大气二氧化碳浓度升高对玉米幼苗碳氮资源分配的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大气CO_2浓度不断升高是全球气候变化的主要组成部分,其对个体植株生理生态过程的调节直接影响到群落组成与大气-植物-土壤圈的物质循环。在降雨量小、蒸发量大且土壤贫瘠的黄土高原,作物生长遭受着土壤干旱-复水(有限降雨)-干旱的循环过程,干旱与氮素缺乏是作物生长的主要限制因素。目前关于CO_2浓度升高对C_3植物生理过程的影响与调控的工作较多,而C4植物对CO_2浓度升高的生理生态适应性仍存在不少争论。光合调节是植株适应气候变化最直接的表现方式,体内碳氮分配与转运策略是评估植株长期适应能力的主要内容。研究CO_2浓度升高、干旱与氮素胁迫三者的交互作用对C4植物光合能力与体内碳氮分配与转运策略的影响有利于为探索旱区植物对未来气候变化的适应性提供理论依据。
     本研究以水培玉米幼苗为试验材料,采用人工气候室内控制CO_2浓度,聚乙二醇(PEG-6000)模拟水分胁迫的方法,利用碳氮化学计量技术、同位素示踪技术、叶绿素荧光和气体交换测定技术,从玉米生长、光合生理、碳氮分配及转运、碳氮利用等角度,研究了水分胁迫下高浓度CO_2减轻叶片光合抑制的作用机制、源库器官活力对植株生长的影响,分析了高浓度CO_2提高源库器官活力的途径,探讨了氮胁迫抑制高浓度CO_2作用的机理,以及受旱植株对不同程度复水的生理适应能力。主要研究结果如下:
     (1) CO_2倍增显著减少了受旱玉米叶片有活性的PSII反应中心数目,提高了单位反应中心光能捕获、转化与传递能力,进而增强叶片单位横截面积的能量流动效率及电子传递速率;在碳反应过程中,CO_2倍增使受旱植株具有较高饱和光合速率,表明CO_2倍增可以通过提高光能利用为碳反应提高较多还原力。
     (2)在正常供氮条件下,CO_2倍增可通过增强玉米叶片PEPC的羧化能力(V_(pmax))并减轻气孔限制(SL)缓解由水分胁迫产生的光合限制;在氮素限制条件下,CO_2倍增可通过提高玉米叶片Rubisco羧化能力(V_(max))并减轻气孔限制,部分地减缓光合限制。CO_2倍增下氮素限制使植株向叶片分配较多氮素,提高光合氮利用效率并降低整株氮利用效率。CO_2倍增可以减轻干旱对叶片光合作用的抑制,但随着植物氮素供应水平不同,其受抑程度也存在一定差异。
     (3)CO_2倍增加快了受旱植株源叶碳输出速度、老叶碳输出量、以及库叶碳输入量,并减少了碳素从地下部向地上部的反向运输。CO_2倍增延长了新固定氮素在根系中的存留时间,增加了库叶氮素的总输入量。CO_2倍增改变了体内碳氮分配与再利用方式,使库叶碳氮素供应显著增加,并增强了植株生物量与碳氮素积累,表明CO_2倍增有助于减轻植株受水分胁迫的影响。
     (4)CO_2浓度升高显著提高了玉米整株氮素积累量与库叶氮积累量。停止氮素供应后,高浓度CO_2下水分胁迫处理通过减缓玉米功能叶“新氮”输入速度,加快库叶“新氮”输入速度,并减少库叶“老氮”输入量以维持受旱植株生长,对老叶氮素的输出没有显著提高。
     (5)受旱玉米复水后,CO_2倍增较正常CO_2使玉米植株具有较低的含水量与较高的生长速率,并具有较高的光合能力(F_v/F_m, Φ_(PSII), P_n, P_n/T_rand P_n/G_s)与新叶生长潜力,即使在低氮条件下也是如此,说明CO_2倍增通过较高的光合能力与较低含水量使植株提高水分利用效率、增强生物量积累。
Rises in ambient CO_2are expected to cause global climate changes, includingincreases in air temperature and shifts of regional scale rainfall patterns, which leadto decreased soil water availability in some areas of the world. Elevated CO_2affectplant physiological and ecosystem processes and probably lead to the suppression ofplant N availability that limits the effect of CO_2fertilization. Previous study haveshown that C_3plants under elevated CO_2often maintain growth during short termdrought due to improved water use efficiency, however, reduce long-term adaptionand result in down-regulation of photosynthesis. The maintenance of rapid growthunder conditions of CO_2enrichment is directly related to the capacity ofphotosynthesis and carbon and nitrogen transport in plants and its contribution to thenew foliar formation. Less is known about the phorosynthesis and carbon andnitrogen transport in C4plants in response to drought, N limitation, precipitationfrequency and increasing CO_2.
     To test the effects of water and nitrogen limitation on plants under elevated CO_2,maize (Zea mays), the world's most important C4crop, was planted to experiencecombined elevated CO_2(380or750μmolmol~(-1), climate chamber), water stress (15%PEG-6000) and nitrogen limitation (N deficiency treated since the144th droughthour) and rewatered at three intensities (300mL,600mL,900mL of distilled water).During the growing period, the performance of PSII and electron transport,stomatallimitation, non-stomatal limitation, photosynthetic potential parameters, leafnitrogen use efficiency, patterns of carbon and nitrogen delivery, and new leafproductivities of the maize plants were investigated using chlorophyll-a fluorescenceOJIP induction curves, A/Cicurves and~(13)C and~(15)N as tracers.
     (1). Compared to water-stressed maize under atmospheric CO_2, the elevated CO_2treatment interacted with water stress decreased number of active reactioncenters but increased antenna size and energy flux (absorb photon flux, trapping fluxand electron transport flux) of per reaction center in PSII. So the electron transportrate (J) was increased, despite of the indistinctively changed quantum yield forelectron transport and energy dissipation. In carbon reaction, the combination ofelevated CO_2and water stress treatment had the robust saturated photosynthetic rate(A_(sat)). This study demonstrates that maize at doubled CO_2was capable oftransporting more electron flow into carbon reaction.
     (2). Elevated CO_2could alleviate drought-induced photosynthetic limitationthrough increasing capacity of PEPC carboxylation (Vpmax) and decreasing stomatallimitations (SL). The N deficiency exacerbated drought-induced photosynthesislimitations in ambient CO_2. Elevated CO_2partially alleviated the limitation inducedby drought and N deficiency through improving the capacity of Rubiscocarboxylation (Vmax) and decreasing SL. Plants with N deficiency transported moreN to their leaves at elevated CO_2, leading to a high photosynthetic nitrogen-useefficiency but low whole-plant nitrogen-use efficiency. The stress mitigation byelevated CO_2under N deficiency conditions was not enough to improving plant Nuse efficiency and biomass accumulation. The study demonstrated that elevated CO_2could alleviate drought-induced photosynthesis limitation, but the alleviation variedwith N supplies.
     (3). Compared to water-stressed maize under atmospheric CO_2, the treatmentcombining elevated CO_2with water stress increased the accumulation of biomassand partitioned more carbon and nitrogen to the formation of new leaves. Maizeseedlings enhanced the carbon resource in aging leaves and the carbon pool in newleaves but decreased the carbon counterflow capability of roots. The seedlings alsohad increased residence times of new nitrogen in roots and then delivered morenitrogen to new leaves. Thus maize supported the development of new leaves atelevated levels of CO_2by altering the transport and remobilization of carbon andnitrogen. In drought presence condition, increased activity of new leaves to storecarbon and nitrogen sustains enhanced growth under elevated CO_2in maize.
     (4). Elevated CO_2significently increased the accumulation of nitrogen inwhole plant and new leaves. With nitrogen starvation, elevated CO_2retard the newnitrogen transport in functional leaves, accelerate the new nitrogen transport in new leaves to sustains growth under drought.
     (5). After they were rewatered, pre-drought stressed and N limited plants withambient CO_2increased their water content higher than that of elevated CO_2, whilethe enhancement of growth rate were negatively proportional to the increasing plantwater content. Elevated CO_2could help rewatered seedlings to have higherphotosynthetic capacity (F_v/F_m, Φ_(PSII), P_n, P_n/T_rand P_n/G_s) and new leaf recoveryability under low water content, no matter the seedlings suffered nitrogen deficiencyor not. The study demonstrated that elevated CO_2could help drought stressedseedlings to have higher carbon assimilation rates under low water uptakes, as aresult to improve leaf water use efficiency, which allows the plants to have muchbetter performance under drought following being re-watered.
引文
[1] IPCC. Climate change2007: the physical science basis [J]. Agenda,2007,6:07.
    [2] Long S.P., Ainsworth E.A., Rogers A., et al. Rising atmospheric carbondioxide: Plants face the future [J]. Annu Rev Plant Biol,2004,55:591-628.
    [3] Reich P.B., Hungate B.A., Luo Y. Carbon-nitrogen interactions in terrestrialecosystems in response to rising atmospheric carbon dioxide [J]. AnnualReview of Ecology, Evolution, and Systematics,2006,37(1):611-36.
    [4] Westoby M., Falster D.S., Moles A.T., et al. Plant ecological strategies: Someleading dimensions of variation between species [J]. Annual review of ecologyand systematics,2002,33:125-59.
    [5] Niklas K.J., Enquist B.J. Canonical rules for plant organ biomass partitioningand annual allocation [J]. American Journal of Botany,2002,89(5):812-9.
    [6] Jackson R.B., Mooney H.A., Schulze E.D. A global budget for fine rootbiomass, surface area, and nutrient contents [J]. P Natl Acad Sci USA,1997,94(14):7362-6.
    [7] Urabe J., Elser J.J., Kyle M., et al. Herbivorous animals can mitigateunfavourable ratios of energy and material supplies by enhancing nutrientrecycling [J]. Ecol Lett,2002,5(2):177-85.
    [8] Hessen D.O., Agren G.I., Anderson T.R., et al. Carbon, sequestration inecosystems: The role of stoichiometry [J]. Ecology,2004,85(5):1179-92.
    [9] Houghton R.A. Counting terrestrial sources and sinks of carbon [J]. ClimaticChange,2001,48(4):525-34.
    [10]山仑,邓西平,康绍忠.我国半干旱地区农业用水现状及发展方向[J].水利学报,2002,9(9):27-31.
    [11]高亚军,李生秀.黄土高原地区农田水氮效应[J].植物营养与肥料学报,2003,9(1):14-8.
    [12]任书杰,曹明奎,陶波, et al.陆地生态系统氮状态对碳循环的限制作用研究进展[J].地理科学进展,2006,25(4):58-67.
    [13]于贵瑞,方华军,伏玉玲, et al.区域尺度陆地生态系统碳收支及其循环过程研究进展[J].生态学报,2011,31(19):
    [14] Wright I.J., Reich P.B., Westoby M., et al. The worldwide leaf economicsspectrum [J]. Nature,2004,428(6985):821-7.
    [15] Gutierrez D., Gutierrez E., Perez P., et al. Acclimation to future atmosphericCO2levels increases photochemical efficiency and mitigates photochemistryinhibition by warm temperatures in wheat under field chambers [J]. PhysiolPlantarum,2009,137(1):86-100.
    [16] Martinez-Carrasco R., Perez P., Morcuende R. Interactive effects of elevatedCO2, temperature and nitrogen on photosynthesis of wheat grown undertemperature gradient tunnels [J]. Environ Exp Bot,2005,54(1):49-59.
    [17] Sarker B.C., Hara M. Effects of elevated CO2and water stress on theadaptation of stomata and gas exchange in leaves of eggplants (Solanummelongena L.)[J]. Bangladesh Journal of Botany,2011,40(1):1-8.
    [18]张其德,卢从明,刘丽娜, et al. CO2浓度倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响[J].植物学报,1997,39(9):845-8.
    [19]林世青,卢从明,刘丽娜.二氧化碳加富对大豆叶片光系统II功能的影响[J].植物生态学报,1996,20(6):517-23.
    [20]卢从明,张其德. CO2加富对杂交稻及其亲本原初光能转化效率和激发能分配的影响[J].生物物理学报,1996,12(4):731-4.
    [21] Ainsworth E.A., Rogers A. The response of photosynthesis and stomatalconductance to rising [CO2]: mechanisms and environmental interactions [J].Plant Cell Environ,2007,30(3):258-70.
    [22] Albert K.R., Mikkelsen T.N., Michelsen A., et al. Interactive effects of drought,elevated CO2and warming on photosynthetic capacity and photosystemperformance in temperate heath plants [J]. J Plant Physiol,2011,168(13):1550-61.
    [23]唐如航,郭连旺,陈根云.大气CO2浓度倍增对水稻光合速率和Rubisco的影响[J].植物生理学报,1998,24(3):309-12.
    [24] Wand S.J.E., Midgley G.F., Jones M.H., et al. Responses of wild C4and C3grass (Poaceae) species to elevated atmospheric CO2concentration: ameta-analytic test of current theories and perceptions [J]. Global Change Biol,1999,5(6):723-41.
    [25] Sage R.F., Kubien D.S. Quo vadis C4? An ecophysiological perspective onglobal change and the future of C4plants [J]. Photosynth Res,2003,77(2-3):209-25.
    [26] Ghannoum O., Evans J.R., Caemmerer S. Chapter8Nitrogen and Water UseEfficiency of C4Plants [M]. C4Photosynthesis and Related CO2ConcentratingMechanisms.2011:129-46.
    [27] Poorter H. Interspecific variation in the growth response of plants to anelevated ambient CO2concentration [J]. Plant Ecology,1993,104(1):77-97.
    [28] Ghannoum O., Von Caemmerer S., Ziska L.H., et al. The growth response ofC4plants to rising atmospheric CO2partial pressure: a reassessment [J]. PlantCell Environ,2000,23(9):931-42.
    [29] Stitt M. Rising CO2levels and their potential significance for carbon flow inphotosynthetic cells [J]. Plant, Cell&Environment,1991,14(8):741-62.
    [30] Zhou Z.C., Shangguan Z.P. Effects of elevated CO2concentration on thebiomasses and nitrogen concentrations in the organs of sainfoin (Onobrychisviciaefolia Scop.)[J]. Agricultural Sciences in China,2009,8(4):424-30.
    [31] Furbank R.T., Chitty J.A., vonCaemmerer S., et al. Antisense RNA inhibitionof RbcS gene expression reduces rubisco level and photosynthesis in the C4plant Flaveria bidentis [J]. Plant Physiol,1996,111(3):725-34.
    [32] Schneider M.K., Lüscher A., Richter M., et al. Ten years of free-air CO2enrichment altered the mobilization of N from soil in Lolium perenne L.swards [J]. Global Change Biology,2004,10(8):1377-88.
    [33] Dukes J.S., Chiariello N.R., Cleland E.E., et al. Responses of grasslandproduction to single and multiple global environmental changes [J]. Plos Biol,2005,3(10):1829-37.
    [34] Reich P.B., Hobbie S.E., Lee T., et al. Nitrogen limitation constrainssustainability of ecosystem response to CO2[J]. Nature,2006,440(7086):922-5.
    [35]韩雪,郝兴宇,王贺然, et al. FACE条件下冬小麦生长特征及产量构成的影响[J].中国农学通报,2012,28(36):154-9.
    [36] Cheng L, Zhu JG, Chen G, et al. Atmospheric CO2enrichment facilitates cationrelease from soil [J]. Ecol Lett,2010,13:284-91.
    [37] Shaw M.R., Zavaleta E.S., Chiariello N.R., et al. Grassland responses to globalenvironmental changes suppressed by elevated CO2[J]. Science,2002,298(5600):1987-90.
    [38] Reich P.B., Knops J., Tilman D., et al. Plant diversity enhances ecosystemresponses to elevated CO2and nitrogen deposition [J]. Nature,2001,410(6830):809-12.
    [39] Reich P.B., Tilman D., Naeem S., et al. Species and functional group diversityindependently influence biomass accumulation and its response to CO2and N[J]. P Natl Acad Sci USA,2004,101(27):10101-6.
    [40] Haile-Mariam S., Cheng W., Johnson D., et al. Use of C13and C14to measurethe effects of carbon dioxide and nitrogen fertilization on carbon dynamics inponderosa pine [J]. Soil Science Society of America Journal,2000,64(6):1984-93.
    [41] Sigurdsson B.D., Thorgeirsson H., Linder S. Growth and dry-matterpartitioning of young Populus trichocarpa in response to carbon dioxideconcentration and mineral nutrient availability [J]. Tree Physiology,2001,21(12-13):941-50.
    [42]侯晶东,曹兵,宋丽华. CO2浓度倍增对宁夏枸杞光合特性的影响[J].南京林业大学学报(自然科学版),2012,36(5):
    [43] Kim H.Y., Lieffering M., Kobayashi K., et al. Seasonal changes in the effectsof elevated CO2on rice at three levels of nitrogen supply: a free air CO2enrichment (FACE) experiment [J]. Global Change Biology,2003,9(6):826-37.
    [44] Okada M., Lieffering M., Nakamura H., et al. Free-air CO2enrichment (FACE)using pure CO2injection: System description [J]. New Phytologist,2001,150(2):251-60.
    [45] Seneweera S., Makino A., Hirotsu N., et al. New insight into photosyntheticacclimation to elevated CO2: The role of leaf nitrogen andribulose-1,5-bisphosphate carboxylase/oxygenase content in rice leaves [J].Environmental and Experimental Botany,2011,71(2):128-36.
    [46] Kim H.Y., Lim S.S., Kwak J.H., et al. Dry matter and nitrogen accumulationand partitioning in rice (Oryza sativa L.) exposed to experimental warmingwith elevated CO2[J]. Plant and Soil,2011,342(1-2):59-71.
    [47] Wardlaw I. The effect of water stress on translocation in relation tophotosynthesis and growth [J]. Australian journal of biological sciences,1969,22(1):1-16.
    [48] Martin C., Glover B.J. Functional aspects of cell patterning in aerial epidermis[J]. Current opinion in plant biology,2007,10(1):70-82.
    [49] Casson S., Gray J.E. Influence of environmental factors on stomataldevelopment [J]. New Phytologist,2008,178(1):9-23.
    [50] Ainsworth E.A., Bush D.R. Carbohydrate Export from the Leaf: A HighlyRegulated Process and Target to Enhance Photosynthesis and Productivity [J].Plant Physiology,2010,155(1):64-9.
    [51] Leakey A.D.B., Ainsworth E.A., Bernacchi C.J., et al. Elevated CO2effects onplant carbon, nitrogen, and water relations: six important lessons from FACE[J]. Journal of Experimental Botany,2009,60(10):2859-76.
    [52] Drake B.G., GonzalezMeler M.A., Long S.P. More efficient plants: Aconsequence of rising atmospheric CO2?[J]. Annu Rev Plant Phys,1997,48:609-39.
    [53] Long S.P., Ainsworth E.A., Leakey A.D.B., et al. Food for thought:Lower-than-expected crop yield stimulation with rising CO2concentrations [J].Science,2006,312(5782):1918-21.
    [54]上官周平,李世清.旱地作物氮素营养生理生态[M].科学出版社,2004.
    [55] Millard P., Grelet G.a. Nitrogen storage and remobilization by trees:ecophysiological relevance in a changing world [J]. Tree Physiology,2010,30(9):1083-95.
    [56] Chapin III F.S., Schulze E.D., Mooney H.A. The ecology and economics ofstorage in plants [J]. Annual review of ecology and systematics,1990,423-47.
    [57] Tilman D. Plant Strategies and the Dynamics and Structure of PlantCommunities.(MPB-26)[M]. Princeton University Press,1988.
    [58] Dewar R. A root-shoot partitioning model based on carbon-nitrogen-waterinteractions and Munch phloem flow [J]. Functional Ecology,1993,356-68.
    [59] Hoch G., Richter A., K rner C. Non-structural carbon compounds in temperateforest trees [J]. Plant, Cell&Environment,2003,26(7):1067-81.
    [60] Würth M.K.R., Pelaez-Riedl S., Wright S.J., et al. Non-structural carbohydratepools in a tropical forest [J]. Oecologia,2005,143(1):11-24.
    [61] Palacio S., Hester A., Maestro M., et al. Browsed Betula pubescens trees arenot carbon-limited [J]. Functional Ecology,2008,22(5):808-15.
    [62] Spann T.M., Beede R.H., Dejong T.M. Seasonal carbohydrate storage andmobilization in bearing and non-bearing pistachio (Pistacia vera) trees [J].Tree Physiology,2008,28(2):207-13.
    [63] Sauter J.J., Vancleve B. Storage, Mobilization and Interrelations of Starch,Sugars, Protein and Fat in the Ray Storage Tissue of Poplar Trees [J].Trees-Struct Funct,1994,8(6):297-304.
    [64] Hoch G., Korner C. The carbon charging of pines at the climatic treeline: aglobal comparison [J]. Oecologia,2003,135(1):10-21.
    [65] Taiz L., Zeiger E. Plant Physiology [M]. Fourth ed. Sunderland: SinauerAssociates, Inc.,2006.
    [66]平晓燕,周广胜,孙敬松.植物光合产物分配及其影响因子研究进展[J].植物生态学报,2010,34(1):100-11.
    [67] Cotrufo M., Gorissen A. Elevated CO2enhances below‐ground C allocationin three perennial grass species at different levels of N availability [J]. NewPhytologist,1997,137(3):421-31.
    [68] Ge Z.-M., Zhou X., Kellom ki S., et al. Carbon assimilation and allocation(13C labeling) in a boreal perennial grass (Phalaris arundinacea) subjected toelevated temperature and CO2through a growing season [J]. Environmentaland Experimental Botany,2012,75:150-8.
    [69] Iversen C.M., Ledford J., Norby R.J. CO2enrichment increases carbon andnitrogen input from fine roots in a deciduous forest [J]. New Phytologist,2008,179(3):837-47.
    [70]樊艳文,王襄平,曾令兵, et al.北京栓皮栎林胸径-树高相关生长关系的分析[J].北京林业大学学报,2011,33(6):146-50.
    [71]薛香,吴玉娥,陈荣江, et al.小麦籽粒灌浆过程的不同数学模型模拟比较[J].麦类作物学报,2006,26(6):169-71.
    [72]朱艳,曹卫星,王其猛, et al.基于知识模型和生长模型的小麦管理决策支持系统[J].中国农业科学,2004,37(6):814-20.
    [73] Cheng D.-L., Niklas K.J. Above-and below-ground biomass relationshipsacross1534forested communities [J]. Ann Bot-London,2007,99(1):95-102.
    [74] McCarthy M., Enquist B. Consistency between an allometric approach andoptimal partitioning theory in global patterns of plant biomass allocation [J].Functional Ecology,2007,21(4):713-20.
    [75] Wenxuan H., Jingyu F. Allometry and its application in ecological scaling [J].Acta Scientiarum Naturalium Universitatis Pekinensis,2003,39(4):583-93.
    [76] Cheng W., Sakai H., Yagi K., et al. Combined effects of elevated [CO2] andhigh night temperature on carbon assimilation, nitrogen absorption, and theallocations of C and N by rice (Oryza sativa L.)[J]. Agricultural and ForestMeteorology,2010,150(9):1174-81.
    [77] Ruehr N.K., Offermann C.A., Gessler A., et al. Drought effects on allocationof recent carbon: from beech leaves to soil CO2efflux [J]. New Phytologist,2009,184(4):950-61.
    [78] Millard P., Sommerkorn M., Grelet G.A. Environmental change and carbonlimitation in trees: a biochemical, ecophysiological and ecosystem appraisal[J]. New Phytologist,2007,175(1):11-28.
    [79] Anten N.P.R., Schieving F., Werger M.J.A. Patterns of Light and NitrogenDistribution in Relation to Whole Canopy Carbon Gain in C-3and C-4Monocotyledonous and Dicotyledonous Species [J]. Oecologia,1995,101(4):504-13.
    [80]王忠强,吴良欢,刘婷婷, et al.供氮水平对爬山虎(Parthenocissustricuspidata Planch)生物量及养分分配的影响[J].生态学报,2007,27(8):3435-3441
    [81] Silla F., Escudero A. Uptake, demand and internal cycling of nitrogen insaplings of Mediterranean Quercus species [J]. Oecologia,2003,136(1):28-36.
    [82]范志强,王政权,吴楚, et al.不同供氮水平对水曲柳苗木生物量,氮分配及其季节变化的影响[J].应用生态学报,2004,15(9):1497-501.
    [83] Gastal F., Lemaire G. N uptake and distribution in crops: an agronomical andecophysiological perspective [J]. J Exp Bot,2002,53(370):789-99.
    [84] Hikosaka K., Terashima I., Katoh S. Effects of Leaf Age, Nitrogen Nutritionand Photon Flux-Density on the Distribution of Nitrogen among Leaves of aVine (Ipomoea-Tricolor-Cav) Grown Horizontally to Avoid Mutual Shading ofLeaves [J]. Oecologia,1994,97(4):451-7.
    [85] Shiraiwa T., Sinclair T.R. Distribution of Nitrogen among Leaves in SoybeanCanopies [J]. Crop Sci,1993,33(4):804-8.
    [86] Dreccer M.F., Van Oijen M., Schapendonk A.H.C.M., et al. Dynamics ofvertical leaf nitrogen distribution in a vegetative wheat canopy. Impact oncanopy photosynthesis [J]. Ann Bot-London,2000,86(4):821-31.
    [87] Milroy S.P., Bange M.P., Sadras V.O. Profiles of leaf nitrogen and light inreproductive canopies of cotton (Gossypium hirsutum)[J]. Ann Bot-London,2001,87(3):325-33.
    [88] Millard P., Thomson C. The effect of the autumn senescence of leaves on theinternal cycling of nitrogen for the spring growth of apple trees [J]. J Exp Bot,1989,40(11):1285-9.
    [89] Nambiar E., Fife D. Growth and nutrient retranslocation in needles of radiatapine in relation to nitrogen supply [J]. Ann Bot-London,1987,60(2):147-56.
    [90] Millard P., Proe M.F. Storage and Internal Cycling of Nitrogen in Relation toSeasonal Growth of Sitka Spruce [J]. Tree Physiology,1992,10(1):33-43.
    [91] Millard P., Hester A., Wendler R., et al. Interspecific defoliation responses oftrees depend on sites of winter nitrogen storage [J]. Functional Ecology,2001,15(4):535-43.
    [92] Manter D.K., Kavanagh K.L., Rose C.L. Growth response of Douglas-firseedlings to nitrogen fertilization: importance of Rubisco activation state andrespiration rates [J]. Tree Physiology,2005,25(8):1015-21.
    [93] Cheng L., Fuchigami L.H. Growth of young apple trees in relation to reservenitrogen and carbohydrates [J]. Tree Physiology,2002,22(18):1297-303.
    [94] Reich P.B., Hungate B.A., Luo Y. Carbon-nitrogen interactions in terrestrialecosystems in response to rising atmospheric carbon dioxide [J]. AnnualReview of Ecology, Evolution, and Systematics,2006,611-36.
    [95] Gastal F., Saugier B. Relationships between nitrogen uptake and carbonassimilation in whole plants of tall fescue [J]. Plant, Cell&Environment,2006,12(4):407-18.
    [96] Wong S. Elevated atmospheric partial pressure of CO2and plant growth. I.Interactions of nitrogen nutrition and photosynthetic capacity in C3and C4plants [J]. Oecologia (Berl),1979,44:68-74.
    [97] Mooney H., Gulmon S. Environmental and evolutionary constraints on thephotosynthetic characteristics of higher plants [J]. Topics in plant populationbiology Columbia University Press, New York,1979,316:337.
    [98] Field C., Mooney H. The photosynthesis-nitrogen relationship in wild plants[M]//Givnish T. On the Economy of Plant form and Function. Cambridge, UK;Cambridge University Press.1986:25-55.
    [99] Dyckmans J., Flessa H. Partitioning of remobilised N in young beech (Fagussylvatica L.) is not affected by elevated [CO2][J]. Ann Forest Sci,2005,62(3):285-8.
    [100] Xu Z., Zhou G., Wang Y. Combined effects of elevated CO2and soil droughton carbon and nitrogen allocation of the desert shrub Caragana intermedia [J].Plant and Soil,2007,301(1):87-97.
    [101] Robinson J.M. Spinach Leaf Chloroplast CO2and NO2PhotoassimilationsDo Not Compete for Photogenerated Reductant Manipulation of ReductantLevels by Quantum Flux Density Titrations [J]. Plant physiology,1988,88(4):1373-80.
    [102] Farrar J.F., Gunn S. Effects of temperature and atmospheric carbon dioxide onsource-sink relations in the context of climate change [J]. PhotoassimilateDistribution and Crops,1996,389-406.
    [103] Tingey D.T., Mckane R.B., Olszyk D.M., et al. Elevated CO2and temperaturealter nitrogen allocation in Douglas‐fir [J]. Global Change Biology,2003,9(7):1038-50.
    [104]许振柱,周广胜.全球变化下植物的碳氮关系及其环境调节研究进展—从分子到生态系统[J].植物生态学报,2007,31(4):738-47.
    [105] Sheen J. Feedback-Control of Gene-Expression [J]. Photosynth Res,1994,39(3):427-38.
    [106] Ainsworth E.A., Long S.P. What have we learned from15years of free—airCO2enrichment (FACE)? A meta-analytic review of the responses ofphotosynthesis, canopy properties and plant production to rising CO2[J]. NewPhytologist,2004,165(2):351-72.
    [107] Becker T.W., Perrot-Rechenmann C., Suzuki A., et al. Subcellular andimmunocytochemical localization of the enzymes involved in ammoniaassimilation in mesophyll and bundle-sheath cells of maize leaves [J]. Planta,1993,191(1):129-36.
    [108] Ellsworth D.S., Reich P.B., Naumburg E.S., et al. Photosynthesis,carboxylation and leaf nitrogen responses of16species to elevated pCO2across four free—air CO2enrichment experiments in forest, grassland anddesert [J]. Global Change Biology,2004,10(12):2121-38.
    [109] Nowak R.S., Zitzer S.F., Babcock D., et al. Elevated atmospheric CO2does notconserve soil water in the Mojave Desert [J]. Ecology,2004,85(1):93-9.
    [110] Poorter H., Nagel O. The role of biomass allocation in the growth response ofplants to different levels of light, CO2, nutrients and water: a quantitativereview [J]. Functional Plant Biology,2000,27(12):1191-97.
    [111] Andrews M., Raven J.A., Sprent J.I. Environmental effects on dry matterpartitioning between shoot and root of crop plants: relations with growth andshoot protein concentration [J]. Annals of Applied Biology,2001,138(1):57-68.
    [112] Zak D.R., Pregitzer K.S., Curtis P.S., et al. Atmospheric CO2, soil-Navailability, and allocation of biomass and nitrogen by Populus tremuloides [J].Ecological Applications,2000,10(1):34-46.
    [113] Johnson S.L., Lincoln D.E. Allocation responses to CO2enrichment anddefoliation by a native annual plant Heterotheca subaxillaris [J]. GlobalChange Biology,2001,6(7):767-78.
    [114] PA N. Carbon allocation in calcareous grassland under elevated CO2: acombined13C pulse-labelling/soil physical fractionation study [J]. FunctionalEcology,2001,15(1):43-50.
    [115] Luo Y., Su B., Currie W.S., et al. Progressive nitrogen limitation of ecosystemresponses to rising atmospheric carbon dioxide [J]. Bioscience,2004,54(8):731-9.
    [116] Farrar J., Williams M. The effects of increased atmospheric carbon dioxideand temperature on carbon partitioning, source-sink relations and respiration[J]. Plant, Cell&Environment,2006,14(8):819-30.
    [117] Suter D., Frehner M., Fischer B.U., et al. Elevated CO2increases carbonallocation to the roots of Lolium perenne under free—air CO2enrichment butnot in a controlled environment [J]. New Phytologist,2002,154(1):65-75.
    [118] Liu S.R., Barton C., Lee H., et al. Long-term response of Sitka spruce (Piceasitchensis (Bong.) Carr.) to CO2enrichment and nitrogen supply. I. Growth,biomass allocation and physiology [J]. Plant Biosystems-An InternationalJournal Dealing with all Aspects of Plant Biology,2002,136(2):189-98.
    [119] Dyckmans J., Flessa H. Influence of tree internal N status on uptake andtranslocation of C and N in beech: a dual C-13and N-15labeling approach [J].Tree Physiology,2001,21(6):395-401.
    [120] Dyckmans J., Flessa H., Polle A., et al. The effect of elevated [CO2] on uptakeand allocation of13C and15N in beech (Fagus sylvatica L.) during leafing [J].Plant Biology,2000,2(1):113-20.
    [121] Kanemoto K., Yamashita Y., Ozawa T., et al. Photosynthetic acclimation toelevated CO2is dependent on N partitioning and transpiration in soybean [J].Plant Science,2009,177(5):398-403.
    [122] Aranjuelo I., Pardo A., Biel C., et al. Leaf carbon management inslow-growing plants exposed to elevated CO2[J]. Global Change Biology,2009,15(1):97-109.
    [123] Robredo A., Pérez-López U., Miranda-Apodaca J., et al. Elevated CO2reducesthe drought effect on nitrogen metabolism in barley plants during drought andsubsequent recovery [J]. Environmental and Experimental Botany,2011,71:399-408.
    [124] Owensby C.E., Ham J., Knapp A., et al. Biomass production and speciescomposition change in a tallgrass prairie ecosystem after long‐term exposureto elevated atmospheric CO2[J]. Global Change Biology,1999,5(5):497-506.
    [125] Weerakoon W.M.W., Ingram K.T., Moss D.N. Atmospheric CO2concentrationeffects on N partitioning and fertilizer N recovery in field grown rice (Oryzasativa L.)[J]. Agriculture, Ecosystems&Environment,2005,108(4):342-9.
    [126] Wang X., Nakatsubo T., Nakane K. Impacts of elevated CO2and temperatureon soil respiration in warm temperate evergreen Quercus glauca stands: anopen-top chamber experiment [J]. Ecological Research,2012,27(3):595-602.
    [127] Norby R.J., Iversen C.M. Nitrogen uptake, distribution, turnover, andefficiency of use in a CO2-enriched sweetgum forest [J]. Ecology,2006,87(1):5-14.
    [128] Larsen K.S., Andresen L.C., Beier C., et al. Reduced N cycling in response toelevated CO2, warming, and drought in a Danish heathland: Synthesizingresults of the CLIMAITE project after two years of treatments [J]. GlobalChange Biology,2011,17(5):1884-99.
    [129]方精云,唐艳鸿.全球生态学:气候变化与生态响应[M].北京;高等教育出版社,2000.
    [130]郑淑霞,上官周平.8种阔叶树种叶片气体交换特征和叶绿素荧光特性比较[J].生态学报,2006,26(4):1080-7.
    [131] Srivastava A., Guissé B., Greppin H., et al. Regulation of antenna structureand electron transport in Photosystem II of Pisum sativum under elevatedtemperature probed by the fast polyphasic chlorophyll a fluorescence transient:OKJIP [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,1997,1320(1):95-106.
    [132] Strasser R., Tsimilli-Michael M., Srivastava A. Analysis of The Chlorophyll aFluorescence Transient [M]//Papageorgiou G., Govindjee. ChlorophyllFluorescence: A Signature of Photosynthesis, Advances in Photosynthesis andRespiration. Dordrecht, The Netherlands; Springer.2004:321-62.
    [133] Krall J.P., Edwards G.E. Relationship between photosystem II activity and CO2fixation in leaves [J]. Physiologia Plantarum,1992,86(1):180-7.
    [134] Farquhar G.D., Sharkey T.D. Stomatal conductance and photosynthesis [J].Annual Review of Plant Physiology,1982,33:317-45.
    [135] von Caemmerer S., Furbank R. Modeling C4photosynthesis [M]//Sage R.F.,Monson R.K. C4plant biology. San Diego, CA, USA; Academic Pr.1999:173–211.
    [136] Long S.P., Bernacchi C.J. Gas exchange measurements, what can they tell usabout the underlying limitations to photosynthesis? Procedures and sources oferror [J]. Journal of Experimental Botany,2003,54(392):2393-401.
    [137]鲍士旦.土壤农化分析[M].北京;中国农业出版社,2000.
    [138] Poorter H., Evans J.R. Photosynthetic nitrogen-use efficiency of species thatdiffer inherently in specific leaf area [J]. Oecologia,1998,116(1-2):26-37.
    [139] Lindroth R.L., Roth S., Nordheim E.V. Genotypic variation in response ofquaking aspen (Populus tremuloides) to atmospheric CO2enrichment [J].Oecologia,2001,126(3):371-9.
    [140] Xu Z., Zhou G., Shimizu H. Are plant growth and photosynthesis limited bypre-drought following rewatering in grass?[J]. Journal of ExperimentalBotany,2009,60(13):3737-49.
    [141] Tsimilli-Michael M., Strasser R.J. In vivo assessment of stress impact onplant’s vitality: applications in detecting and evaluating the beneficial role ofmycorrhization on host plants [M]//Varma A. Mycorrhiza: Genetics andMolecular Biology, Eco-function, Biotechnology, Eco-physiology, andStructure and Systematics. Noida, India; Springer.2008:679-703.
    [142] Strasser R.J., Tsimilli-Michael M., Qiang S., et al. Simultaneous in vivorecording of prompt and delayed fluorescence and820-nm reflection changesduring drying and after rehydration of the resurrection plant Haberlearhodopensis [J]. Biochimica et Biophysica Acta (BBA)-Bioenergetics,2010,1797(6):1313-26.
    [143] Strasser B.J., Strasser R.J. Measuring fast fluorescence transients to addressenvironmental questions: the JIP test; proceedings of the Photosynthesis: fromlight to biosphere, Montpellier, France, F,1995[C]. Kluwer Academic.
    [144] Maroco J.P., Edwards G.E., Ku M.S.B. Photosynthetic acclimation of maize togrowth under elevated levels of carbon dioxide [J]. Planta,1999,210(1):115-25.
    [145] Lawlor D.W., Tezara W. Causes of decreased photosynthetic rate andmetabolic capacity in water-deficient leaf cells: a critical evaluation ofmechanisms and integration of processes [J]. Ann Bot-London,2009,103(4):561-79.
    [146] Wilhelm C., Selmar D. Energy dissipation is an essential mechanism to sustainthe viability of plants: The physiological limits of improved photosynthesis [J].J Plant Physiol,2011,168(2):79-87.
    [147] Guan X., Gu S. Photorespiration and photoprotection of grapevine (Vitisvinifera L. cv. Cabernet Sauvignon) under water stress [J]. Photosynthetica,2009,47(3):437-44.
    [148] Jin S.H., Wang D., Zhu F.Y., et al. Up-regulation of cyclic electron flow anddown-regulation of linear electron flow in antisense-rca mutant rice [J].Photosynthetica,2008,46(4):506-10.
    [149] Oukarroum A., Schansker G., Strasser R.J. Drought stress effects onphotosystem I content and photosystem II thermotolerance analyzed using Chla fluorescence kinetics in barley varieties differing in their drought tolerance[J]. Physiol Plantarum,2009,137(2):188-99.
    [150]赵福洪,戴云玲,匡廷云. CO2浓度倍增对几种植物叶片的叶绿素蛋白质复合物的影响[J].植物学报,1997,39(9):867-73.
    [151]王可玢,娄世庆,赵福洪, et al.长期二氧化碳倍增对大豆,谷子叶片的叶绿素蛋白质复合物的影响[J].科学通报,1997,42(11):91-7
    [152] Vu J.C.V., Allen L.H. Growth at elevated CO2delays the adverse effects ofdrought stress on leaf photosynthesis of the C4sugarcane [J]. Journal of PlantPhysiology,2009,166(2):107-16.
    [153] Mu Q.Z., Zhao M.S., Heinsch F.A., et al. Evaluating water stress controls onprimary production in biogeochemical and remote sensing based models [J]. JGeophys Res-Biogeo,2007,112(G1):1216-22
    [154] Farooq M., Wahid A., Kobayashi N., et al. Plant drought stress: effects,mechanisms and management [J]. Agronomy for Sustainable Development,2009,29(1):185-212.
    [155] Chaves M.M., Flexas J., Pinheiro C. Photosynthesis under drought and saltstress: regulation mechanisms from whole plant to cell [J]. Ann Bot-London,2008,103(4):551-60.
    [156] Galloway J.N., Townsend A.R., Erisman J.W., et al. Transformation of thenitrogen cycle: Recent trends, questions, and potential solutions [J]. Science,2008,320(5878):889-92.
    [157] Luo Y., Su B., Currie W.S., et al. Progressive nitrogen limitation of ecosystemresponses to rising atmospheric carbon dioxide [J]. Bioscience,2004,54(8):731-9.
    [158] Reich P.B., Hungate B.A., Luo Y.Q. Carbon-nitrogen interactions in terrestrialecosystems in response to rising atmospheric carbon dioxide [J]. Annu RevEcol Evol S,2006,37:611-36.
    [159] Robredo A., Perez-Lopez U., Lacuesta M., et al. Influence of water stress onphotosynthetic characteristics in barley plants under ambient and elevated CO2concentrations [J]. Biol Plantarum,2010,54(2):285-92.
    [160] Prieto J.A., Louarn G., Perez Pe A J., et al. A leaf gas exchange model thataccounts for intra-canopy variability by considering leaf nitrogen content andlocal acclimation to radiation in grapevine (Vitis vinifera L.)[J]. Plant, Cell&Environment,2012,106-14.
    [161] Cerling T.E., Harris J.M., MacFadden B.J., et al. Global vegetation changethrough the Miocene/Pliocene boundary [J]. Nature,1997,389(6647):153-8.
    [162] Ghannoum O., vonCaemmerer S., Barlow E.W.R., et al. The effect of CO2enrichment and irradiance on the growth, morphology and gas exchange of aC3(Panicum laxum) and a C4(Panicum antidotale) grass [J]. Aust J PlantPhysiol,1997,24(2):227-37.
    [163] Ghannoum O. C4photosynthesis and water stress [J]. Ann Bot-London,2009,103(4):635-44.
    [164] von Caemmerer S., Furbank R. Modeling C4photosynthesis [M]//Sage R.F.,Monson R.K. C4plant biology. San Diego, CA, USA; Academic Pr.1999:173–211.
    [165] Leakey A.D.B. Rising atmospheric carbon dioxide concentration and thefuture of C4crops for food and fuel [J]. P Roy Soc B-Biol Sci,2009,276(1666):2333-43.
    [166] Allen L.H., Kakani V.G., Vu J.C.V., et al. Elevated CO2increases water useefficiency by sustaining photosynthesis of water-limited maize and sorghum[J]. Journal of Plant Physiology,2011,168(16):1909-18.
    [167] Ghannoum O., Conroy J.P. Nitrogen deficiency precludes a growth response toCO2enrichment in C3and C4Panicum grasses [J]. Aust J Plant Physiol,1998,25(5):627-36.
    [168] Ghannoum O., Evans J.R., Chow W.S., et al. Faster rubisco is the key tosuperior nitrogen-use efficiency in NADP-malic enzyme relative toNAD-malic enzyme C4grasses [J]. Plant Physiol,2005,137(2):638-50.
    [169] Markelz R.J.C., Strellner R.S., Leakey A.D.B. Impairment of C4photosynthesis by drought is exacerbated by limiting nitrogen and amelioratedby elevated CO2in maize [J]. Journal of Experimental Botany,2011,62(9):3235-46.
    [170] Zhou Z.C., Gan Z.T., Shangguan Z.P., et al. China's Grain for Green Programhas reduced soil erosion in the upper reaches of the Yangtze River and themiddle reaches of the Yellow River [J]. Int J Sust Dev World,2009,16(4):234-9.
    [171] Ellsworth D.S., Reich P.B., Naumburg E.S., et al. Photosynthesis,carboxylation and leaf nitrogen responses of16species to elevated pCO(2)across four free-air CO2enrichment experiments in forest, grassland anddesert [J]. Global Change Biol,2004,10(12):2121-38.
    [172] Crous K.Y., Walters M.B., Ellsworth D.S. Elevated CO2concentration affectsleaf photosynthesis–nitrogen relationships in Pinus taeda over nine years inFACE [J]. Tree Physiology,2008,28(4):607-14.
    [173] Zanetti S., Hartwig U.A., Luscher A., et al. Stimulation of symbiotic N2fixation in Trifolium repens L under elevated atmospheric pCO2in a grasslandecosystem [J]. Plant Physiol,1996,112(2):575-83.
    [174] Schneider M.K., Luscher A., Richter M., et al. Ten years of free-air CO2enrichment altered the mobilization of N from soil in Lolium perenne L.swards [J]. Global Change Biol,2004,10(8):1377-88.
    [175] Tobita H., Uemura A., Kitao M., et al. Effects of elevated atmospheric carbondioxide, soil nutrients and water conditions on photosynthetic and growthresponses of Alnus hirsuta [J]. Functional Plant Biology,2011,38(9):702-10.
    [176] Cabrera-Bosquet L., Albrizio R., Araus J.L., et al. Photosynthetic capacity offield-grown durum wheat under different N availabilities: A comparative studyfrom leaf to canopy [J]. Environmental and Experimental Botany,2009,67(1):145-52.
    [177] Kaschuk G., Hungria M., Leffelaar P.A., et al. Differences in photosyntheticbehaviour and leaf senescence of soybean (Glycine max L. Merrill) dependenton N2fixation or nitrate supply [J]. Plant Biology,2010,12(1):60-9.
    [178] Paul M.J., Foyer C.H. Sink regulation of photosynthesis [J]. Journal ofExperimental Botany,2001,52(360):1383-400.
    [179] Lewis J.D., Wang X.Z., Griffin K.L., et al. Effects of age and ontogeny onphotosynthetic responses of a determinate annual plant to elevated CO2concentrations [J]. Plant Cell Environ,2002,25(3):359-68.
    [180] Aranjuelo I., Ebbets A.L., Evans R.D., et al. Maintenance of C sinks sustainsenhanced C assimilation during long-term exposure to elevated [CO2] inMojave Desert shrubs [J]. Oecologia,2011,167(2):339-54.
    [181]上官周平,邵明安.土壤中山毛榉根系呼吸的碳素损失[J].土壤学报,2000,37(4):549-52.
    [182]许振柱,周广胜,肖春旺, et al. CO2浓度倍增和土壤干旱对两种幼龄沙生灌木碳分配的影响[J].植物生态学报,2005,29(2):281-8.
    [183] Andrews M., Raven J., Sprent J. Environmental effects on dry matterpartitioning between shoot and root of crop plants: relations with growth andshoot protein concentration [J]. Annals of Applied Biology,2006,138(1):57-68.
    [184] Jens D., Heiner F. Influence of tree internal N status on uptake andtranslocation of C and N in beech: a dual13C and15N labeling approach [J].Tree Physiology,2001,21:395-701.
    [185] Heckathorn S.A., DeLucia E.H., Zielinski R.E. The contribution ofdrought-related decreases in foliar nitrogen concentration to decreases inphotosynthetic capacity during and after drought in prairie grasses [J]. PhysiolPlantarum,1997,101(1):173-82.
    [186] Hungate B.A., Dukes J.S., Shaw M.R., et al. Nitrogen and climate change [J].Science,2003,302(5650):1512-3.
    [187] Hill P., Marshall C., Williams G., et al. The fate of photosynthetically-fixedcarbon in Lolium perenne grassland as modified by elevated CO2and swardmanagement [J]. New Phytologist,2007,173(4):766-77.
    [188] Wu Y., Tan H., Deng Y., et al. Partitioning pattern of carbon flux in a Kobresiagrassland on the Qinghai-Tibetan Plateau revealed by field13C pulse-labeling[J]. Global Change Biology,2010,16(8):2322-33.
    [189] Aranjuelo I., Pinto-Marijuan M., Avice J.C., et al. Effect of elevated CO2oncarbon partitioning in young Quercus ilex L. during resprouting [J]. RapidCommun Mass Sp,2011,25(11):1527-35.
    [190] Liberloo M., Lukac M., Calfapietra C., et al. Coppicing shifts CO2stimulationof poplar productivity to above-ground pools: a synthesis of leaf to stand levelresults from the POP/EUROFACE experiment [J]. New Phytologist,2009,182(2):331-46.
    [191] Stitt M., Krapp A. The interaction between elevated carbon dioxide andnitrogen nutrition: the physiological and molecular background [J]. Plant, Cell&Environment,1999,22(6):583-621.
    [192] Beerling D., Ghirardo A., Gutknecht J., et al. Biogenic Volatile OrganicCompound and Respiratory CO2Emissions after13C-Labeling: Online Tracingof C Translocation Dynamics in Poplar Plants [J]. PLoS One,2011,6(2):e17393.
    [193] Lacointe A., Kajji A., Daudet F.A., et al. Mobilization of Carbon Reserves inYoung Walnut Trees [J]. Acta Bot Gallica,1993,140(4):435-41.
    [194] Conroy J., Hocking P. Nitrogen Nutrition of C3Plants at Elevated AtmosphericCO2Concentrations [J]. Physiol Plantarum,1993,89(3):570-6.
    [195] McDonald E.P., Erickson J.E., Kruger E.L. Research note: Can decreasedtranspiration limit plant nitrogen acquisition in elevated CO2?[J]. FunctionalPlant Biology,2002,29(9):1115-20.
    [196] Tanner W., Beevers H. Transpiration, a prerequisite for long-distance transportof minerals in plants?[J]. Proceedings of the National Academy of Sciences,2001,98(16):9443-7.
    [197] Watanabe M., Watanabe Y., Kitaoka S., et al. Growth and photosynthetic traitsof hybrid larch F1(Larix gmelinii var. japonicax L-kaempferi) under elevatedCO2concentration with low nutrient availability [J]. Tree Physiology,2011,31(9):965-75.
    [198] Littschwager J., Lauerer M., Blagodatskaya E., et al. Nitrogen uptake andutilisation as a competition factor between invasive Duchesnea indica andnative Fragaria vesca [J]. Plant and Soil,2010,331(1-2):105-14.
    [199] Jamieson N., Monaghan R., Barraclough D. Seasonal trends of gross Nmineralization in a natural calcareous grassland [J]. Global Change Biology,1999,5(4):423-31.
    [200]魏道智,戴新宾.植物叶片衰老机理的几种假说[J].广西植物,1998,18(1):89-96.
    [201]许育彬,沈玉芳,李世清. CO2浓度升高和施氮对冬小麦花前贮存碳氮转运的影响[J].作物学报,2011,37(08):1465-74.
    [202] Solomon S. Climate change2007: the physical science basis: contribution ofWorking Group I to the Fourth Assessment Report of the IntergovernmentalPanel on Climate Change [M]. Cambridge, UK and NY, USA: CambridgeUniv Pr,2007.
    [203]山仑,邓西平.黄土高原半干旱地区的农业发展与高效用水[J].中国农业科技导报,2000,2(4):34-8.
    [204] Reynolds J.F., Kemp P.R., Ogle K., et al. Modifying the 'pulse-reserve'paradigm for deserts of North America: precipitation pulses, soil water, andplant responses [J]. Oecologia,2004,141(2):194-210.
    [205] Yahdjian L., Sala O.E. Vegetation structure constrains primary productionresponse to water availability in the Patagonian steppe [J]. Ecology,2006,87(4):952-62.
    [206] Dosio G.A.A., Tardieu F., Turc O. Floret initiation, tissue expansion andcarbon availability at the meristem of the sunflower capitulum as affected bywater or light deficits [J]. New Phytologist,2011,189(1):94-105.
    [207] Galle A., Florez-Sarasa I., Tomas M., et al. The role of mesophyll conductanceduring water stress and recovery in tobacco (Nicotiana sylvestris): acclimationor limitation?[J]. Journal of Experimental Botany,2009,60(8):2379-90.
    [208] Hu L.X., Wang Z.L., Huang B.R. Diffusion limitations and metabolic factorsassociated with inhibition and recovery of photosynthesis from drought stressin a C3perennial grass species [J]. Physiol Plantarum,2010,139(1):93-106.
    [209] Varone L., Ribas-Carbo M., Cardona C., et al. Stomatal and non-stomatallimitations to photosynthesis in seedlings and saplings of Mediterraneanspecies pre-conditioned and aged in nurseries: Different response to waterstress [J]. Environmental and Experimental Botany,2012,75:235-47.
    [210] Dyckmans J., Flessa H. Influence of tree internal nitrogen reserves on theresponse of beech (Fagus sylvatica) trees to elevated atmospheric carbondioxide concentration [J]. Tree Physiology,2002,22(1):41-9.
    [211] Franzaring J., Weller S., Schmid I., et al. Growth, senescence and water useefficiency of spring oilseed rape (Brassica napus L. cv. Mozart) grown in afactorial combination of nitrogen supply and elevated CO2[J]. Environmentaland Experimental Botany,2011,72(2):284-96.
    [212] Xu Z.Z., Zhou G.S., Wang Y.H. Combined effects of elevated CO2and soildrought on carbon and nitrogen allocation of the desert shrub Caraganaintermedia [J]. Plant and Soil,2007,301(1-2):87-97.
    [213] Swemmer A.M., Knapp A.K., Snyman H.A. Intra-seasonal precipitationpatterns and above-ground productivity in three perennial grasslands [J].Journal of Ecology,2007,95(4):780-8.
    [214] Wang X.Z., Taub D.R. Interactive effects of elevated carbon dioxide andenvironmental stresses on root mass fraction in plants: a meta-analyticalsynthesis using pairwise techniques [J]. Oecologia,2010,163(1):1-11.
    [215] Markelz R.J.C., Strellner R.S., Leakey A.D.B. Impairment of C4photosynthesis by drought is exacerbated by limiting nitrogen and amelioratedby elevated [CO2] in maize [J]. J Exp Bot,2011,62(9):3235-46.
    [216] Galle A., Feller U. Changes of photosynthetic traits in beech saplings (Fagussylvatica) under severe drought stress and during recovery [J]. PhysiolPlantarum,2007,131(3):412-21.
    [217] Ephrath J.E., Timlin D.J., Reddy V., et al. Irrigation and elevated carbondioxide effects on whole canopy photosynthesis and water use efficiency incotton (Gossypium hirsutum L.)[J]. Plant Biosyst,2011,145(1):202-15.
    [218] Nure F., Md A.K., Romel A., et al. Water stress effects on growth ofdipterocarpus turbinatus seedlings [J]. Forest Science and Technology,2010,6(1):18-23.
    [219] Pinheiro C., Passarinho J.A., Ricardo C.P. Effect of drought and rewatering onthe metabolism of Lupinus albus organs [J]. Journal of Plant Physiology,2004,161(11):1203-10.
    [220] Lattanzi F.A. The sources of carbon and nitrogen supplying leaf growth:assessment of the role of stores with compartmental models [J]. PlantPhysiology,2005,137(1):383-95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700