利用率,增强多业务服务质量(Quality of Service,QoS)需求处理能力,而广泛研究应用于LTE系统上、下行链路进行频谱资源管理。
     本文致力于单载波频分多址(Single Carrier Frequency Division Multiple Access,SC-FDMA)系统跨层动态子载波分配技术研究,主要工作内容概括如下:
     首先,分析了SC-FDMA系统面向非实时业务的动态子载波分配问题。基于单一非实时业务模型提出一种最大平均容量动态子载波分配算法。该算法以最大化系统用户平均信道容量为分配目标,代替传统贪婪算法面向全体用户及资源块的寻优过程,从而以较低的计算复杂度实现高系统频率利用率。并针对具有变系统吞吐量或变分配公平度需求的单一非实时业务模型,提出一种可调公平度动态子载波分配算法。该算法通过可调性公平系数的引入,能够根据用户传输状态及业务需求合理判定适当的分配准则,从而实现系统吞吐量及分配公平性之间的可调性权衡。同时,针对多种非实时业务环境下系统频域资源的竞争问题,基于效用理论提出最大容量需求效用算法及其改进算法。所提出算法通过构建与用户信道传输能力及传输容量需求相关的效用评价体系,以实现系统吞吐量性能与各用户传输容量需求之间的有效权衡,从而有效提升多业务传输需求处理能力。
     然后,分析了SC-FDMA系统面向实时业务的动态子载波分配问题。针对有限队列缓存空间条件下单一实时业务模型的数据丢失问题,提出一种改进的最大时延效用算法。该算法在传统最大时延效用算法的基础上引入用户队列状态信息,通过提升长队列用户的分配优先级以有效控制各用户队列长度,从而抑制由于缓存溢出所造成的数据丢失。同时,为降低由用户队列长度信息引入所带来的信令开销,提出一种最大指数效用动态子载波分配算法。该算法采用与用户平均等待时间相关的指数效用函数以增大用户间分配优先级差异,充分保证高时延及长队列用户优先分得频域资源进行通信,在简化算法复杂度的同时兼顾系统数据丢失率及时延性能。此外,针对多种实时业务环境下系统频域资源的竞争问题,讨论了最大指数效用算法当根据不同业务传输特性设置分配权重从而实现业务间分配优先级划分时其QoS区分性能。并在此基础上引入分级分配理念,提出一种最大分级指数效用动态子载波分配算法。该算法为同种业务不同传输用户根据当前时延状态设定高、低两种不同的业务分配权重,在确保高分配优先级业务传输性能的同时,为时延状态较差且分配权重较低的用户提供接入系统的机会,从而提升算法多实时业务QoS需求处理能力。
     最后,分析了SC-FDMA系统面向混合业务的动态子载波分配问题。针对由于调度器分配的数据传输速率超出用户业务需求所导致的系统服务速率浪费问题,结合负载控制技术提出一种基于严格服务速率约束的最大分级指数效用算法。该算法通过在最大分级指数效用算法的基础上引入严格服务速率约束方案,能够在分配过程中严格限制调度器分配的数据传输速率,从而有效消除系统服务速率浪费。同时,针对服务速率控制所导致的频域资源不良竞争问题,结合接入控制技术提出一种基于自适应服务速率约束的最大分级指数效用算法。该算法根据用户传输状态及业务需求设立自适应系统接入阈值,通过在实时与非实时业务间实现分配优先级的严格划分及自适应调整,以保证混合业务间频域资源的合理分布。
The rapid innovation of mobile communication network promotes the flourishingdevelopment of multimedia technology, and also causes a increasingly outstandingcontradiction between the limited frequency resources and the growing user service demands.With the gradual perfection of standardization work in Long Term Evolution (LTE), theexploitation of the radio resource management mode has become the focus of the informationindustry. Therefore, as an effective technique for frequency resources scheduling, DynamicSubcarrier Allocation (DSA) is now wildly studied and employed in both the uplink anddownlink LTE system due to its high system frequency efficiency performance and excellentquality of service (QoS) provisioning capability in multi-service environment.
     This paper focuses on cross-layer DSA of the Single Carrier Frequency DivisionMultiple Access (SC-FDMA) system, it mainly includes:
     Firstly, the non-real-time traffic oriented DSA problem for the SC-FDMA system isanalyzed. Based on the single non-real-time traffic model, maximum average capacity DSAalgorithm is proposed. The main idea of the proposed algorithm is to maximize the averagecapacity of system users without taking the searching process with respect to all the systemusers and resource blocks in traditional greedy algorithm, thereby achieving high systemfrequency efficiency performance with low computational complexity. And for meeting theservice requirements with changing system capacity and allocation fairness in singlenon-real-time traffic model, an adjustable fairness algorithm is developed. By introducing anadjustable fairness factor, the proposed algorithm can decide appropriate scheduling criterionaccording to the transmission state and service requirement for each allocation, so as tocontributing an adjustable tradeoff between the system capacity and allocation fairness.Furthermore, in order to solve the resource competition problem in multi non-real-time trafficenvironment, a max capacity demand utility algorithm and its improved algorithm areinvestigated. By establishing the utility-pricing framework which concerning both channelquality condition and traffic transmission demand, the proposed algorithms can achieve anattractive tradeoff between system rate-sum capacity and the user capacity demands, therebyefficiently improving the processing capability for multi-service requirements.
     Secondly, the real-time traffic oriented DSA problem for the SC-FDMA system isanalyzed. In order to avoid the data loss in single real-time traffic model with finite queuingspace assumption, an improved max delay utility algorithm is proposed. By introducing thequeue length information based on the traditional max delay utility algorithm, the proposedalgorithm can effectively eliminate the system data loss due to the buffer overflow.Meanwhile, a max exponential utility algorithm is developed for further signaling overheadreduction. By exploiting the exponential utility function with respect to user average delay,the proposed algorithm can broaden the priority variation between users, and fully guaranteethe allocation superiority of the user suffering from long waiting time and queue length. So asto reducing the computational complexity while keeping good data loss and delayperformance. Moreover, in order to solve the resource competition problem in multi real-timetraffic environment, the QoS differentiation performance of the max exponential utilityalgorithm is discussed when providing traffic priority division with appropriate schedulingweights setup among different services. Under this consideration, a max graded exponentialutility algorithm is presented by taking the concept of grading theory. By means of setting twokinds of traffic scheduling weights, the proposed algorithm can provide more accessopportunities for the users with poor delay performance and low scheduling weights, therebyimproving the QoS provision capability for multi real-time traffic.
     Finally, the mixed traffic oriented DSA problem for the SC-FDMA system is analyzed.In order to overcome the service rate waste caused by assigning more data rate than user’stransmission demand, a max graded exponential utility algorithm with strict service rateconstraint is proposed. By integrating the concept of load control, the proposed algorithm canstrictly restrict the data transmission rate assigned to each user, and completely eliminate theservice rate waste. Meanwhile, for solving the unjust competition in service rate controlmechanism, a max graded exponential utility algorithm with adaptive service rate constraint isdeveloped. By means of setting the access threshold which is aware of both user transmissionstate and service requirements, the proposed algorithm can provide a strict and adaptivescheduling priority division between real-time and non-teal-time traffics, and achieve areasonable frequency resources distribution among mixed traffic users.
引文
[1] Tingting Liu, Chenyang Yang, Lie-Liang Yang. A low-complexity subcarrier-powerallocation scheme for frequency-division multiple-access systems [J]. WirelessCommunications, IEEE Transactions on,2010,9(5):1564-1570.
    [2] Hoo L. M. C., Halder B., Tellado J., Cioffi J. M. Multiuser transmit optimization formulticarrier broadcast channels: asymptotic FDMA capacity region and algorithms [J].Communications, IEEE Transactions on,2004,52(6):922-930.
    [3] Nansai Hu, Yu-Dong Yao, Zhuo Yang. Analysis of Cooperative TDMA in Rayleigh FadingChannels [J]. Vehicular Technology, IEEE Transactions on,2013,62(3):1158-1168.
    [4] Castaeda-Camacho J., Lara-Rodriguez D. Teletraffic Analysis of an Overlaid SystemUsing CDMA and TDMA With Cell Coverage Area Restriction [J]. Vehicular Technology,IEEE Transactions on,2008,57(2):828-846.
    [5] Hara S., Prasad R. Design and performance of multicarrier CDMA system infrequency-selective Rayleigh fading channels [J]. IEEE Transactions on VehicularTechnology,1999,48(5):1584-1595.
    [6] Ji-Her Ju, Li V. O. K. TDMA scheduling design of multihop packet radio networks basedon latin squares [J]. IEEE Journal on Selected Areas in Communications,1999,17(8):1345-1352.
    [7] Oliphant M. W. Radio interfaces make the difference in3G cellular systems [J]. IEEESpectrum,2000,37(10):53-58.
    [8] Yang Xiao, Yi Pan, Jie Li. Design and analysis of location management for3G cellularnetworks [J]. IEEE Transactions on Parallel and Distributed Systems,2004,15(4):339-349.
    [9] Evans B. G., Baughan K. Visions of4G [J]. Electronics&Communication EngineeringJournal,2000,12(6):293-303.
    [10]徐海东,李冶文,峰江,宋俊德.基于神经网络的UTRAN网络质量综合评价[J].北京邮电大学学报,2005,28(4):41-44.
    [11] Suk-Bok Lee, Pefkianakis I., Choudhury S., Shugong Xu, Songwu Lu. Exploiting Spatial,Frequency, and Multiuser Diversity in3GPP LTE Cellular Networks [J]. MobileComputing, IEEE Transactions on,2012,11(11):1652-1665.
    [12] Dahlman Erik, Parkvall Stefan, Skold Johan.4G LTE/LTE-Advanced for mobilebroadband [M]. United States: Academic Press,2011.
    [13] Tsern-Huei Lee, Yu-Wen Huang. Resource Allocation Achieving High SystemThroughput with QoS Support in OFDMA-Based System [J]. IEEE Transactions onCommunications,2012,60(3):851-861.
    [14]张天魁,冯春燕,曾志民. B3G/4G移动通信系统中的无线资源管理[M].北京:电子工业出版社,2011.
    [15] Zhonghang Xia, Wei Hao, Yen I. Ling, Peng Li. A distributed admission control modelfor QoS assurance in large-scale media delivery systems [J]. Parallel and DistributedSystems, IEEE Transactions on,2005,16(12):1143-1153.
    [16]盛洁,唐良瑞,郝建红.异构无线网络中基于业务转移和接入控制的混合负载均衡[J].电子学报,2013,41(2):321-328.
    [17] Kuo W. K., Lien S. Y. Dynamic resource allocation for supporting real-time multimediaapplications in IEEE802.15.3WPANs [J]. Communications, IET,2009,3(1):1-9.
    [18]Vaughan-Nichols S. J. Mobile WiMax: The Next Wireless Battle Ground [J]. Computer,2008,41(6):16-18.
    [19] Pareit Daan, Lannoo Bart, Moerman Ingrid, Demeester Piet. The History of WiMAX: AComplete Survey of the Evolution in Certification and Standardization for IEEE802.16and WiMAX [J]. IEEE Communications Surveys&Tutorials,2012,14(4):1183-1211.
    [20] Myung Hyung G., Goodman David J. Single carrier FDMA a new air interface for longterm evolution [M]. United Kingdom: Wiley,2008.
    [21] Rong-Terng Juang, Lin K. Y., Pangan Ting, Hsin-Piao Lin, Ding-Bing Lin. EnhancedChase Combining HARQ With ICI and IAI Mitigation for MIMO-OFDM Systems [J].Vehicular Technology, IEEE Transactions on,2009,58(8):4645-4649.
    [22]张天魁,曾志民,邱禹.用于多小区OFDM系统的分布式上行功率控制算法[J].北京工业大学学报,2008,34(6):562-566.
    [23]易睿得,赵治. LTE系统原理及应用[M].北京:电子工业出版社,2012.
    [24] Zukang Shen, Khoryaev A., Eriksson E., Xueming Pan. Dynamic uplink-downlinkconfiguration and interference management in TD-LTE [J]. Communications Magazine,IEEE,2012,50(11):51-59.
    [25] Lopez-Benitez M., Gozalvez J. Common Radio Resource Management Algorithms forMultimedia Heterogeneous Wireless Networks [J]. Mobile Computing, IEEETransactions on,2011,10(9):1201-1213.
    [26] Yumiba H., Yamamoto K., Yabusaki M. The design policy for a GSM-based IMT-2000network [J]. Wireless Communications, IEEE,2003,10(1):7-14.
    [27] Lifang Li, Goldsmith A. J. Capacity and optimal resource allocation for fading broadcastchannels.I. Ergodic capacity [J]. IEEE Transactions on Information Theory,2001,47(3):1083-1102.
    [28] Lifang Li, Goldsmith A. J. Capacity and optimal resource allocation for fading broadcastchannels.II. Outage capacity [J]. IEEE Transactions on Information Theory,,2001,47(3):1103-1127.
    [29] Wonjong Rhee, Cioffi J. M. Increase in capacity of multiuser OFDM system usingdynamic subchannel allocation [C]. IEEE Vehicular Technology Conference Proceedings,2000:1085-1089.
    [30] Hoon Kim, Keunyoung Kim, Youngnam Han, Sangboh Yun. A proportional fairscheduling for multicarrier transmission systems [C]. IEEE60th Vehicular TechnologyConference,2004:409-413.
    [31] Kelly F. P., Maulloo A.K., Tan. D.K.H. Rate control in communication networks: shadowprices, proportional fairness and stability [J]. Journal of the Operational Research Society,1998,49(237-252.
    [32] Seong-Woo Ahn, Hano Wang, Daesik Hong. Throughput-Delay Tradeoff of ProportionalFair Scheduling in OFDMA Systems [J]. Vehicular Technology, IEEE Transactions on,2011,60(9):4620-4626.
    [33] Fraimis I. G., Kotsopoulos S. A. QoS-Based Proportional Fair Allocation Algorithm forOFDMA Wireless Cellular Systems [J]. Communications Letters, IEEE,2011,15(10):1091-1093.
    [34] Keunyoung Kim, Youngnam Han, Seong-Lyun Kim. Joint subcarrier and powerallocation in uplink OFDMA systems [J]. IEEE Communications Letters,2005,9(6):526-528.
    [35] Youngok Kim, Jaekwon Kim. An Efficient Subcarrier Allocation Scheme for CapacityEnhancement in Multiuser OFDM Systems [C]. IEEE Vehicular Technology Conference,2008:1915-1919.
    [36] Conte E., Tomasin S., Benvenuto N. A simplified greedy algorithm for joint schedulingand beamforming in multiuser MIMO OFDM [J]. Communications Letters, IEEE,2010,14(5):381-383.
    [37] Laibo Zheng, Stuber G. L., Deqiang Wang, Yewen Cao. Optimal Bit and Power DirectAllocation Algorithm in OFDM Systems Based on the Regularity of Greedy AllocationResult [J]. Wireless Communications, IEEE Transactions on,2012,11(9):3388-3397.
    [38] Myung Hyung G. Single Carrier Orthogonal Multiple Access Technique for BroadbandWireless Communications [D]. Polytechnic University,2007.
    [39] Junsung Lim, Myung H. G., Kyungjin Oh, Goodman D. Proportional Fair Scheduling ofUplink Single-Carrier FDMA Systems [C]. IEEE17th International Symposium onPersonal, Indoor and Mobile Radio Communications,2006:1-6.
    [40] Junsung Lim, Myung H. G., Kyungjin Oh, Goodman D. Channel-Dependent Schedulingof Uplink Single Carrier FDMA Systems [C]. IEEE64th Vehicular TechnologyConference,2006:1-5.
    [41] Myung H. G., Kyungjin Oh, Junsung Lim, Goodman D. Channel-Dependent Schedulingof an Uplink SC-FDMA System with Imperfect Channel Information [C]. IEEE WirelessCommunications and Networking Conference,2008:1860-1864.
    [42] Jianguo Wang, Peikun He, Wei Cao. Study on the Hungarian algorithm for the maximumlikelihood data association problem [J]. Systems Engineering and Electronics, Journal of,2007,18(1):27-32.
    [43] Nwamadi O., Xu Zhu, Nandi A. K. Comparison of optimization criteria for dynamicsubcarrier allocation in single carrier FDMA systems [C]. IEEE Computers and Devicesfor Communication,2009:1-4.
    [44] Nwamadi O., Zhu X., Nandi A. K. Dynamic physical resource block allocationalgorithms for uplink long term evolution [J]. IET Communications,2011,5(7):1020-1027.
    [45] Nwamadi O., Xu Zhu, Nandi A. K. Enhanced Greedy Algorithm Based DynamicSubcarrier Allocation for Single Carrier FDMA Systems [C]. IEEE WirelessCommunications and Networking Conference,2009:1-6.
    [46]方娟,许涛,王晓翠.基于纳什均衡的网格资源管理模型[J].北京工业大学学报,2010,36(10):1419-1422.
    [47] Yaacoub E., Al-Asadi H., Dawy Z. Low complexity scheduling algorithms for the LTEuplink [C]. IEEE Computers and Communications,2009:266-270.
    [48] Yaacoub E., Dawy Z. A Game Theoretical Formulation for Proportional Fairness in LTEUplink Scheduling [C]. IEEE Wireless Communications and Networking Conference,2009:1-5.
    [49] Naeem M., Pareek U., Lee D. C. Max-min fairness aware joint power, subcarrierallocation and relay assignment in multicast cognitive radio [J]. IET Communications,2012,6(11):1511-1518.
    [50] Rasouli H., Anpalagan A. An Asymptotically Fair Subcarrier Allocation Algorithm inOFDM Systems [C]. IEEE Vehicular Technology Conference,2009:1-5.
    [51] Zukang Shen, Andrews J. G., Evans B. L. Adaptive resource allocation in multiuserOFDM systems with proportional rate constraints [J]. IEEE Transactions on WirelessCommunications,2005,4(6):2726-2737.
    [52] Biagioni A., Fantacci R., Marabissi D., Tarchi D. Adaptive subcarrier allocation schemesfor wireless ofdma systems in wimax networks [J]. IEEE Journal on Selected Areas inCommunications,2009,27(2):217-225.
    [53] Cheong Yui Wong, Cheng R. S., Lataief K. B., Murch R. D. Multiuser OFDM withadaptive subcarrier, bit, and power allocation [J]. IEEE Journal on Selected Areas inCommunications,1999,17(10):1747-1758.
    [54] Ho Ting Cheng, Weihua Zhuang. Joint Power-Frequency-Time Resource Allocation inClustered Wireless Mesh Networks [J]. IEEE Network,2008,22(1):45-51.
    [55] Katoozian M., Navaie K., Yanikomeroglu H. Utility-based adaptive radio resourceallocation in OFDM wireless networks with traffic prioritization [J]. IEEE Transactionson Wireless Communications,2009,8(1):66-71.
    [56] Everett Hugh. Generalized Lagrange multiplier method for solving problems of optimumallocation of resources [J]. Operation Research,1963,11(3):399-417.
    [57] Ofuji Y., Abeta S., Sawahashi M. Unified fast packet scheduling method consideringfluctuation in frequency domain in forward link for OFCDM broadband packet wirelessaccess [C]. IEEE Vehicular Technology Conference,2004:2724-2729.
    [58]赵海峰,姜兴宇,王贵和,王宛山.基于马尔可夫决策过程的MES系统动态调度方法[J].东北大学学报(自然科学版),2007,28(8):1178-1181.
    [59] Hossain J., Djonin D. V., Bhargava V. K. Delay limited optimal and suboptimal powerand bit loading algorithms for OFDM systems over correlated fading channels [C]. IEEEGlobal Telecommunications Conference,2005:2787-2792.
    [60] Teo Choon Heng Alen, Madhukumar A. S., Chin F. Capacity enhancement of amulti-user OFDM system using dynamic frequency allocation [J]. Broadcasting, IEEETransactions on,2003,49(4):344-353.
    [61] Meixia Tao, Ying-Chang Liang, Fan Zhang. Resource Allocation for DelayDifferentiated Traffic in Multiuser OFDM Systems [J]. Wireless Communications, IEEETransactions on,2008,7(6):2190-2201.
    [62] Tsiaflakis P., Necoara I., Suykens J. A. K., Moonen M. Improved Dual DecompositionBased Optimization for DSL Dynamic Spectrum Management [J]. Signal Processing,IEEE Transactions on,2010,58(4):2230-2245.
    [63] Andrews M., Kumaran K., Ramanan K., Stolyar A., Whiting P., Vijayakumar R.Providing quality of service over a shared wireless link [J]. IEEE CommunicationsMagazine,2001,39(2):150-154.
    [64] Fung Po Tso, Jin Teng, Weijia Jia, Dong Xuan. Mobility: A Double-Edged Sword forHSPA Networks: A Large-Scale Test on Hong Kong Mobile HSPA Networks [J]. Paralleland Distributed Systems, IEEE Transactions on,2012,23(10):1895-1907.
    [65] Rodrigues E. B., Cavalcanti F. R. P. QoS-driven adaptive congestion control for voiceover IP in multiservice wireless cellular networks [J]. IEEE Communications Magazine,2008,46(1):100-107.
    [66] Song G., Ye Li. Utility-based joint physical-MAC layer optimization in OFDM [C].IEEE Global Telecommunications Conference,2002:671-675.
    [67] Song G., Ye Li. Cross-layer optimization for OFDM wireless networks-part I: theoreticalframework [J]. IEEE Transactions on Wireless Communications,2005,4(2):614-624.
    [68] Song G., Ye Li. Cross-layer optimization for OFDM wireless networks-part II: algorithmdevelopment [J]. IEEE Transactions on Wireless Communications,2005,4(2):625-634.
    [69] Song Guocong. Cross-layer resource allocation and scheduling in wireless multicarriernetworks [D]. Georgia Institute of Technology,2005.
    [70] Jinri Huang, Zhisheng Niu. Buffer-Aware and Traffic-Dependent Packet Scheduling inWireless OFDM Networks [C]. IEEE Wireless Communications and NetworkingConference,2007:1554-1558.
    [71] Yunzhi Qian, Canjun Ren, Suwen Tang, Ming Chen. Multi-service QoS guaranteedbased downlink cross-layer resource block allocation algorithm in LTE systems [C].IEEE Wireless Communications&Signal Processing,2009:1-4.
    [72] Sang A., Xiaodong Wang, Madihian M., Gitlin R. D. A flexible downlink schedulingscheme in cellular packet data systems [J]. IEEE Transactions on WirelessCommunications,2006,5(3):568-577.
    [73] Rodrigues E. B., Casadevall F., Sroka P., Moretti M., Dainelli G. Resource allocation andpacket scheduling in OFDMA-based cellular networks [C]. IEEE Cognitive RadioOriented Wireless Networks and Communications,2009:1-6.
    [74] Rodrigues E. B., Casadevall F. Control of the trade-off between resource efficiency anduser fairness in wireless networks using utility-based adaptive resource allocation [J].IEEE Communications Magazine,2011,49(9):90-98.
    [75] Jain Rajendra, Chiu Dah-Ming, Hawe William. A Quantitative Measure of Fairness andDiscrimination for Resource Allocation in Shared Computer Systems [J]. DigitalEquipment Corporation Research Report TR-301,1984,1-38.
    [76] Pedersen K. I., Kolding T. E., Frederiksen F., Kovacs I. Z., Laselva D., Mogensen P. E.An overview of downlink radio resource management for UTRAN long-term evolution[J]. IEEE Communications Magazine,2009,47(7):86-93.
    [77] Delgado O., Jaumard B. Scheduling and Resource Allocation in LTE Uplink with aDelay Requirement [C]. IEEE Communication Networks and Services ResearchConference,2010:268-275.
    [78] Delgado O., Jaumard B. Scheduling and resource allocation for multiclass services inLTE uplink systems [C]. IEEE6th International Conference on Wireless and MobileComputing, Networking and Communications,2010:355-360.
    [79] Reusens Peter, Van Bruyssel D., Sevenhans J., Van Den Bergh S., Van Nimmen B.,Spruyt P. A practical ADSL technology following a decade of effort [J]. CommunicationsMagazine, IEEE,2001,39(10):145-151.
    [80] Wei Song, Hai Jiang, Weihua Zhuang. Performance Analysis of the WLAN-First Schemein Cellular/WLAN Interworking [J]. Wireless Communications, IEEE Transactions on,2007,6(5):1932-1952.
    [81] Berardinelli Gilberto, Ruiz De Temino L. A., Frattasi S., Rahman M. I., Mogensen P.OFDMA vs. SC-FDMA: performance comparison in local area imt-a scenarios [J].Wireless Communications, IEEE,2008,15(5):64-72.
    [82]王亮,李明齐,卜智勇.基于峰值过滤的SC-FDMA系统的测距检测方法[J].电子与信息学报,2009,31(9):2199-2204.
    [83] Myung H. G., Junsung Lim, Goodman D. Peak-To-Average Power Ratio of SingleCarrier FDMA Signals with Pulse Shaping [C]. IEEE17th International Symposium onPersonal, Indoor and Mobile Radio Communications,2006:1-5.
    [84]杨丽花,任光亮,邱智亮. LTE上行多用户SC-FDMA系统中增强信道估计方法[J].北京邮电大学学报,2011,34(6):86-90.
    [85] Myung H. G., Junsung Lim, Goodman D. Single carrier FDMA for uplink wirelesstransmission [J]. IEEE Vehicular Technology Magazine,2006,1(3):30-38.
    [86] Sadr S., Anpalagan A., Raahemifar K. Radio Resource Allocation Algorithms for theDownlink of Multiuser OFDM Communication Systems [J]. Communications Surveys&Tutorials, IEEE,2009,11(3):92-106.
    [87] Hyoung-Jin Lim, Tae-Won Yune, Gi-Hong Im. QoS-constrained opportunistic schedulingfor sc-fdma with iterative multiuser detection [J]. Communications Letters, IEEE,2009,13(1):4-6.
    [88] Wong I. C., Oteri O., Mccoy W. Optimal resource allocation in uplink SC-FDMAsystems [J]. Wireless Communications, IEEE Transactions on,2009,8(5):2161-2165.
    [89] Junseok Yang, Sang Kyu Park, Jae Wook Kwon. Performance analysis of adaptivesubcarrier allocation scheme to support QoS in Multiuser OFDM system [C].18thAnnual Wireless and Optical Communications Conference,2009:1-4.
    [90] Jingnan Yao, Jiani Guo, Bhuyan L. N. Ordered Round-Robin: An Efficient SequencePreserving Packet Scheduler [J]. Computers, IEEE Transactions on,2008,57(12):1690-1703.
    [91] Kanhere S. S., Harish Sethu, Parekh A. B. Fair and efficient packet scheduling usingElastic Round Robin [J]. Parallel and Distributed Systems, IEEE Transactions on,2002,13(3):324-336.
    [92] Wong I. C., Oteri O., Mccoy W. Optimal resource allocation in uplink SC-FDMAsystems [J]. IEEE Transactions on Wireless Communications,2009,8(5):2161-2165.
    [93] Kwan R., Leung C., Jie Zhang. Proportional Fair Multiuser Scheduling in LTE [J].Signal Processing Letters, IEEE,2009,16(6):461-464.
    [94] Eriesso Nilo Casimiro. Scheduling based on Revenue-Maximizion Through ServieeLevel Agreements [D]. UPPsala University,2004.
    [95] Tingting Shi, Shidong Zhou, Yan Yao. Capacity of single carrier systems withfrequency-domain equalization [C]. IEEE6th Circuits and Systems Symposium onEmerging Technologies,2004:429-432.
    [96]郝丹丹.基于跨层设计和开放频谱的无线资源管理研究[D].北京邮电大学博士研究生学位论文,2007.
    [97]赵志信,郭庆.非理想信道状态信息下自适应SC-FDMA上行链路有效吞吐量分析[J].四川大学学报(工程科学版),2012,44(5):149-154.
    [98] Fathi M., Taheri H., Mehrjoo M. Utility maximisation in channel-aware and queue-awareorthogonal frequency division multiple access scheduling based on arrival rate control[J]. IET Communications,2012,6(2):235-241.
    [99] Kunqi Guo, Lixin Sun, Shilou Jia. Utility function based fair data scheduling algorithmfor OFDM wireless network [J]. Systems Engineering and Electronics, Journal of,2007,18(4):731-738.
    [100] Aggarwal R., Assaad M., Koksal C. E., Schniter P. Joint Scheduling and ResourceAllocation in the OFDMA Downlink: Utility Maximization Under ImperfectChannel-State Information [J]. IEEE Transactions on Signal Processing,2011,59(11):5589-5604.
    [101] Song G., Ye Li. Utility-based resource allocation and scheduling in OFDM-basedwireless broadband networks [J]. IEEE Communications Magazine,2005,43(12):127-134.
    [102] G. Song, Li Ye, J. Cimini L. Joint channel-and queue-aware scheduling for multiuserdiversity in wireless OFDMA networks [J]. IEEE Transactions on Communications,2009,57(7):2109-2121.
    [103] Braga A. R., Rodrigues E. B., Cavalcanti F. R. P. Packet Scheduling for VOIP OverHSDPA in Mixed Traffic Scenarios [C]. IEEE17th International Symposium onPersonal, Indoor and Mobile Radio Communications,2006:1-5.
    [104] Cruz-Perez F. A., Ortigoza-Guerrero L. Equal resource sharing allocation with QoSdifferentiation for conversational services in wireless communication networks [J].Communications, IEE Proceedings-,2003,150(5):391-398.
    [105] Liqiang Zhao, Changxin Fan. Enhancement of QoS differentiation over IEEE802.11WLAN [J]. Communications Letters, IEEE,2004,8(8):494-496.
    [106]侯华,李亘煊,周武旸.加权比例公平自适应粒子群跨层资源分配算法[J].北京邮电大学学报,2012,35(5):59-72.
    [107] Andrews Matthew, Borst Simon C., Dominique Francis, Jelenkovic Predrag R.,Kumaran Krishnan, Ramakrishnan K. G., Whiting Philip A. Dynamic bandwidthallocation algorithms for high-speed data wireless networks [J]. Bell Labs TechnicalJournal,1998,3(3):30-49.
    [108] Andrews Matthew, Kumaran Krishnan, Ramanan Kavita, Stolyar Alexander L., StolyarAlexander, Vijaykumar Rajiv, Whiting Phil. CDMA Data QoS Scheduling on theForward Link with Variable Channel Conditions [J]. Bell Labs Technical Journal,2000,1-45.
    [109]刘涛.无线系统中基于用户满意度保证的调度与资源分配方法研究[D].中国科学技术大学博士学位论文,2009.
    [110] Alasti M., Neekzad B., Jie Hui, Vannithamby R. Quality of service in WiMAX and LTEnetworks [Topics in Wireless Communications [J]. Communications Magazine, IEEE,2010,48(5):104-111.
    [111] Zhen Kong, Yu-Kwong Kwok, Jiangzhou Wang. A Low-Complexity QoS-AwareProportional Fair Multicarrier Scheduling Algorithm for OFDM Systems [J]. IEEETransactions on Vehicular Technology,2009,58(5):2225-2235.
    [112] G. Song, Li Ye, J. Cimini L., H. Zheng. Joint channel-aware and queue-aware datascheduling in multiple shared wireless channels [C]. IEEE Wireless Communicationsand Networking Conference,2004:1939-1944.
    [113] Niyato D., Hossain E., Bhargava V. K. Scheduling and Admission Control inPower-Constrained OFDM Wireless Mesh Routers: Analysis and Optimization [J].Wireless Communications, IEEE Transactions on,2007,6(10):3738-3748.
    [114] Bashar S., Zhi Ding. Admission control and resource allocation in a heterogeneousOFDMA wireless network [J]. Wireless Communications, IEEE Transactions on,2009,8(8):4200-4210.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700