用户名: 密码: 验证码:
铁路隧道在高地应力作用下的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对新建兰渝铁路LYS-3标木寨岭隧道,该隧道设计为双洞单线分离式特长隧道,其穿越岩层主要为Ⅴ级碳质板岩,地下水类型以基岩裂隙水为主。本文基于弹塑性理论,采用有限元方法,对实际铁路工程木寨岭隧道进行了三维数值分析。主要研究内容包括:
     1、基于弹塑性理论,采用有限元方法,根据已掌握地质资料和监控量测资料,对木寨岭隧道DyK187+965~DyK188+015段,建立有限元模型。从计算结果和监控量测值的对比可以看出所建有限元模型是合理的,计算结果对实际工程问题具有一定参考价值。
     2、通过方案I,对隧道开挖、初期支护过程中的应力以及位移变化情况进行了较为系统的分析。采用计算结果与隧道围岩水平收敛、拱顶下沉的监控量测值相结合的方法,对隧道初期支护的开裂、剥离等状况进行统计,分析木寨岭隧道围岩变形特征。计算结果表明:在隧道初期支护施作中,支护结构应及早闭合成环,这对于围岩稳定具有较好的控制效果;软岩高地应力区的铁路隧道在初期支护完成后,应力往往集中于拱腰部位,而在仰拱封闭后,仰拱仍发生较大的应力集中,应及时采取相应措施,以防止仰拱隆起现象发生。
     3、为应对木寨岭隧道出现的软岩大变形,根据木寨岭隧道的特殊围岩地质条件,结合木寨岭隧道实际情况,采用方案II对隧道超前小导洞开挖后的应力及位移变化情况进行了系统的分析。结果说明方案II对高地应力的释放具有一定的作用效果。
     4、从计算结果对两种不同方案进行了对比分析,说明方案II的施工效果要明显优于方案I。小导洞的开挖在一定程度上有利于高地应力的提前释放,计算结果与实际工程量测数据较为接近。但方案II由于小导洞的开挖,从而增大了工程量、延长了施工工期,使工程总造价剧增。怎样安全、经济、高效的克服高地应力软岩变形这一问题,还有待进一步探索研究。
     通过对以上内容的分析研究,结果可为以后的隧道工程建设提供一定的参考依据。
The new LYS-3Mu Zhailing tunnel which is a part of Lan-Yu tunnel。The tunnelwas designed for double hole one-way separation type。Through rock mass which wasmainly grade carbonaceous slate, the types of groundwater gave priority to bedrockfissure water. In this paper, It based on elastic theory and used ANSYS finite elementmethod, The actual railway engineering of Mu Zhailing tunnel were studied by three-dimensional numerical analysis. The main research contented as follow:
     1. Based on elastic theory and used ANSYS finite element method,according tothe geological data and monitoring data, builded a finite element model about the MuZhailing tunnel DyK187+965~DyK188+015, From comparing the simulated data andMonitored with measured value, as a result, the finite element model was reasonable.The calculation results could provide the practical engineering problems with acertain reference value.
     2. Through the plan I, on the excavation of the tunnel, initial support in theprocess of stress and displacement change undertook relatively systematic analysis.Combined the calculated result with the tunnel surrounding rock convergence andvault crown settlement monitoring measurement value, which supplied a way forprimary support of tunnel cracking, peeling and others of statistics, analyzed of MuZhailing tunnel surrounding rock deformation characteristics. The results showed: inprimary support of tunnel construction, supporting structure should be early closedinto a ring, which has good control effect on the surrounding rock stability; soft rockin high stress area of railway tunnel in the initial support was completed, stress tendedto focus on the arch waist position, while in the inverted arch was closed, the invertedarch were still larger stress concentration, should be taken corresponding measures ina timely manner to prevent the inverted arch bulge phenomenon.
     3. In order to cope with the Muzhailing tunnel of soft rock large deformation,according to the special geological conditions of surrounding rock, combined with theactual situation of Muzhailing tunnel scheme, By using the scheme of the tunnel II,after excavation of small pilot drift of advanced stress and displacement conditionswere systemly analyzed. Results showed that the scheme of II on highland stress had acertain effect.
     4. From the calculated results of two different schemes were compared andanalyzed, solution II construction effect was better than that of scheme I. Small pilot tunnel excavation were at a certain extent conducive to high stress early released, theresults of calculation were more close to the actual engineering measurement data.But due to the small scheme II drift excavation, so as to increase the quantity, extendthe construction period, make the project total cost has increased sharply. How tosecure, economic and efficient overcome the high stress soft rock deformation of thisquestion, still needed further study.
     Through the above analysis, and the results can provide certain reference for thelater tunnel construction.
引文
[1]唐绍武,王庆林.木寨岭隧道大战沟斜井高地应力软岩大变形施工技术[J].隧道建设,2010,30(2):199-201
    [2]赵旭峰.挤压性围岩隧道施工时空效应及其大变形控制研究[D].上海:同济大学,2007
    [3]严竞雄.千枚岩隧道岩性及施工期结构受力变形机理研究[D].北京:北京交通大学,2009
    [4]韩瑞庚.地下工程新奥法[M].北京:科学出版社,1987
    [5] Bae, Gyu-Jin, Lee et al. Sensitivity Analysison Shotcrete Input ParametersInfluencing Its Behaviors[J]. KSCE(Korean Society of CivilEngineers)Journal ofCivil Engineering,2003,23(5C):345-356
    [6] Barla G.. Squeezing Rocks in tunnels[J]. Int.Soc.Rock Mech.News J.,1995,2(3/4):44-49
    [7] Xu L., Huang H. W.. Time effect in rock-surpport interaction A case study in theconstruction of two road tunnels[J]. J.Rock Mech.Min.Sci.2004,41(3):1-6
    [8]黄宏伟,徐凌.大风娅口岩石公路隧道围岩及初期支护变形与内力研究[J].岩石力学与工程学报,2004,23(1):44-52
    [9] Kiyama H., Nishimura T., Fujimura H et al. A ProPosal of the flow elementmethod for large deformation of a continuum and its application coupled with thedistinct element method to analysis of stacked-dirft-type tunnels. In:Proc.of8thISRM cong.Tokyo.A.A.Balkema,1996:607-610
    [10] Lunardi P.. The influence of rigidity of the advance core on the safety of tunnelexcavations[J]. Tunnel,1998,(8):32-44
    [11] Pan Y. W., Dong J. J.. Time-dependent tunnel convergence,advance rate andtunnel-support interaction[J]. J.RockMech.Min.Sci.&Geomech,1991:(28):477-488
    [12] Wittke W.. New Design Concept for Under-Ground Openings in Rocks[M].Aachen: In Finite Elements in Geomechanics,1972
    [13] Pan X. D.. Plane Strain Analysis in Modeling Three-Dimensional tunnelExcavations [J]. Rock Mech, Min, Sci.&Gemench.Abstr.,1988,25(5):331-337
    [14] Swoboda G.. Three-Dimensional Numerical Modelling for TBM Tunneling inConsolidated Clay[J]. Tunnel Underground Space Technology,1999,14(3):327-333
    [15] Galli G.. Grimaldi A, Leonardi A. Three-Dimensional Modelling of Excavationand Lining[J]. Computers and Geotechics,2004,31(2):171-183
    [16] Eberhardt E.. Numerical Modelling of Three-Dimension Stress Rotation Aheadof an Advance Tunnel Faee[J]. Int.J.Rock Mech.&Min.Sci.,2001,(38):499-518
    [17]李永盛.单轴压缩条件下四种岩石的蠕变和松弛试验研究[J].岩石力学与工程学报,1995,14(1):39-47
    [18]杨林德,颜建平等.围岩变形的时效特征与预测的研究[J].岩石力学与工程学,2005,24(2):212-216
    [19]贾超,刘宁,肖树芳.洞室岩体参数的位移正演反分析[J].岩土力学,2003,24(3):450-454
    [20]朱维申.粘弹-塑性介质中围岩与衬砌的应力状态[J].力学学报,1981年第1期,56-67
    [21]孙钧,侯学渊.上海地区圆形隧道设计的理论和实践[J].土木工程学报,1984,17(3): P35-47
    [22]林培源.隧道侧向压力问题的探讨[J].土木工程学报,1982,15(1):55-62
    [23]薛玺成,杨万斌.地下洞室断面形状的优化计算方法[J].岩土工程学报,1999,21(2):144-147
    [24]王明年,翁汉民,李志业.隧道仰拱的力学行为研究[J].岩土工程学报,1996,18(1):46-53
    [25]黄兴华.软弱围岩条件下的浅埋隧道施工研究[D].湖南:湖南大学,2009
    [26] Itasca Consulting Group. Inc. FLAC-3D(Fast Lagrangian Analysis of Continuain Three Dimensions)[cp]. USA:Itasca Consulting Group. Inc.1997
    [27]郭富利.堡镇软岩隧道大变形机理及控制技术研究[D].北京:北京交通大学,2009
    [28]齐明山.大变形软岩流变性态及其在隧道工程结构中的应用研究[D].上海:同济大学,2006
    [29]徐林生,孙钧,蒋树屏.洋碰隧道开挖面空间效应的数值模拟研究[J].岩土工程界,2001,第6期,42-44
    [30]汪易森,李小群.地下洞室群围岩弹塑性有限元分析及施工优化[J].水力发电,2001,(6),35-38
    [31]孙钧,朱合华.软弱围岩隧洞施工性态的力学模拟与分析[J].岩土力学,1994,15(4):20-33
    [32]金丰年,钱七虎.隧洞开挖的三维有限元计算[J].岩石力学与工程学报,1996,15(3):193-200
    [33]王明年,张建华.工程措施对控制隧道围岩变形的力学效果研究[J].岩土工程学报,1998,20(5):27-30
    [34]肖明.地下洞室施工开挖三维动态过程数值模拟分析[J].岩土工程学报,2000,22(4):421-425
    [35]张向东,刘严,孙闯.软岩隧道开挖方法数值模拟分析[J].广西大学学报(自然科学版),2010,35(1):73-77
    [36]张文新,孙韶峰,刘虹.木寨岭隧道高地应力软岩大变形施工技术[J].现代隧道技术,2011,48(2):78-82
    [37]高峰,尹小宝.兰渝铁路关子岭隧道施工方法的数值分析[J].现代隧道技术,2011,48(2),37-42
    [38]高峰,李德武.家竹箐隧道弹粘性有限元分析[J].甘肃科学学报,1998,10(2):36-39
    [39]邹舯,王超朋,张文新等.兰渝铁路木寨岭隧道炭质板岩段应力控制试验研究[J].隧道建设,2010,30(2):120-124
    [40]李锋,王广宏,刘虹.木寨岭隧道7号斜井大变形影响因素分析[J].现代隧道技术,2011,48(2):33-36
    [41]李沿宗,高攀,邹种等.木寨岭隧道变形分析及初期支护参数优化研究[J].隧道建设,2011,31(3):320-324
    [42]张文强,王庆林,李建伟等.木寨岭隧道大变形控制技术[J].隧道建设,2010,30(2):157-161
    [43]陈明祥.弹塑性力学[M].北京:中国科学出版社,2007
    [44]谢家杰.浅埋隧道的地层压力[J].土木工程学报,1964年第6期,58-70
    [45]覃业艳.色尔古水电站引水隧道软岩大变形控制技术研究[D].成都:西南交通大学,2007
    [46]朱伯芳.有限单元法原理和应用[M].北京:中国水利水电出版社,1998
    [47]铁道第二勘察设计院,铁路隧道设计规范[M].北京:中国铁道出版社,2005
    [48]傅新军,杨春.大断面隧道施工监控量测[J].铁道建筑技术,2007(S1),108-110
    [49]王明胜.高地应力大变形隧道台阶法开挖过程中围岩变形分析[J].隧道建设,2009,29(增2):24-28
    [50]李浩,朱向阳,徐永福.断面形状对隧道围岩位移和应力的影响分析[J].隧道建设,2009,29(1):38-44
    [51]董方庭,宋宏伟,郭志宏等.巷道围岩松动圈支护理论[J].煤炭学报,1994,19(1):21-23
    [52]康红普.巷道围岩的承载圈分析[J].岩土力学,1996,17(4):84-88
    [53]唐绍武,王庆林.木寨岭隧道大战沟斜井高地应力软岩大变形施工技术[J].隧道建设,2010,30(2):199-201
    [54]武建广.木寨岭隧道软岩段大变形原因分析及对策[J].西部探矿工程,2011年第2期,199-202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700