隧道软弱围岩变形机制与控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当前我国大规模的隧道建设中,软弱围岩隧道的设计与施工难题一直困扰着广大隧道建设者。软弱围岩隧道通常表现为围岩变形大,甚至发生坍塌等安全事故;施工进度缓慢,严重制约工程的工期。出现这些问题的主要原因是对隧道围岩特别是软弱围岩的变形机制、发展演化规律等认识不足,采取的控制技术与方法缺乏针对性等。针对这一系列问题,本论文对软弱围岩地质特征与工程影响评价、变形机制与时空效应、支护结构与围岩作用体系、隧道软弱围岩变形控制技术等进行了系统深入研究,取得了以下主要研究成果:
     (1)系统总结提出隧道工程软弱围岩的含义;分析了软弱围岩的地质特征、变形特征和强度特征;根据软弱围岩的力学特征,提出了铁路隧道软弱围岩的分级标准建议,将软弱围岩分为软岩I级、软岩II级和软岩III级共三个等级。
     (2)隧道断面尺寸对围岩的变形机制和变形控制基准有较大影响,为方便研究软弱围岩隧道的变形控制对策,本文提出了铁路隧道断面等级和跨度分级建议,将隧道断面分为小断面、中断面、大断面和特大断面4级,将隧道跨度分为小跨度、中跨度、大跨度和特大跨度4级。
     (3)分析提出了围岩变形的分布规律。围岩变形在空间上可分为三部分,即掌子面前方的超前变形、掌子面挤出变形和掌子面后方变形,这三部分变形是同时发生的。软弱围岩隧道变形量大、变形持续时间长、掌子面前、后方变形影响范围大、变形速度快是软弱围岩隧道变形的特点。
     (4)基于隧道施工过程中应力释放与应力控制动态作用关系的研究,建立了由围岩、超前支护、初期支护和二次衬砌组成的软弱围岩隧道结构体系,并阐述了各个构件在该结构体系中的力学作用。支护结构分为超前支护、初期支护和二次衬砌,其中超前支护和初期支护与围岩体共同形成承载结构,二次衬砌仅作为安全储备,主要承担附加荷载和残余变形引起的荷载。
     (5)建立了考虑围岩应力释放的隧道结构体系理论模型,并采用数值方法验证了其正确性,指出为避免或尽量减小出现过量围岩塑性变形,一方面要及时支,护,减小支护结构施做前的围岩应力释放;另一方面要使支护结构具有一定的刚度,尤其是早期刚度,以提供足够的支护抗力来抵制过量围岩塑性变形的发生。
     (6)开挖方法和支护措施是围岩变形控制的两个方面,开挖使得围岩释放应力,支护则是控制应力释放的方法,支护结构和围岩的稳定是变形控制的目标。围岩变形控制原理就是根据围岩变形的时空分布规律,采取合理的开挖方法和支护措施,控制掌子面前方、掌子面、以及掌子面后方变形,使围岩变形控制在变形基准值以内,以保持围岩和隧道结构的长期稳定。
     (7)软弱围岩变形预测分为施工前的变形预测和施工过程中的变形预测两个阶段。数值法和基于自身量测数据的统计分析法是比较接近实际又便于实施的变形预测法。研究提出了我国铁路隧道净空位移、拱顶下沉、掌子面前方超前变形、掌子面挤出变形、掌子面后方变形速度的管理基准建议。
     (8)提出了软弱围岩变形控制的方法和支护结构设计原则。即采用超前支护,控制掌子面的超前变形和拱顶下沉;采用掌子面支护,控制掌子面挤出变形;加强初期支护,控制开挖掌子面后方变形;采用辅助支护措施,控制掌子面的稳定和初期支护的拱脚位移;采用二次衬砌,合理预留支护结构的安全储备,控制隧道建成后的残余变形。研究提出了软弱围岩隧道支护结构设计的原则、设计流程和支护结构设计参数。
     (9)以兰渝铁路桃树坪隧道和贵广铁路天平山隧道为例,阐述了软弱围岩隧道掌子面前方变形和掌子面后方变形的控制实践,按照本课题的研究成果,均取得了很好的控制围岩变形效果。
In the current China's large-scale tunnel construction, one of the main problems which puzzled the majority of tunnel builders is the design and construction of tunnels in the soft and weak rock. It usually presents a great deformation, or even collapse and other accident; and a slow construction progress which is a severe restriction of the construction time. Such problems are mainly due to shortage of knowledge on the deformation mechanism and law of development and evolvement of tunnel surrounding rock, especially the soft and weak surrounding rock. Another reason for the problems is that the technical measures and methods which have been taken are lack of pertinence. This article studied in a system and deep-going way on soft and weak surrounding rock, including the geological features, evaluation of engineering influence, deformation mechanisms and time-space effect, interaction system of supporting structure and surrounding, and deformation control technique. Following key achievements have been achieved in the article.
     (1) The meaning of the soft and weak surrounding rock tunnel has been expatiated systemically, and itsgeological features, deformation characteristics and strength characteristics have been analyzed. The soft and weak surrounding rock has been classified three levels, grade I soft rock, grade II soft rock and grade III soft rock according to it mechanical characteristics.
     (2) The deformation mechanism and the deformation control criteria of the soft surrounding rock are influenced by the size of the tunnel-section. The recommended classification of tunnel sections and span of railway tunnel are proposed for the convenience of the study on deformation control of soft and weak surrounding rock. The tunnel sections are classified as small, medium, large and extra-large size, and the span of tunnel are also distributed into small, medium, large and extra-large span.
     (3) The deformation distribution of surrounding rock is divided into three parts in space, which are deformation ahead of the tunnel face, at the tunnel face and back from the tunnel face. And all of them occurred at the same time. The large-value, long-lasting deformation, the large change range ahead of the tunnel face and high change rate back from the tunnel face in initial excavation period are considered as the main characteristics of the soft surrounding rock tunnel.
     (4) Based on the study of the stress release and the dynamic relationship of stress control in the process of tunnel construction, the structure system of the soft rock tunnel, which is composed of surrounding rock, support in advance, primary support and lining, is established. The mechanical role of each component is explained. The support structure is divided into advancing support, primary support and lining. The advancing support and primary support forms the load bearing structure together with the surrounding.rock and the lining serves as safety margin, mainly supporting the additional load caused by the residual deformation.
     (5) Establish the tunnel structure theory model considering the rock stress release and verify the exactness with the numerical method, then point out that there are two sides should be careful in order to avoid or reduce the rock plastic deformation, for one is timely supporting, reducing the rock stress release before the construction of the support structure, and another is enough stiffness of support structure, especially the early stiffness to provide enough support force to resist the occurrence of rock plastic deformation.
     (6) Excavation method and support measure are two sides to control the rock deformation. Excavation causes the rock stress release and the support is the method to control the stress. Stability of the support structure and rock is the destination of deformation control. The control principle of rock deformation is to keep the rock deformation, including deformation ahead of the tunnel face, at the tunnel face and back from the tunnel face, under the deformation control criteria and make the surrounding rock and support structure stable for a long time by using appropriate excavation method and support meausure according to the time-space distribution regularities of rock deformation.
     (7) The deformation predictions of weak surrounding rock are distributed in two stagesas prediction before the construction and after the construction. Numerical method and the statistic method based on its original measure data are the deformation prediction methods approaching the reality. The management reference suggestions of clear displacement, crown settlement, precession displacement of excavation face, extrusion displacement of excavation face, arch subsidence and displacement velocity behind the excavation face have been presented in the article for the railway tunnel in our country.
     (8) The control method of weak surrounding rock and its design principle of support structure have been presented. That is using the advanced support method to control the displacement before the excavation face and the excavation face, using the primary support to control the displacement behind the excavation face, using the auxiliary support to control the stability of excavation face and the arch subsidence of primary support, and using the secondary lining support as reasonable emergency capacity to control the residual deformation. The structure design principle, design process and design parameters have been presented for weak surrounding rock.
     (9) Taoshuping Tunnel of the Lanzhou-Chongqing railway and Tianpingshan Tunnel of the Guilin-Guangzhou railway have been taken examples in the article to state the control practice of deformation before and behind the excavation face in the weak surrounding rock. Perfect result of deformation control has been got in above two tunnels by using the research achievement of this article.
引文
[1]王梦恕.中国隧道及地下工程修建技术[M].北京:人民交通出版社,2010.
    [2]杨新安,姚永勤,喻渝.铁路隧道[M].北京:中国铁道出版社,2011.
    [3]中国铁路隧道史编辑委员会.中国铁路隧道史[M].北京:中国铁道出版社,2004.
    [4]铁道部工程设计鉴定中心.高速铁路隧道[M].北京:中国铁道出版社,2006.
    [5]李世辉.隧道支护设计新论——典型类比分析方法应用和理论[M].北京:科学出版社,1999.
    [6]潘昌实.隧道力学数值方法[M].北京:中国铁道出版社,1995.
    [7]张厚美,吕国梁.圆形隧道衬砌结构计算模型综述[J].世界隧道,2000(2):1-6.
    [8]景诗庭,宋玉香.地下结构的概率极限状态设计[J].石家庄铁道学院学报,2000,13(3): 13-17.
    [9]杨林德,萧蕤.复合支护的可靠度分析[J].地下空间,2003,23(1):45-47.
    [10]房 倩.高速铁路隧道支护与围岩作用关系研究[D].北京交通大学博士学位论文,2010.
    [11]关宝树,赵勇.软弱围岩隧道施工技术[M].北京:人民交通出版社,2011.
    [12]黄福昌,闰吉太,等.世纪之交软岩工程技术现状与展望[M].煤炭工业出版社,1999.
    [13]肖同刚.隧道软弱围岩——支护系统安全性分析评价及其工程应用[D].上海:同济大学博士学位论文,2007.
    [14]王鹏程.张集铁路旧堡隧道围岩初始应力反演分析及分级评价[J].北京工业大学学报,2010,36(09):1228—1235.
    [15]邵双修.禾洛山隧道富水地段施工技术[J].铁道工程学报,2010,(5):54-57.
    [16]汶文钊.软弱围岩隧道斜井进入正洞喇叭口段施工方法[J].铁道标准设计,2007,(Suppl):136—137.
    [17]邹 翀,尤显明,王军涛.兴旺峁隧道富水全-强风化砂岩区段施工关键技术[J].隧道建设,2010,30(01):37-43.
    [18]常永杰.七部开挖作业法在雁门关隧道中的应用[J].山西建筑,2010,36(27):332-333.
    [19]李世才,刘仲仁,郑文筠.桃树坪隧道富水未成岩粉细砂岩层施工技术探讨[J].现代隧道技术,2011,48(2):120-124.
    [20]韦举高.小平羌沟隧道工程地质勘察与评价[J].山西建筑,2010,36(11):320-321.
    [21]王永全,巩建雨,国存海.成-兰铁路工程勘察深孔的钻探施工技术[J].中国煤炭地质,2010,22(suppl):123-125.
    [22]赵德安,李国良,陈志敏等.乌鞘岭隧道三维地应力场多元有限元回归拓展分析[J].2009,28(1):2687-2694.
    [23]郭富利.堡镇软岩隧道大变形机理及控制技术研究[D].北京:北京交通大学博士学位论文,2009.
    [24]王建军.兰渝线高地应力区隧道变形机制及分级探讨[J].隧道建设,2011,31(3):289-293.
    [25]国际岩石力学学会.东京国际软岩学术讨论会[J].岩石力学与工程学报,1982,(1):132-135.
    [26]曾小泉.煤矿松软岩层的巷道支护现状及发展[M].软岩巷道掘进与支护论文集,1985.
    [27]陆家梁.软岩巷道支护技术[M].长春:吉林科学技术出版社,1995.
    [28]朱效嘉.软岩定义与分类.项目总结材料[R].1986.
    [29]陈宗基.地下巷道长期稳定性的力学问题[J].岩石力学与工程学报,1982,(12)
    [30]袁文伯,陈进.软化岩层中巷道的塑性区与破碎区分析[J].煤炭学报,1986,(3)
    [31]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学出版社,2002.
    [32]孙钧.岩土材料流变及其工程应用[M].北京:中国建筑工业出版社,1999.
    [33]R.Yoshinaka,M. Osada,T. V. Tran. Deformation Behavior of Soft Rocks during Consolidated-Undrained Cyclic Triaxial Testing[J]. Int.J.Rock Mech.Min.Sci. v& Geomech. Abstr.,1996,vol.33 (6):557-572.
    [34]R.Yoshinaka,M. Osada,T. V. Tran. Non-linear Stress-and Strain-Dependent Behavior of Soft Rock under Cyclic Triaxial Conditions[J]. Int. J. Rock Mech.Min.Sci.,1998,vol.35 (7): 941-955.
    [35]中铁第四勘察设计院等.宜万铁路堡镇隧道软弱围岩大变形控制技术试验研究总报告[R].武汉:中铁第四勘察设计院,2011.4.
    [36]郭志.软岩流变过程与强度研究[J].工程地质学报,1996,4(1):75-79.
    [37]周楚良.岩石强度衰减、流变与围岩稳定性分析[J].矿山压力与顶板管理,1993,(z1):7-13.
    [38]煤炭工业部科教司,煤炭工业部软岩巷道支护专家组.中国煤矿软岩巷道支护理论与实践[M].北京:中国矿业大学出版社,1996.
    [39]房倩,张顶立,黄明琦.基于连续介质模型的海底隧道渗流问题分析[J].岩石力学与工程学报,2007(S2):3776-3784.
    [40]刘 高,聂德新.高应力软岩巷道围岩变形破坏研究[J].岩石力学与工程学报,2000,(6):75-78.
    [41]王猛.煤矿深部开采巷道围岩变形破坏特征试验研究及其控制技术[D].辽宁工程技术大学博士论文,2010.
    [42]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [43]王其胜,李夕兵,李地元.深井软岩巷道围岩变形特征及支护参数的确定[J].煤炭学报,2011,33(04):364-367.
    [44]关宝树.隧道力学概论[M].成都:西南交通大学出版社,1993.
    [45]关宝树.隧道工程设计要点集[M].北京:人民交通出版社,2004.
    [46]关宝树.隧道工程施工要点集[M].北京:人民交通出版社,2003.
    [47]夏瑞萌.承载土体中隧道开挖引起的塑性区与塌落拱范围的理论与数值分析[D].北京:北京交通大学硕士学位论文,2008.
    [48]贺少辉,项彦勇,李兆平.地下工程(修订本)[M].清华大学出版社,北京交通大学出版社,2008.
    [49]庞建勇.软弱围岩隧道新型半刚性网壳衬砌结构研究及应用[D].南京:东南大学博士学位论文,2005.
    [50]久武胜保.软岩隧道的非线性弹塑性状态[J].隧道译丛,1992(1):11-18.
    [51]赖应得.能量支护学[M].北京:煤炭工业出版社,2010,35-50.
    [52]赖应得,钱佩.用能量支护理论设计井巷锚喷支护[J].煤炭设计,1993,(4):10-15.
    [53]赖应得.用能量支护理论设计条带碹[J].山西煤炭,1995,(3):45-48.
    [54]邹翀,王超朋,张文新,等.兰渝铁路木寨岭隧道炭质板岩段应力控制[J].隧道建设,2010,30(2): 120-124.
    [55]廖纪明,罗努银,罗桂军,等.浅埋特大断面小净距隧道施工方案优化研究与应用[J].建筑施工,2010,32(4):307-310.
    [56]许崇帮,夏才初,朱合华.双向八车道连拱隧道施工方案优化分析[J].岩石力学与工程学报,2009,28(1):66-73.
    [57]Pietro Lunardi. Design and Construction of Tunnels.[M]Springer, April 2008.
    [58]Pietro Lunardi. The cellular arch method:technical solution for the construction of the Milan railway's venezia station[J]. Tunneling and Underground Space Technology,1990,5 (4):351-356.
    [59]Pietro Lunardi. Cellular arch technique for large-span station cavern[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts,1992,29(4):268.
    [60]Pietro Lunardi. The evolution of reinforcement of the advance core using fiber glass elements for short and long term stability of tunnels under difficult stress-strain conditions: design, technologies and operating methods [C]//In:Proc.12th Int. Conf. AITES-ITA 2001 World Tunnel. Milan:MILAN-ITALY Press,2001:309-322.
    [61]于学馥.轴变论与围岩变形破坏的基本规律[J].轴矿冶,1982,1(1):8-17.
    [62]陆家梁.软岩巷道锚喷支护的适用性[J].光爆锚喷,1995,(1):1-4.
    [63]冯豫.我国软岩巷道支护的研究[J].矿山压力与顶板管理,1990,7(2):44-46.
    [64]郑雨天.锚喷支护理论探讨[J].矿山技术,1985,(1):25-32.
    [65]朱效嘉.锚杆支护理论进展[J].光爆锚喷,1996,(3):5-9.
    [66]郑雨天,祝顺义,李庶林,等.软岩巷道喷锚网——弧板复合支护试验研究[J].岩石力学与工程学报,1993,12(01):1-10.
    [67]李庶林,郑雨天.软岩巷道复合支护技术新方案[J].矿业研究与开发,1993,13(01):46-50.
    [68]宋德彰,孙钧.锚喷支护力学机理的研究[J].岩石力学与工程学报1991,10(2):197-204.
    [69]郭志宏,董方庭.围岩松动圈与巷道支护[J].矿山压力与顶板管理,1995,(03):111-114.
    [70]夏吉光,董方庭.巷道收敛变形与围岩松动圈的关系[J].建井技术,1993,(02):39-40.
    [71]董方庭,宋宏伟,郭志宏,等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-32
    [72]宋宏伟,董方庭,郭志宏.松动圈支护理论的基本观点[J].建井技术,1994,(04):3-9.
    [73]方祖烈.拉压域特征及主次承载区的维护理论[C].世纪之交软岩工程技术现状与展望,北京:煤炭工业出版社,1999:48-51.
    [74]李继良,任天贵,高谦.深部围岩区域拉压理论及其基于神经网络的工程应用研究[J].矿业研究与开发,1999,19(06):1-4.
    [75]朱建明,徐秉业,任天贵,等.巷道围岩主次承载区协调作用[J].中国矿业,2000,9(02):41-44.
    [76]朱建明,黄植旺,徐秉业.锚杆支护巷道围岩主次承载区协调作用的力学分析[J].工程力学,2000,(A02):461-466.
    [77]余伟健,高谦,余良晖.松散围岩强化支护技术研究及其可靠性分析[J].金属矿山,2006,(06):23-26.
    [78]李常文,周景林,韩洪德.组合拱支护理论在软岩巷道锚喷设计中应用[J].辽宁工程技术大学学报,2004,23(5):594-596.
    [79]何满潮,景海河,孙晓明.软岩工程地质力学研究进展[J].工程地质学报,2000,8(01):46-62.
    [80]何满潮,邹正盛,彭涛.论高应力软岩巷道支护对策[J].水文地质工程地质,1994,21(4):7-12.
    [81]中华人民共和国行业标准.公路隧道设计规范(GTJ D70-2004)[S].北京:人民交通出版社,2004.
    [82]中华人民共和国行业标准编写组.铁路隧道设计规范(TB10003-2005)[s].北京,2005.
    [83]关宝树.隧道工程维修管理要点集[M].北京:人民交通出版社,2004.
    [84]关宝树.隧道地下工程概论[M].成都:西南交通大学出版社,2002.
    [85]申玉生,赵玉光.偏压连拱隧道围岩变形的现场监测与分析研究[J].公路,2005,(04):194-198
    [86]孔庆林,李果.三台阶法在羊秀坞高速公路隧道中的应用[J].华东公路,2010,(1):60-62.
    [87]杨献永.公路隧道土体加固后开挖效应分析[J].山西建筑,2010,36(6):318-320.
    [88]王宏祥,王 军.公路隧道施工阶段围岩指标定性描述的量化分级方法研究[J].公路交通科技(应用技术版),2010,(2):17-20.
    [89]陆同寿.中国公路隧道建设近况[J].土木工程学报,1990,23(03):86-90.
    [90]蒋树屏.我国公路隧道建设技术的现状及展望[J].交通世界,2003,(2):22-27.
    [91]杨景芳.日本惠那山道路隧道简介[J].北京:《公路》杂志社,1989,(1):42-45.
    [92]Yano, T. Yamada, N. Suzuki, I. Construction of The Enasan Tunnel &the design of the second stage[C]. Pergamon Press, New York, NY. May 29,1978-June 2,1978.
    [93]Fuminori Kimura, Nobuyuki Okabayashi and Toshikazu Kawamoto.Tunnelling through squeezing rock in two large fault zones of the Enasan Tunnel Ⅱ [M]. Japan Highway Public Corp, Jpn,Japan Highway Public Corp, Jpn. Jul-Sep 1987.
    [94]高峰,李德武.家竹箐隧道弹粘塑性有限元分析[J].甘肃科学学报,1998,10(2):36-39.
    [95]付华兴.应用和改造卡斯特纳公式求取家竹箐隧道塑性半径[J].铁道工程学报,2003,3(1):94-95.
    [96]齐康平.家竹箐隧道高地应力引坊支护大变形中可缩性U型钢架的应用[J].隧道及地下工程,1997,18(3):82-85.
    [97]李泽龙.南昆铁路家竹箐隧道的长锚杆施工[C].1995.
    [98]张祉道.家竹箐隧道高地应力软弱围岩支护大变形及其整治.1996.
    [99]陈靖宇,黄治,刘志学.木栅隧道施工工程规划与设计.2007.
    [100]曾大仁,林秋明.北高木栅隧道挤压破坏案例探讨[C],台湾工业技术学院,北高困难隧道案例研讨会.1997.
    [101]Triclot J,Rettighieri M, Barla G. Large deformations in squeezing ground in the Saint-Martin La Porte gallery along the Lyon-Turin Base Tunnel[J]. Proceedings and Monographs in Engineering, Water and Earth Sciences.2007:1093-1097.
    [102]Borca, Thierry. Investigatory tunnel under way for Lyon-Turin high speed link[J]. World Tunnelling.2002,15 (8):391-392.
    [103]Poti, PaoloBrino, Lorenzo Need and design of the cooling system both in the excavation phase and in the basic tunnel operation phase of the new Turin-Lyon railway line[J]. Ingegneria Ferroviaria.2011,66 (6):551-564.
    [104]Paolo Poti, InggLorenzo, Brino. The new Turin-Lyon railway line The electric plants[J]. Ingegneria Ferroviaria.2009,64 (5):439-453.
    [105]Zbinden, Peter Gotthard base tunnel:Testing system for concrete mixtures[J]. Beton- und Stahlbetonbau.2007,102 (1):11-18.
    [106]Bratschi, Oliver. The railway equipment of the Gotthard base tunnel[J]. ZEV Rail Glasers Annalen.2008,132 (10):447-450.
    [107]Gehriger, Willy Switzerland's project for modern railway crossings of the Alps and details of the Gotthard base tunnel[R]. Proceedings-Rapid Excavation and Tunneling Conference.1993:1211-1233.
    [108]Rehbock-Sander. Gotthard Base Tunnel:Work progress at the five construction sections[R]. "Proceedings of the33rd ITA-AITES World Tunnel Congress-Underground Space-The 4th Dimension of Metropolises".2007,2:1223-1228.
    [109]王思敬.论岩石的地质本质性及其岩石力学演绎[J].岩石力学与工程学报,2009,28(3):433-451.
    [110]陈花顺.新蜀河隧道炭质岩变形特性与支护设计[J].中国铁路,2010,(5):34-36.
    [111]苟 彪张奕斌.新蜀河隧道炭质片岩大变形控制技术研究[J].铁道工程学报,2009.(11):40-44.
    [112]董杰,蔡亚丽.炭质片岩地质隧道施工变形控制[J].山西建筑.2011,37(2):168-170.
    [113]汶文钊.软弱围岩隧道斜井进入正洞喇叭口段施工方法[J].铁道标准设计,2007,(z1):136—137.
    [114]赵德安,李国良,陈志敏,等.特乌鞘隧道三维地应力场多元有限元回归拓展分析[J].岩石力学与工程学报.,2009,28(增1):2687-2694.
    [115]梁文灏,李国良.乌鞘岭特长隧道方案设计[J].现代隧道技术,2004,41(2):1-7.
    [116]铁道第一勘察设计院.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究总报告[R].兰州:铁道第一勘察设计院,2005.
    [117]中铁西南科学研究院.乌鞘岭隧道岭脊地段复杂应力条件下的变形控制技术研究专题报告:三维变形监测阶段成果报告[R].成都:中铁西南科学研究院,2005.
    [118]李响,钱伟平.乌鞘岭隧道地质条件综述[J].铁道勘察,2005,31(4):57-61.
    [119]曹磊,谷柏森,郑 伟.提高乌鞘岭特长隧道衬砌结构耐久性设计与施工[J].隧道建设,2007,27(1):41-45.
    [120]邹种,王超朋,张文新.兰渝铁路木寨岭隧道炭质板岩段应力控制实验研究[J].隧道建设,2010,20(2):120-124.
    [121]巨小强.木寨岭隧道越岭区区域地应力特征分析及应用[J].铁道勘察,2010,(2):33-35.
    [122]景 蕾.木寨岭隧道施工设计动态管理及围岩大变形处治特点[J].公路隧道,2006,(1):35-38.
    [123]胡文清,郑颖人,钟昌云.木寨岭隧道软弱围岩段施工方法及数值分析[J].地下空间,2004,24(2):194-197.
    [124]刘高,张帆宇,李新召.木寨岭隧道大变形特征及机理分析[J].岩石力学与工程学报,2005,24(Supp2):5521—5526.
    [125]李喜军,于福贵.木寨岭隧道塌方段处理技术[J].石家庄铁路工程职业技术学院学报,2003,2(3):36-38.
    [126]康红普.巷道围岩的承载圈分析[J].岩土力学,1996,17(4):32-36.
    [127]薛顺勋,聂光国,姜光杰,等.软岩巷道支护技术指南[M].北京:煤炭工业出版社,2002.
    [128]伍法权.隧道围岩变形破坏机理及分级方法研究专题报告[R].北京:中国科学院地质与地球物理研究所,2010.
    [129]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [130]赵勇.隧道围岩动态变形规律及控制技术研究[J].北京交通大学学报:自然科学版,2010,34(4): 1-5.
    [131]关宝树(译).隧道力学[M].北京:中国铁道出版社,1983.
    [132]徐干成,白洪才,郑颖人,等.地下工程支护结构[M].北京:中国水利水电出版社,2003.
    [133]王明斌,李术才.含衬砌圆形压力隧洞弹塑性新解[J].岩石力学与工程学报,2007,26(S2):3770-3775.
    [134]任青文,邱颖.具有衬砌圆形隧洞的弹塑性解[J].工程力学,2005,22(2):212-217.
    [135]刘保国,杜学东.圆形洞室围岩与结构相互作用的黏弹性解析[J].岩石力学与工程学报,2004,23(4):561-564.
    [136]徐芝纶.弹性力学简明教程(第三版)[M].北京:高等教育出版社,2002.
    [137]王文正,夏永旭,胡庆安.公路隧洞施工过程的数值模拟及ANSYS实现[J].西部交通科技,2007,(04):1-4.
    [138]周顺华,高渠清,崔之鉴.开挖应力释放率计算模型[J].上海力学,1997,18(1):91-98.
    [139]邓楚键,郑颖人,王凯,等.有关岩土材料剪胀的讨论[J].岩土工程学报,2009,31(7):1110-1114.
    [140]李鹏飞.海底隧道围岩稳定性分析与控制研究[D].北京交通大学博士学位论文,2011.
    [141]吴涛.客运专线隧道线下工程变形监测信息管理及预测系统研究[D].中南大学硕士学位论文,2009.
    [142]周丁恒.扁平特大断面公路隧道围岩变形预测及预警研究[D].同济大学硕士学位论文,2008.
    [143]杨贤,张晓凤.水电工程岩体变形模量的确定方法[J].西北水电,2009,(5):9-12.
    [144]张长亮,王晓雯,陈华.隧道围岩变形预测预报方法研究[J].公路交通技术,2008,(4):88-92.
    [145]赵勇,刘建友,田四明.深埋隧道软弱围岩支护体系受力特征的试验研究[J].岩石力学与工程学报,2011,30(8):1663-1670.
    [146]郑哲敏,周恒,张涵信,等.21世纪的力学进展趋势[J].力学进展,1995,25(4):433-441.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700