供水管网剩余能量熵及可靠性评价研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市供水管网是城市重要的基础设施,担负着从水源向千家万户保持不间断输水的重任,任何导致用户停水或不能及时获得所需水量水压的事故,都将对正常的社会生产和生活造成巨大的影响。研究并改善供水管网的可靠性,有效保障用户对水量水压的需求,对于提高供水企业的经济及社会效益具有重要的现实意义。本文以城市供水管网的可靠性为研究内容,建立了供水管网物理模型,然后基于物理模型研究了剩余能量熵作为供水管网可靠性指标的可行性、供水管网可靠性的影响因素和可靠性评价方法,为供水管网的设计、运行、诊断和维护提供依据。
     针对实际供水管网的隐蔽性以及直接进行实验操作的艰巨性和风险性,提出利用物理模型研究供水管网中的可靠性问题。在搭建供水管网物理模型的基础上,通过将物理模型中用户节点的结构设计成“压力变送器-电动球阀”的形式,实现了对用户所需水量的模拟;通过控制管段上球阀的开度,实现了对物理模型中管段海曾-威廉系数的模拟。将物理模型的试验运行数据与EPANET的水力模拟运行数据进行比较,表明物理模型试验能较好地反映管网水力工况,满足后续可靠性试验研究的精度要求。
     针对拓扑结构冗余度高且剩余供水能力分布均匀的供水管网在应对需水量增加、管段故障等事故方面能力强的特点,通过引入剩余能量因子表征管段的剩余供水能力并结合“熵”的理论,提出以剩余能量熵表征剩余能量因子在节点上游各管段间分布的均匀性,建立了供水管网剩余能量熵计算模型。依托物理模型工况试验对供水管网剩余能量熵作为可靠性度量指标的可行性进行了试验研究。通过采集相关工况数据,计算了供水管网在各管段断开工况下的剩余能量熵以及水量可靠度、水压可靠度、流量熵、恢复力指数和剩余能量因子等可靠性指标,通过与这些经典的供水管网可靠性指标进行比较,结果显示剩余能量熵与其它指标间均存在很好的正相关关系,证实了以剩余能量熵作为供水管网可靠性度量指标的可行性。
     供水管网常面临着节点需水量增加以及爆管等问题,从改善供水可靠性兼顾节能的角度出发,基于物理模型工况试验,分别研究了供水管网需水量增加导致可靠性降低的问题以及供水管网爆管并关阀后的优化调度问题,分别建立了基于用户节点地面标高的分区模型和以水泵运行频率为决策变量的多目标优化调度模型。将两个模型分别应用于物理模型试验中,结果证实了两种模型的可行性和有效性。
     基于“爆管区域-爆管后果”模式,建立了供水管网可靠性评价模型。该模型将管段发生爆管的随机性作为不确定性因素的来源,充分考虑了管段的可用度、用户需水量的时变性、供水管网中阀门的布置情况以及优化调度等影响可靠性的因素,能够更真实、准确和全面地反映供水管网可靠性。在爆管工况试验中,针对一一枚举供水管网中各管段及其组合的不可行性,提出基于供水管网阀门布置情况的区域划分法,依次对各区域内某根管段爆管导致该区域被隔离后的供水管网进行可靠性评价,大大降低了试验次数。
Urban water distribution systems (WDS) are the critical infrastructures in city, which are responsible for delivering water to users all over the city uninterruptedly. Any failure that causes the users to fail to receive sufficient pressure and flow rate will have an enormous disaster impact on normal life and productive activities of the people. The research and improvement of reliability for WDS has positive realistic significance for ensuring daily water demand of users effectively and increasing the economic and social benefits of water utility. In this paper, water distribution systems reliability is mainly studied based on its physical model. And then the feasibility of surplus power entropy (SPE) being used as a reliability indicator, influencing factors and assessment methods of WDS reliability under various abnormal conditions are also studied to provide guidance for the design, operation, diagnosis and maintenance of a WDS.
     Firstly, the structure of user node in physical model is designed as “pressure meter–ball valve” pattern in order to simulate the water demand of user node. The Hazen-Williams coefficient C of pipe is simulated by controlling the opening of ball valve situated at corresponding pipe. By comparing the operating results between physical model and its simulation model by EPANET, the results indicates that the physical model experiment can simulate the hydraulic conditions of WDS effectively. And its experiment results can meet accuracy requirements of reliability experiment in this paper.
     Secondly, considering that the WDS with higher redundancy structure and equivalent surplus power factor among upper pipes has higher reliability under failure conditions (such as increasing water demand and pipe failures, etc.), surplus power entropy is introduced to describe the uniformity of surplus power factor among the upper pipes. While the surplus power factor describes the surplus water supply capability of pipe, entropy measures the uniformity of element distribution among upper pipes. An effective experimental study on SPE being as a reliability indicator is conducted by physical model experiment. A comparison between SPE and some classical reliability indicators is done by acquiring some related operating data and calculating these indicators under a range of failure conditions. These classical indicators include available water reliability, pressure reliability, flow entropy, resilience index and surplus power factor. The comparison results show a positive relationship between SPE and other reliability indicators, which confirms the feasibility of SPE being used as an indicator of capacity reliability.
     Thirdly, low reliability caused by increasing water demand and optimization scheduling after isolating the bursting pipe are studied based on physical model experiment from the viewpoint of improving reliability and reducing energy consumption. And then,the dividing district model based on node elevations and the multi-objective optimal scheduling model taken pump operation frequencies as decision variables are established and confirmed by physical model experiment. Finally, water distribution system reliability assessment model is established
     based on “bursting area-consequences” pattern. This model takes the stochastic bursting of pipe as uncertainty factor sources and can reflect the reliability of WDS correctly because of considering some factors, such as the availability of pipe, variable water demand of users during a hydraulic operating cycle, layout of valve and optimization scheduling. In the bursting experiment, due to the infeasibility of enumerating failing pipe and their combinations one by one, a regional division method is proposed, based on the layout of valves. WDS is assessed after every district is isolated from the WDS one by one. This method greatly reduces the number of experiment.
引文
[1]朱晔.嘉定新城主城区给水管网系统的可靠性分析[D].上海:上海交通大学市政工程学科硕士学位论文,2007:3-5.
    [2]严煦世,范瑾初.给水工程[M].北京:中国建筑工业出版社,1999:1-2.
    [3] Bureerat S,Sriworamas K. Simultaneous Topology and Sizing Optimization ofa Water Distribution Network Using a Hybrid Multi-objective EvolutionaryAlgorithm[J]. Applied Soft Computing,2013(13):3693-3702.
    [4] Bakker M,Vreeburg J H G,Van Schagen K M,et al. A Fully AdaptiveForecasting Model for Short-term Drinking Water Demand[J]. EnvironmentalModelling and Software,2013(48):141-151.
    [5]李楠.城市供水管网爆管预警模型研究[D].太原:太原理工大学市政工程学科硕士学位论文,2012:2-5.
    [6]肖笛.城市给水管网爆管事故在线监测研究[D].天津:天津大学环境科学工程学科博士学位论文,2006:1-3.
    [7]金溪.供水管网优化改造理论研究与实践[D].哈尔滨:哈尔滨工业大学市政工程学科博士学位论文,2008:1-5.
    [8]王直民.交通荷载作用下埋地管道的力学性状研究[D].杭州:浙江大学市政工程学科博士学位论文,2006:1-5.
    [9]郝红海.城市供水管网可靠性研究[D].天津:天津大学环境工程学科硕士学位论文,2007:1-3.
    [10] Yamijala S,Guikema S D,Brumbelow K. Statistical Models for the Analysis ofWater Distribution System Pipe Break Data[J]. Reliability Engineering andSystem Safety,2009(94):282-293.
    [11] Li W, Ling W, Liu S, et al. Development of Systems for Detection, EarlyWarning, and Control of Pipeline Leakage in Drinking Water Distribution: ACase Study[J]. Journal of Environmental Sciences,2011,23(11):1816-1822.
    [12] Kanta L,Brumbelow K. Vulnerability, Risk, and Mitigation Assessment ofWater Distribution Systems for Insufficient Fire Flows[J]. Journal of WaterResources Planning and Management,2013,139(6):593-603.
    [13]陈俊博,周荣敏,季广辉.基于自适应惩罚遗传算法的给水管网优化设计[J].节水灌溉,2007(2):34-36.
    [14]庄宝玉.城市输配水管网可靠性研究[D].天津:天津大学市政工程学科博士学位论文,2011:1-2.
    [15]张世泽.应用两步优化进行供水管网优化设计研究[D].哈尔滨:哈尔滨工业大学市政工程学科硕士学位论文,2007:1-3.
    [16]朱晔,寇新建.给水管网可靠性分析中的若干问题[C]//2007年全国给水排水技术信息网成立三十五周年庆典暨年会论文集.沈阳:全国给水排水技术信息网,2007:46-48.
    [17]程五一,王贵和,吕建国.系统可靠性理论[M].北京:中国建筑工业出版社,2010:7-11.
    [18] Saleh J H, Marais K. Highlights from the Early (and pre-) History ofReliability Engineering[J]. Reliability Engineering and System Safety,2006(91):249-256.
    [19] Pugsley A G, Fairthorne R A. Note on Airworthiness Statistics[M]. London:HMSO,1939.
    [20] Advisory Group on Reliability of Electronic Equipment. Reliability of MilitaryElectronic Equipment:Report[M]. Washington:Government Printing Office,1957.
    [21]王力.考虑水力条件变化的城市给水管网可靠性分析与研究[D].重庆:重庆大学市政工程学科硕士学位论文,2004:3-4.
    [22]樊保兴,王勤.可靠性理论在电站辅机系统设计中的应用[J].电站辅机,1996(4):31-34.
    [23] Damelin E,Shamir U,Arad N. Engineering and Economic Evaluation of theReliability of Water Supply[J]. Water Resources Research,1972,8(4):861-877.
    [24]庄宝玉.区域供水管网规划的优化研究[D].天津:天津大学市政工程学科硕士学位论文,2009:21-34.
    [25] Fujiwara O,Tung H D. Reliability Improvement for Water DistributionNetworks through Increasing Pipe Size[J]. Water Resources Research,1991,27(7):1395-1402.
    [26] Fujiwara O, De Silva. Algorithm for Reliability‐Based Optimal Design ofWater Networks[J]. Journal of Environmental Engineering,1990,116(3):575-587.
    [27] Fujiwara O, Ganesharajah T. Reliability Assessment of Water Supply Systemswith Storage and Distribution Networks[J]. Water Resources Research,1993,29(8):2917-2924.
    [28] Cullinane M J, Lansey K E, Mays L W. Optimization-availability-basedDesign of Water-distribution Networks [J]. Journal of Hydraulic Engineering,1992,118(3):420-441.
    [29] Li D,Dolezal T,Haimes Y. Capacity Reliability of Water DistributionNetworks[J]. Reliability Engineering and System Safety,1993,42(1):29-38.
    [30] Gupta R,Bhave P R. Reliability Analysis of Water Distribution Systems[J].Journal of Environmental Engineering,1994,120(2):447-461.
    [31] Gupta R,Bhave P R. Reliability-based Design of Water DistributionSystems[J]. Journal of Environmental Engineering,1996,122(1):51-54.
    [32] Tolson B A,Maier H R,Simpson A R,et al. Genetic Algorithms forReliability-based Optimization of Water Distribution Systems [J]. Journal ofWater Resources Planning and Management,2004,130(1):63-72.
    [33] Todini E. Looped Water Distribution Networks Design Using a ResilienceIndex Based Heuristic Approach[J]. Urban Water,2000,2(2):115-122.
    [34] Prasad T D,Park N S. Multiobjective Genetic Algorithms for Design of WaterDistribution Networks[J]. Journal of Water Resources Planning andManagement,2004,130(1):73-82.
    [35] Kapelan Z S,Savic D A,Walters G A. Multiobjective design of waterdistribution systems under uncertainty[J]. Water Resources Research,2005,41:1-15.
    [36] Babayan A V,Savic D A,Walters G A,et al. Robust Least-Cost Design of WaterDistribution Networks Using Redundancy and Integration-BasedMethodologies[J]. Journal of Water Resources Planning and Management,2007,133(1):67-77.
    [37] H H阿布拉莫夫.给水系统可靠性[M].董辅祥,刘灿生,译.北京:中国建筑工业出版社,1990:82-93.
    [38] Taylor A C,Fletcher T D,Peljo L.Triple-bottom-line assessment of stormwaterquality projects:advances in practicality, flexibility and rigour[J].Urban WaterJournal,2006,3(2):79-90.
    [39] Shannon C E. A Mathematical Theory of Communication[J]. Bell SystemTechnology,1948,27(3):379-428.
    [40] Awumah K,Goulter I,Bhatt S K. Assessment of Reliability in WaterDistribution Networks Using Entropy-based Measures[J]. StochasticHydrology and Hydraulics,1990,4(4):309-320.
    [41] Awumah K,Goulter I C,Bhatt S K. Entropy-based Redundancy Measures inWater Distribution Networks[J]. Journal of Hydraulic Engineering,1991,117(5):595-614.
    [42] Awumah K,Goulter I C. Maximizing Entropy Defined Reliability of WaterDistribution Networks[J]. Engineering Optimization,1992,20(1):57-80.
    [43] Tanyimboh T T,Templeman A B. Optimum Design of Flexible WaterDistribution Networks[J]. Civil Engineering and Environmental System,1993,10(1):243-58.
    [44] Tanyimboh T T,Templeman A B. Calculating Maximum Entropy Flows inNetworks[J]. Journal of the Operational Research Society,1993,44(4):383-96.
    [45] Tanyimboh T T. An Entropy-based Approach to the Optimum Design ofReliable Water Distribution Networks[D]. United Kingdom:University ofLiverpool,1993.
    [46]徐祖信,Guerc R.水分配系统以可靠度为基础的线性优化模式[J].同济大学学报,1996,24(5):580-585.
    [47]徐祖信,刘遂庆,Guereio R.熵在水分配系统优化设计中的应用.同济大学学报,1997,25(1):71-76.
    [48] Setiadi Y,Tanyimboh T T,Templeman A B. Modelling Errors, Entropy and theHydraulic Reliability of Water Distribution Systems[J]. Advances inEngineering Software,2005,36(11-12):780-788.
    [49] Vaabel J, Ainola L, Koppel T. Hydraulic Power Analysis for Determination ofCharacteristics of a Water Distribution System[C]//Water DistributionSystems Analysis Symposium2006. Cincinnati:[s. n.],2006:27-30.
    [50] WU Wen-yan, Simpson A R, Maier H R. Trade-off Analysis Between Cost andReliability of Water Distribution Systems Using Genetic Algorithms[C]//Integrating Water Systems2010. London:Taylor&Francis Group,2010:687-693.
    [51] WU Wen-yan, Maier H R, Simpson A R. Surplus Power Factor as a ResilienceMeasure for Assessing Hydraulic Reliability in Water Transmission SystemOptimization [J]. Journal of Water Resources Planning and Management,2011,137(6):542-546.
    [52]伍悦滨,王芳,田海.基于信息熵的给水管网系统可靠性分析[J].哈尔滨工业大学学报,2007,39(02):251-254.
    [53] Yazdani A,Otoo R A,Jeffrey P. Resilience Enhancing Expansion Strategies forWater Distribution Systems:A Network Theory Approach[J]. EnvironmentalModelling and Software,2011(26):1574-1582.
    [54]骆碧君.基于可靠度分析的供水管网优化研究[D].天津:天津大学环境工程学科博士学位论文,2010:3-10.
    [55] Wagner J M,Shamir U,Marks D H. Water Distribution Reliability:AnalyticalMethods[J]. Journal of Water Resources Planning and Management,1988,114(3):253-275.
    [56] Wagner J M,Shamir U,Marks D H. Water Distribution Reliability:SimulationMethods[J]. Journal of Water Resources Planning and Management,1988,114(3):276-294.
    [57] Shamsi U. Computerized Evaluation of Water Supply Reliability[J]. IEEETransaction on Reliability,1990,39(1):35-41.
    [58] Kansal M L, Kumar A,Sharma P B. Reliability Analysis of Water DistributionSystems Under Uncertainty[J]. Reliability Engineering and System Safety,1995,50(1):51-59.
    [59] Yang S L, Hsu N S, Louie W F, et al. Water Distribution Network Reliability:Connectivity Analysis[J]. Journal of Infrastructure Systems,1996,2(2):54-64.
    [60] Tung Y K. Evaluation of Water Distribution Network Reliability:Proceedingsof the Specialty Conference of Hydraulics Division. Lake Buena Vista, Florida:ASCE,1985.
    [61]赵新华,刘英梅,乔宇.城市给水管网可靠度计算[J].中国给水排水,2002,18(4):53-55.
    [62]赵新华,陈春芳,郑毅.给水管网可靠度的计算[J].中国给水排水,2000,16(1):57-60.
    [63]肖平.给水管网可靠性仿真分析[D].西安:西安理工大学环境工程学科硕士学位论文,2006:14-38.
    [64] Su Yu-chun,Mays L W,Duan Ning,et al. Reliability-based Optimization Modelfor Water Distribution Systems [J]. Journal of Hydraulic Engineering,1987,114(12):1539-1556.
    [65] Goulter I C, Bouchart F. Reliability-constrained Pipe Network Model [J].Journal of Hydraulic Engineering,1990,116(2):211-229.
    [66] Bao Y X,Mays L W. Model for Water Distribution System Reliability[J].Journal of Hydraulic Engineering,1990,116(9):1119-1137.
    [67] Bouchart F, Goulter I. Reliability Improvements in Design of WaterDistribution Networks Recognizing Valve Location [J]. Water ResourcesResearch,1991,27(12):3029-3040.
    [68] Shinstine D S, Ahmed I, Lansey K E. Reliability/Availability Analysis ofMunicipal Water Distribution Networks:Case Studies [J]. Journal of WaterResources Planning and Management,2002,128(2):140-151.
    [69] Xu C,Goulter I C. Reliability-based Optimal Design of Water DistributionNetworks[J]. Journal of Water Resources Planning and Management,1999,125(6):352-362.
    [70] Van Zyl J E,Piller O, Le Gat Y. Sizing Municipal Storage Tanks Based onReliability Criteria[J]. Journal of Water Resources Planning and Management,2008,134(6):548-555.
    [71] Farmani R,Walters G A,Savic D A. Trade-off between Total Cost andReliability for Anytown Water Distribution Network. Journal of WaterResources Planning and Management,2005,131(3):161-171.
    [72]王力.考虑水力条件变化的城市给水管网可靠性分析与研究[D].重庆:重庆大学,2004:38-41.
    [73] Guercio R,Xu Z. Linearized Optimization Model for Reliability-Based Designof Water Systems[J]. Journal of Hydraulic Engineering,1997,123(11):1020-1026.
    [74] Gargano R,Pianese D. Reliability as Tool for Hydraulic Network Planning[J].Journal of Hydraulic Engineering,2000,126(5):354-364.
    [75] Khomsi D,Walters G A,Thorley A R D,et al. Reliability Tester for WaterDistribution Networks[J].Journal of Computing in Civil Engineering,1996,10(1):10-19.
    [76] Agrawal M L, Gupta R, Bhave P R. Reliability-based Strengthening andExpansion of Water Distribution Networks[J]. Journal of Water ResourcesPlanning and Management,2007,133(6):531-541.
    [77] Tanyimboh T T,Tabesh M,Burrows R. Appraisal of Source Head Methods forCalculating Reliability of Water Distribution Networks[J]. Journal of WaterResources Planning and Management,2001,127(4):206-213.
    [78] Jacobs P,Goulter I. Estimation of Maximum Cut-set Size for Water NetworkFailure[J]. Journal of Water Resources Planning and Management,1991,117(5):588-605.
    [79] Torii A J, Lopez R H. Reliability Analysis of Water Distribution NetworksUsing the Adaptive Response Surface Approach[J]. Journal of HydraulicEngineering,2012,138(3):227-236.
    [80]林道锦,梅刚,秦权.非正态概率分布对一次可靠度方法精度影响[J].计算力学学报,2005,22(3):292-294.
    [81] Maier H R,Lence B J, Tolson B A,et al. First-Order Reliability Method forEstimating Reliability,Vulnerability,and Resilience[J]. Water ResourcesResearch,2001,37(3):779-790.
    [82] Ostfeld A, Kogan D, and Shamir U. Reliability Simulation of WaterDistribution Systems-single and Multi-quality[J]. Urban Water,2002,4(1):53-61.
    [83] Soltanjalili M J,Haddad O B, Marino M A. Operating Water DistributionNetworks during Water Shortage Conditions Using Hedging and IntermittentWater Supply Concepts[J]. Journal of Water Resources Planning andManagement,2013,139(6):644-659.
    [84] Van Zyl J E,Le Gat Y,Piller O.,et al. Impact of Water Demand Parameters onthe Reliability of Municipal Storage Tanks[J].Journal of Water ResourcesPlanning and Management,2012,138(5):553-561.
    [85] Duan N, Mays L W,Lansey K E.Optimal Reliability-based Design of Pumpingand Distribution Systems[J]. Journal of Hydraulic Engineering,1990,116(2):249-268.
    [86] Surendran S,Tanyimboh T T,Tabesh M. Peaking Demand Factor-basedReliability Analysis of Water Distribution Systems. Advances in EngineeringSoftware,2005,36(11):789-796.
    [87]徐超,李树平.基于管网可靠性的阀门布局优化设计[J].给水排水,2010,36(11):169-172.
    [88] Ostfeld A. Reliability Analysis of Water Distribution Systems[J].Journal ofHydroinformatics,2004,6(4):281-294.
    [89] Kalungi P,Tanyimboh T T. Redundancy Model for Water DistributionSystems[J]. Reliability Engineering and System Safety,2003(82):275-286.
    [90]张宏伟,王晨婉,牛志广等.城市供水管网物理模型构建方法[J].天津大学学报,2008,41(7):859-863.
    [91]王旭冕,黄廷林,刘勇等.管流变态模拟的相似理论研究[J].西安建筑科技大学学报,2006,38(2):294-296.
    [92]岳琳.城市供水管网运行状态研究[D].天津:天津大学环境工程学科博士学位论文,2008:16-20.
    [93]贾辉.城市供水管网渗漏水力特性研究[D].天津:天津大学环境工程学科博士学位论文,2008:81-92.
    [94]王晨婉.城市供水管网物理模型构建方法的研究[D].天津:天津大学环境工程学科硕士学位论文,2007:1-2.
    [95] Rossman L A. Epanet2User’s Manual [M]. Cincinnati: U.S. EnvironmentalProtection Agency,2000:13-26.
    [96] Bureerat S, Sriworamas K. Simultaneous Topology and Sizing Optimizationof a Water Distribution Network Using a Hybrid Multiobjective EvolutionaryAlgorithm[J]. Applied Soft Computing,2013(13):3693-3702.
    [97]岳琳,张宏伟,汪震等.基于变态相似理论的供水管网试验模型研究[J].中国给水排水,2009,25(1):45-48.
    [98] Atiquzzaman M, Liong S Y, Yu, X Y. Alternative Decision Making in WaterDistribution Network with NSGA-II[J]. Journal of Water Resources Planningand Management,2006,132(2):122-126.
    [99] Tolson B A, Maier H R, Simpson A R, et al. Genetic Algorithms forReliability-based Optimization of Water Distribution Systems [J]. Journal ofWater Resources Planning and Management,2004,130(1):63-72.
    [100] Su Y, Mays L W, Duan N, et al. Reliability-based Optimization Model forWater Distribution Systems [J]. Journal of Hydraulic Engineering,1987,113(12):1539-1556.
    [101] Goulter I C, Coals A V. Quantitative Approaches to Reliability Assessment inPipe Networks[J]. Journal of Transportation Engineering,1986,112(3):287-301.
    [102]张土乔,康会宾,毛根海.城市给水管网可靠性分析初探.浙江大学学报(自然科学版),1998,32(3):243-250.
    [103]朱晔,寇新建.给水管网可靠性分析中系统问题的研究[J].上海电力学院学报,2007,23(2):167-172.
    [104]金星,洪延姬,沈怀荣,等.工程系统可靠性数值分析方法[M].北京:国防工业出版社,2002:127-133.
    [105]高杨.给水管网系统水力可靠性评价方法研究[D].哈尔滨:哈尔滨工业大学水力学学科硕士学位论文,2008:26-28.
    [106]高龙.基于图论的给水管网可靠性分析[D].哈尔滨:哈尔滨工业大学流体力学学科硕士学位论文,2009:37-38.
    [107]潘永昌,储诚山,徐志标,等.基于遗传算法的给水管网多目标优化设计[J].给水排水,2008,34:343-347.
    [108] Sargaonkar A,Kamble S,Rao R. Model Study for Rehabilitation Planning ofWater Supply Network[J]. Computers,Environment and Urban Systems,2013(39):172-181.
    [109] Kao J J, Li P H. A Segment Based Optimization Model for Water PipelineReplacement[J]. Journal of American Water Works Association,2007,99(7):83-95.
    [110] Zhang W,Chung G,Louis P P,et al. Reclaimed Water Distribution NetworkDesign under Temporal and Spatial Growth and Demand Uncertainties[J].Environmental Modelling and Software,2013(49):103-117.
    [111] Hsu N S,Cheng W C,Cheng W M,et al. Optimization and Capacity Expansionof a Water Distribution System[J]. Advances in Water Resources,2008(31):776-786.
    [112] Dandy G C,Engelhardt M O. Multi-Objective Trade-Offs between Cost andReliability in the Replacement of Water Mains[J]. Journal of Water ResourcesPlanning and Management,2006,132(2):79-88.
    [113] Koppel T,Vassiljev A. Use of Modelling Error Dynamics for the Calibration ofWater Distribution Systems[J]. Advances in Engineering Software,2012(45):188-196.
    [114]伍悦滨,王芳,曹慧哲,等.工程流体力学[M].北京:中国建筑工业出版社,2006:156-158.
    [115]樊耀星,何军,刘扬,等.阀门局部水头损失系数计算机方法[J].黑龙江水专学报,2008,35(1):58-59.
    [116] Giustolisi O, Savic D. Identification of Segments and Optimal Isolation ValveSystem Design in Water Distribution Networks[J]. Urban Water,2010,7(1):1-15.
    [117] Creaco E, Franchini M, Alvisi S. Optimal Placement of Isolation Valves inWater Distribution Systems Based on Valve Cost and Weighted AverageDemand Shortfall[J]. Water Resources Management,2010,24(15):4317-4338.
    [118] Fujiwara O,Li J. Reliability Analysis of Water Distribution Networks inConsideration of Equity, Redistribution, and Pressure-dependent Demand[J].Water Resources Research,1998,34(7):1843-1850.
    [119] Jun H, Loganathan G V. Valve-controlled Segments in Water DistributionSystems[J]. Journal of Water Resources Planning and Management,2007,133(2):145-155.
    [120] Giustolisi O, Kapelan Z, Savic D A. Extended Period Simulation AnalysisConsidering Valve Shutdowns[J]. Journal of Water Resources Planning andManagement,2008,134(6):527-537.
    [121]吕志成.城市供水管网系统爆管事故状态下的优化调度研究[D].哈尔滨:哈尔滨工业大学市政工程学科硕士学位论文,2006:39-40.
    [122] Kurek W,Ostfeld A. Multi-objective Optimization of Water Quality, PumpsOperation, and Storage Sizing of Water Distribution Systems[J]. Journal ofEnvironmental Management,2013(115):189-197.
    [123] Deb K. Multi-objective Genetic Algorithms: Problem Difficulties andConstruction of Test Problems[J]. Evolutionary Computation,1999,7(3):205.
    [124] Fu G,Kapelan Z,Kasprzyk J R,et al. Optimal Design of Water DistributionSystems Using Many-Objective Visual Analytics[J]. Journal of WaterResources Planning and Management,2013,139(6):624-633.
    [125] Herstein L M, Filion Y R, Hall K R. Evaluating the Environmental Impacts ofWater Distribution Systems by Using EIO-LCA-based Multi-objectiveOptimization[J]. Journal of Water Resources Planning and Management,2011,137(2):162-172.
    [126] Ciaponi C,Franchioli L,Papiri S. Simplified Procedure for Water DistributionNetworks Reliability Assessment[J]. Journal of Water Resources Planning andManagement,2012,138(4):368-376.
    [127]庄宝玉,赵新华,李霞.基于延时模拟的供水管网可靠性分析[J].中国给水排水,2009,25(21):105-108.
    [128] Walski T M. Water Distribution Valve Topology for Reliability Analysis [J].Reliability Engineering and System Safety,1993,42(1):21-27.
    [129]赵原林.环状热网可靠性的研究[D].哈尔滨:哈尔滨工业大学市政工程学科硕士学位论文,2007:9-12.
    [130] Pelletier G., Mailhot A, Villeneuve J. Modeling Water Pipe Breaks-ThreeCase Studies[J]. Journal of Water Resources Planning and Management,2003,129(2):115-123.
    [131]李鹏峰.基于可靠性的给水管网系统水力分析与研究[D].合肥:合肥工业大学市政工程学科硕士学位论文,2007:39-41.
    [132] Xu Q,Chen Q,Ma J,et al. Optimal Pipe Replacement Strategy Based on BreakRate Prediction through Genetic Programming for Water DistributionNetwork[J]. Journal of Hydro-environment Research,2013(7):134-140.
    [133]唐子易.供水系统可靠性分析[D].重庆:重庆大学市政工程学科硕士学位论文,2011:5-11.
    [134]郭波,武小悦.系统可靠性分析[M].长沙:国防科技大学出版社,2002:12-16.
    [135] Xu C C, Goulter I C. Probabilistic Model for Water Distribution Reliability [J].Journal of Water Resources Planning and Management,1998,124(4):218-228.
    [136]张移.山地城市供水管网可靠性研究[D].重庆:重庆大学市政工程学科硕士学位论文,2012:43-44.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700