黄土高原小流域侵蚀沟道空间频谱分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目前,数字高程模型(DEM),特别是规则格网DEM,已经成为土壤侵蚀以及其他与地形相关的研究的主要数据源。众多的研究表明,DEM的格网尺寸大小对于地形分析结果有着重要的影响。但对于多大格网尺寸的DEM究竟能够表达怎样的地形信息,即DEM的格网尺寸与地形的表达能力之间的关系仍不明确。这一问题使得在应用DEM进行土壤侵蚀或地形分析中存在一定的盲目性。针对上述问题,本研究基于陕西省绥德县窑家湾沟的全数字摄影测量和野外实测的高精度DEM数据,以黄土高原侵蚀沟道为研究对象,应用傅里叶频谱分析方法,首先研究了DEM数据的高程精度与格网尺寸的关系,进而分析了利用DEM提取沟道网络时格网尺寸的影响。基于DEM提取的沟道数据,布设了24个剖面,并利用一维频谱分析方法,分析了不同等级沟道的空间频率特征,总结出了各侵蚀沟道的空间频率范围。最后将一维频谱分析结果推广至二维频谱分析,并以此为依据对实验数据进行二维频率低通滤波。通过对滤波后的DEM数据与各格网尺寸DEM进行对照,将侵蚀沟道的空间尺度与DEM格网尺度对应起来,以解决DEM的格网尺寸与地形的表达能力之间的对应关系。论文的主要研究结果如下:
     1.DEM的高程精度与格网尺寸的关系
     格网尺寸对规则格网DEM高程精度的影响表现在:上坡方向低估格网高程,下坡方向则高估。因此格网上的高程误差大小取决于地形坡度,其空间分布的复杂程度取决于格网尺寸大小。利用直接采样获得一系列DEM格网上高程误差的分析结果表明,DEM高程中误差和最大误差与格网尺寸存在近似线性的二次函数关系,随着格网尺寸增大,DEM高程误差增大,且格网上的最大高程误差远超出2倍中误差水平。
     2.DEM格网尺寸与沟道网络提取及其基本特征的关系
     利用不同格网尺寸DEM提取的沟道网络的特征分析的结果表明,DEM格网尺寸对沟道网络的提取主要体现在对水流方向的影响与水流累积阈值的影响两方面。在地形发生较为显著变化的部位,格网尺寸的变化会使水流方向有较为剧烈的变化;通过对水流累积阈值和格网尺寸关系的分析,认为合理的水流累积阈值与格网尺寸存在二次幂指数递减关系。总体来讲,当确定了适宜的水流累积阈值,格网尺寸的变化并不影响沟道网络的整体结构特征,但会使沟道的空间位置发生变化,具体形态特征也发生变化。格网尺寸越大,沟道网络形态越概括。
     3.基于剖面的沟道一维频谱特征
     1)通过对实验区域布设的基本垂直于沟道延伸方向的剖面的空间特征及其一维频谱特征的对照,级别较高的侵蚀沟道,其空间形态通常起伏较大,间隔较宽,对应的空间频率较低,周期较长,振幅较大;而级别较低的侵蚀沟道,其空间形态一般起伏较小,间隔较窄,其对应频率较高,周期越短,振幅较小。从频谱分析结果中可以清楚反映不同振幅的起伏变化的空间频率,并能与沟道的实际起伏情况对应。
     2)通过对不同频率组分的空间信号重建结果与原始沟道剖面数据的比对,侵蚀沟道的主要空间频率集中在较为低频的部分。不同等级的沟道对应的空间频率范围不同。包括细沟在内微小的地形起伏,空间频率大于0.1周/米;在约0.03——0.1周/米之间,基本对应坡面上的各种浅沟;在约0.015——0.085周/米之间,基本对应各种规模切沟;小于约0.015周/米的,主要是各种冲沟及更大规模沟道。
     3)根据对不同格网尺寸DEM提取的剖面数据的频谱特征分析,在利用傅里叶分析方法进行地形剖面特征分析时,需尽可能采用较小格网尺寸DEM,并尽可能布设较长剖面。
     4.二维频谱特征分析及DEM格网尺寸与DEM沟道信息表达能力的关系
     1)根据对实验区域DEM数据的二维频谱特征的分析,二维频谱能够反映地表的各种尺度与规模的地形起伏,但直接利用二维频谱特征与空间特征建立对应关系是较为困难的。因此,本研究结合沟道延伸方向的统计结果,将一维剖面频谱分析结果通过频率分解至水平与垂直方向,得出实验区域各等级沟道的二维空间频率范围,并以此为依据设计二维频域低通滤波器。
     2)对实验区域DEM数据进行低通滤波,逐步滤掉包括细沟的微小起伏、浅沟及切沟信息。根据滤波结果与各格网尺寸DEM的对比,得出格网尺寸与DEM沟道信息表达能力的关系:大于等于2m的格网尺寸,无法表达地面上包括细沟在内的微小的地形起伏的;格网尺寸大于5m,则很难表现坡面上浅沟特征;格网尺寸超过10m,切沟的特征也基本消失。
At Present,Digital Elevation Models(DEMs), especially the GRID DEMs, is the maindata sources for the research of soil erosion and terrain analysis. Numerous studies show thatthe grid size of DEMs greatly influences the results of terrain analysis. However, up to now, itis not clear and definite how large the grid size of the DEMs is required to demonstrate fullyand correctly the terrain information. This question has not answered clearly in the previouslystudies. In another word, the relationship between the grid size of DEMs and the ability todescribe the terrain information of DEMs is still not clear. This problem to some extent leadsto the blindness in the practical application of DEMs in the analysis of soil erosion and terrain.Based on the DEM generated by the full digital photogrammetry and field measurements inYaojiawangou watershed, Suide, Shaanxi Province, and taking the gullies of loess plateau asthe studying objects, this paper uses the Fourier Analysis to solve the problem mentionedabove. Firstly, this paper discusses the relationship between the elevation error of DEMs andgrid size. According to this result, it analyzes the influence of grid size on the extraction oferosion gullies network from DEM. Secondly, the paper analyzes the spatial frequencycharacters of different grade gullies and summaries the spatial frequency range of each gradegully with the analysis of spectrum on one dimension of24profiles lying on the gulliesnetwork. At last, the paper extends the results of spectrum analysis of one dimension profilesto two-dimensional spectral analysis, and then designs the two-dimensional frequencylow-pass filter to filter the information of each grade gully. According to the comparisonbetween the filtered DEMs and the original DEMs with different grid size, the study matchesspatial scale of erosion gullies with the grid size of DEMs. The conclusion of this paper solvesthe corresponding relationship between the expression ability of the terrain information for DEMs and the grid size of DEMs.
     The main conclusions of this paper are as follows:
     1. The relationship between the elevation error of DEMs and the grid size
     The influence of grid size on the elevation error of DEMs is shown as follows: theelevation on a grid is overestimated in down-slope direction, while underestimated inup-slope direction. As a result, the value of elevation error on a grid is decided by the slopegradient, while the complication of distribution of elevation error is decided by the size ofgrid. The analysis of elevation error calculated from the DEMs series generated by samplingdirectly shows that The RMSE and the maximum error of elevation DEMs increases with thegrid size in the way that is quadratic function which is very similar with a linear relationship.The maximum error on a grid far exceeds the2times of RMSE.
     2. The relationship between the characters of gullies network extracted from DEMs andthe grid size
     By means of analyzing the characters of gullies network extracted from DEMs serieswhich have different grid sizes, the main influence of the grid size on the extraction of gulliesnetwork is reflected in two aspects---the flow direction and the threshold of flowaccumulation. The change of grid size causes the flow direction’s turning dramatically in thecomplicated topography area. The relationship between the grid size and the threshold of flowaccumulation shows that the reasonable threshold decreases while the grid size increases bythe way of negative second order power function. Generally, the change of grid size doesn’tinfluence the structure of the gullies network while the reasonable flow accumulationthreshold is determined. However, the position of gullies will move from the original positionand the shape of gullies will be changed. The larger the grid size is, the simpler the shape ofgullies.
     3. One-dimensional spectrum of gullies based on profile data
     1)The comparison between the spatial characters of profiles which are perpendicularwith the direction of the gullies and its One-dimensional spectrum shows that: the gully whichis in higher level, in general, has the greater depth and the wider interval, meanwhile, thecorresponding spatial frequency is lower, the period is longer and the amplitude is larger. Onthe contrary, the lower the level of gully is, the smaller the fluctuation, the narrower theinterval, the higher the frequency, the shorter the period, the smaller the amplitude. The spectrum could reflect the spatial frequency with varying amplitude clearly, and couldcorrespond to the spatial characters of fluctuation of gullies.
     2)According to the result of comparison between the profiles reconstructed by thevarying spatial frequency and the original profiles, the main spatial frequency range oferosion gullies is concentrated in the low frequency part. The gullies with different gradescorrespond to the different spatial frequency: The minor fluctuation including rills on theslope has the frequency range higher than0.1cycle per meter; the frequency range of shallowfurrow is from0.03to0.1cycle per meter; the gully has the frequency range from0.015to0.085cycle per meter, while the gullies which are in higher grade correspond to the frequencyrange lower than0.015cycle per meter.
     3)In terms of the spectrum of profiles extracted from the DEMs data series which havedifferent grid size, the analysis of profile characters using Fourier transformation requires thatthe DEMs should have smaller grid size, and that profile line should be as longer as possible.
     4. Two-dimensional spectrum Analysis and the relationship between the expressionability of the terrain information for DEMs and the grid size
     1)Based on the analysis of two-dimensional spectrum of DEMs of the studied area, thetwo-dimensional spectrum could reflect the scale of the relief. However, it is difficult toobtain the corresponding relationship between the two-dimensional spectrum and spatialcharacters. Therefore, according to the statistic of directions of gullies, the result of analysisof one-dimensional spectrum is decomposed to the horizontal and vertical direction to achievethe two-dimensional frequency range of gullies with different grades. This spatial range is thebasic parameter to design the two-dimensional frequency low-pass filter.
     2) Using the two-dimensional frequency low-pass filters to remove the gulliesinformation step by step, three DEMs which do not contain the information of the rills,shallow furrows, gullies basically could be obtained respectively. The Comparison betweenthese three DEMs and the DEMs with varying grid sizes indicates the relationship betweenthe expression ability of the terrain information for DEMs and the grid size: the fluctuationincluding rills nearly could not be described on the DEMs whose grid size is larger than about2meters. When the grid size of DEMs is larger than about5meters, the shallow furrowscould be represented clearly. If the grid size of DEMs is larger than about10meters, thegullies information will nearly disappear.
引文
[1]周启鸣,刘学军.数字地形分析[M].北京:科学出版社,2006.
    [2]李志林,朱庆.数字高程模型[M].武汉:武汉测绘科技大学出版社,2000.
    [3]胡鹏,杨传勇,吴艳兰.新数字高程模型:理论、方法、标准和应用[M].北京:测绘出版社,2007.
    [4]汤国安,刘学军,闾国年.数字高程模型及地学分析的原理与方法[M].北京:科学出版社,2005.
    [5]杨昕,汤国安,刘学军,李发源,祝士杰.数字地形分析的理论、方法与应用[J].地理学报,2009,64(09):1058-1070.
    [6] Wilson J. P. Digital terrain modeling[J]. Geomorphology,2012,137(1):107-121.
    [7] Hengl T.,Reuter H. I. Geomorphometry: concepts, software, applications[M].33, Amsterdam:Elsevier Science,2009.
    [8] Verstraeten G. Regional scale modelling of hillslope sediment delivery with SRTM elevation data[J].Geomorphology,2006,81(1-2):128-140.
    [9] Smith M. P., Zhu A. X., Burt J. E.,Stiles C. The effects of DEM resolution and neighborhood size ondigital soil survey[J]. Geoderma,2006,137(1-2):58-69.
    [10] Yang Q. K., McVicar T. R., Niel T. G., Hutchinson M. F., Li L. T.,Zhang X. P. Improving a digitalelevation model by reducing source data errors and optimising interpolation algorithm parameters: Anexample in the Loess Plateau, China[J]. International Journal of Applied Earth Observation andGeoinformation,2007,9(3):235-246.
    [11]刘洪义,东野光亮. Dem在区域土壤侵蚀中的应用研究[J].吉林农业大学学报,2004,26(01):73~76,82.
    [12]傅伯杰,汪西林. Dem在研究黄土丘陵沟壑区土壤侵蚀类型和过程中的应用[J].水土保持学报,1994,8(03):17-21.
    [13]杨勤科,赵牡丹,刘咏梅,郭伟玲,王雷,李锐. Dem与区域土壤侵蚀地形因子研究[J].地理信息世界,2009(01):25-31,45.
    [14] Zhou Q.,Liu X. Analysis of errors of derived slope and aspect related to DEM data properties[J].Computers&Geosciences,2004,30(4):369-378.
    [15]刘学军,卢华兴,仁政,任志峰.论Dem地形分析中的尺度问题[J].地理研究,2007,26(03):433-442.
    [16]汤国安,刘学军,房亮,罗明良. Dem及数字地形分析中尺度问题研究综述[J].武汉大学学报(信息科学版),2006,31(12):1059-1066.
    [17] Gao J. Resolution and accuracy of terrain representation by grid DEMs at a micro-scale[J].International Journal of Geographical Information Science,1997,11(2):199-212.
    [18] Gallant J. C.,Hutchinson M. F. Scale dependence in terrain analysis[J]. Mathematics and computers insimulation,1997,43(3):313-321.
    [19] Horritt M. S.,Bates P. D. Effects of spatial resolution on a raster based model of flood flow[J]. Journalof Hydrology,2001,253(1-4):239-249.
    [20] Claessens L., Heuvelink G. B. M., Schoorl J. M.,Veldkamp A. DEM resolution effects on shallowlandslide hazard and soil redistribution modelling[J]. Earth Surface Processes and Landforms,2005,30(4):461-477.
    [21] S rensen R.,Seibert J. Effects of DEM resolution on the calculation of topographical indices: TWI andits components[J]. Journal of Hydrology,2007,347(1-2):79-89.
    [22] Wu S., Li J.,Huang G. H. A study on DEM-derived primary topographic attributes for hydrologicapplications: Sensitivity to elevation data resolution[J]. Applied Geography,2008,28(3):210-223.
    [23] Wu W., Fan Y., Wang Z.,Liu H. Assessing effects of digital elevation model resolutions onsoil-landscape correlations in a hilly area[J]. Agriculture, Ecosystems&Environment,2008,126(3-4):209-216.
    [24]吴险峰,刘昌明,王中根.栅格Dem的水平分辨率对流域特征的影响分析[J].自然资源学报,2003,18(02):148-154.
    [25]郝振纯,池宸星,王玲,王跃奎. Dem空间分辨率的初步分析[J].地球科学进展,2005,20(05):499-504.
    [26] Chang K.-t.,Tsai B.-w. The effect of DEM resolution on slope and aspect mapping[J]. Cartography andGeographic Information Systems,1991,18(1):69-77.
    [27] Thompson J. A., Bell J. C.,Butler C. A. Digital elevation model resolution: effects on terrain attributecalculation and quantitative soil-landscape modeling[J]. Geoderma,2001,100(1-2):67-89.
    [28] Wolock D. M.,Price C. V.: Effects of digital elevation model map scale and data resolution on atopography-based watershed model[A], Washington, DC: American Geophysical Union,1994:3041-3052.
    [29] Chaplot V. Impact of DEM mesh size and soil map scale on SWAT runoff, sediment, and NO3-N loadspredictions[J]. Journal of Hydrology,2005,312(1-4):207-222.
    [30] Garbrecht J.,Martz L. Grid size dependency of parameters extracted from digital elevation models[J].Computers&Geosciences,1994,20(1):85-87.
    [31] Thieken A. H., Lücke A., Diekkrüger B.,Richter O. Scaling input data by GIS for hydrologicalmodelling[J]. Hydrological Processes,1999,13(4):611-630.
    [32] Schoorl J. M., Sonneveld M. P. W.,Veldkamp A. Three-dimensional landscape process modelling: theeffect of DEM resolution[J]. Earth Surface Processes and Landforms,2000,25(9):1025-1034.
    [33] Wu S., Li J.,Huang G. An evaluation of grid size uncertainty in empirical soil loss modeling withdigital elevation models[J]. Environmental Modeling and Assessment,2005,10(1):33-42.
    [34] Gessler P. E., Chadwick O. A., Chamran F., Althouse L.,Holmes K. Modeling soil-landscape andecosystem properties using terrain attributes[J]. Soil Science Society of America Journal,2000,64(6):2046-2056.
    [35] Zhang J. X., Chang K.-T.,Wu J. Q. Effects of DEM resolution and source on soil erosion modelling; acase study using the WEPP model[J]. International Journal of Geographical Information Science,2008,22(8-9):925-942.
    [36] Erskine R. H., Green T. R., Ramirez J. A.,MacDonald L. H. Digital elevation accuracy and grid cellsize: Effects on estimated terrain attributes[J]. Soil Science Society of America Journal,2007,71(4):1371-1380.
    [37] Zhang W.,Montgomery D. R. Digital elevation model grid size, landscape representation, andhydrologic simulation[J]. Water Resources Research,1994,30(4):1019–1028.
    [38] Hutchinson M. F.,Gallant J. C.: Digital elevation models and representation of terrain shape[A], J.P.Wilson,J.C. Gallant, editor, Terrain analysis; principles and applications[M], New York, NY: JohnWiley&Sons,2000:29-50.
    [39]刘学军,王彦芳,晋蓓,杨洁. GIS栅格化分辨率计算器的实现与应用[J].地球信息科学学报,2009, v.11;No.57(05):5638-5644.
    [40]罗来兴.划分晋西、陕北、陇东黄土区域沟间地与沟谷的地貌类型[J].地理学报,1956,22(03):201-222.
    [41]罗枢运,孙逊,陈永宗.黄土高原自然条件研究[M].西安:陕西人民出版社,1988.
    [42]朱显谟.黄土区土壤侵蚀的分类[J].土壤学报,1956,4(02):99-115.
    [43]郭伟玲,杨勤科,程琳,李俊,胡洁.区域土壤侵蚀定量评价中的坡长因子尺度变换方法[J].中国水土保持科学,2010,8(4):73-78.
    [44]杨勤科, Jupp D.,郭伟玲,李锐.基于滤波方法的dem尺度变换方法研究[J].水土保持通报,2008,28(06):58-62.
    [45] Dragǔt L.,Thomas B. Automated classification of landform elements using object-based imageanalysis[J]. Geomorphology,2006,81(3-4):330-344.
    [46] Iwahashi J.,Pike R. J. Automated classifications of topography from DEMs by an unsupervisednested-means algorithm and a three-part geometric signature[J]. Geomorphology,2007,86(3-4):409-440.
    [47] Guo-an T.,Fayuan L.: Landform Classification of the Loess Plateau Based on Slope Spectrum fromGrid DEMs[A], Advances in Digital Terrain Analysis[M]: Springer,2008:107-124.
    [48] Rayner J. N.: The application of harmonic and spectral analysis to the study of terrain[A], SpatialAnalysis in Geomorphology[M]: Harper&Row, New York-London,1972:283-302.
    [49] Pike R. J.,Rozema W. J. Spectral analysis of landforms[J]. Annals of the Association of AmericanGeographers,1975,65(4):499-516.
    [50]高西全,丁玉美.数字信号处理(第三版)[M].西安:西安电子科技大学出版社,2008.
    [51]夔中羽.地物频谱学研究始步──地表物体纹理结构信息成像机理[J].影像技术,1998(01):1-5,11.
    [52]赵英时.遥感应用分析原理与方法[M].北京:科学出版社,2003.
    [53]陈永宗.黄河中游黄土丘陵区的沟谷类型[J].地理科学,1984,4(04):321-327.
    [54]汤国安,赵牡丹,曹菡. DEM地形描述误差空间结构分析[J].西北大学学报(自然科学版),2000(04):349-352.
    [55] Gertner G., Wang G., Fang S.,Anderson A. B. Effect and uncertainty of digital elevation model spatialresolutions on predicting the topographical factor for soil loss estimation[J]. Soil Conservation Societyof America,2002,57(3):164-174.
    [56]毕华兴,谭秀英,李笑吟.基于Dem的数字地形分析[J].北京林业大学学报,2005,27(02):49-53.
    [57] Deng Y., Wilson J. P.,Bauer B. O. DEM resolution dependencies of terrain attributes across alandscape[J]. International Journal of Geographical Information Science,2007,21(1-2):187-213.
    [58]师维娟.基于Dem和gis的坡度变换方法研究[D].杨凌:西北农林科技大学,2007.
    [59]刘学军,张平. Dem坡度、坡向的有效尺度范围[J].武汉大学学报(信息科学版),2008,33(12):1254-1258.
    [60] MacMillan R., Martin T., Earle T.,McNabb D. Automated analysis and classification of landformsusing high-resolution digital elevation data: applications and issues[J]. Canadian Journal of RemoteSensing,2003,29(5):592-606.
    [61] Lassueur T., Joost S.,Randin C. F. Very high resolution digital elevation models: Do they improvemodels of plant species distribution?[J]. Ecological Modelling,2006,198(1-2):139-153.
    [62] Goyal S. K., Seyfried M. S.,O'Neill P. E. Effect of digital elevation model resolution on topographiccorrection of airborne SAR[J]. International Journal of Remote Sensing,1998,19(16):3075-3096.
    [63] Vázquez R. F.,Feyen J. Assessment of the effects of DEM gridding on the predictions of basin runoffusing MIKE SHE and a modelling resolution of600m[J]. Journal of Hydrology,2007,334(1-2):73-87.
    [64] Li Z. Sampling Strategy and Accuracy Assessment for Digital Terrain Modelling[D]. Glasgow:University of Glasgow,1990.
    [65] Li Z. A Comparative Study of the Accuracy of Digital Terrain Models (DTMs) Based on Various DataModels.[J]. ISPRS Journal of Photogrammetry and Remote Sensing,1994,49(1):2-11.
    [66] Hutchinson M. F. A locally adaptive approach to the interpolation of digital elevation models[C]. inProceedings Third International Conference/Workshop on Integrating GIS and EnvironmentalModelling.1996.
    [67] Florinsky I. V.,Kuryakova G. A. Determination of grid size for digital terrain modelling in landscapeinvestigations-exemplifed by soil moisture distribution at a micro-scale[J]. International Journal ofGeographical Information Science,2000,14(8):815-832.
    [68]汤国安,赵牡丹,李天文,刘咏梅,谢元礼. Dem提取黄土高原地面坡度的不确定性[J].地理学报,2003,58(06):824-830.
    [69]王东华,刘建军,商瑶玲,吉建培,宋鸿运.全国1∶25万数字高程模型数据库的设计与建库[J].测绘通报,2001(10):27-28.31.
    [70]王东华,吉建培,刘建军,商瑶玲,王中祥.论国家1:50000数字高程模型数据库建设[J].地理信息世界,2003,1(02):12-15,20.
    [71]刘学军,龚健雅,周启鸣,汤国安. Dem结构特征对坡度坡向的影响分析[J].地理与地理信息科学,2004,20(06):1-5,39.
    [72] Hengl T. Finding the right pixel size[J]. Computers&Geosciences,2006,32(9):1283-1298.
    [73] Napieralski J.,Nalepa N. The application of control charts to determine the effect of grid cell size onlandform morphometry[J]. Computers&Geosciences,2010,36(2):222-230.
    [74] BIAN L.: Multiscale nature of spatial data in scaling up environmental models[A], D.A.Q.a.M.F.Goodchild, editor, Scale in Remote Sensing and GIS[M], New York: Lewis,1997:13-26.
    [75]刘元保,朱显谟,周佩华,唐克丽.黄土高原坡面沟蚀的类型及其发生发展规律[J].中国科学院西北水土保持研究所集刊,1988,7(01):9-18.
    [76]郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀的发生、发展和防治途径的探讨[J].水土保持学报,1987,1(01):36-48.
    [77]张科利.浅沟发育对土壤侵蚀作用的研究[J].中国水土保持,1991(04):19-21+65.
    [78]王礼先.关于荒溪分类[J].北京林学院学报,1982(03):94-107.
    [79]关君蔚.水土保持原理[M].北京:中国林业出版社,1996.
    [80]郑粉莉,唐克丽,周佩华.坡耕地细沟侵蚀影响因素的研究[J].土壤学报,1989(02):109-116.
    [81]郑粉莉.发生细沟侵蚀的临界坡长与坡度[J].中国水土保持,1989(08):25-26.
    [82]蔡强国.坡面细沟发生临界条件研究[J].泥沙研究,1998(01):54-61.
    [83]张科利,唐克丽,王斌科.黄土高原坡面浅沟侵蚀特征值的研究[J].水土保持学报,1991(02):8-13.
    [84]张科利,唐克丽.浅沟发育与陡坡开垦历史的研究[J].水土保持学报,1992(02):59-62+67.
    [85]承继成,陈永宗,赵诚信等:陕北坡地分带性及小流域泥沙来源分区工作小结[A],黄河水利委员会绥德水土保持科学试验站资料[M],1963.
    [86]刘元保,朱显谟,周佩华,唐克丽.黄土高原土壤侵蚀垂直分带性研究[J].中国科学院西北水土保持研究所集刊,1988,7(01):5-8.
    [87]雷阿林,唐克丽,王文龙.土壤侵蚀链概念的科学意义及其特征[J].水土保持学报,2000,14(03):79-83.
    [88] Horton R. E. Erosional development of streams and their drainage basins; hydrophysical approach toquantitative morphology[J]. Geological Society of America Bulletin,1945,56(3):275-370.
    [89] Strahler A. N. Statistical analysis in geomorphic research[J]. The Journal of Geology,1954:1-25.
    [90] Strahler A. N. Quantitative analysis of watershed geomorphology[J]. Transactions-AmericanGeophysical Union,1957,38(6):913-920.
    [91] Schumm S. A. The role of creep and rainwash on the retreat of badland slopes[J]. American Journal ofScience,1956,254(11):693-706.
    [92] Morisawa M. E. Quantitative Geomorphology of Some Watersheds in the Appalachian Plateau[J].Geological Society of America Bulletin,1962,73(9):1025-1046.
    [93] Shreve R. L. Statistical law of stream numbers[J]. The Journal of Geology,1966,74(1):17-37.
    [94]罗来兴,祁延年.黄土邱陵区沟壑发育与侵蚀量计算的实例——陕北绥德韮园沟流域[J].地理学报,1953(02):187-193.
    [95]陈传康.陇东东南部黄土地形类型及其发育规律[J].地理学报,1956,22(03):223-231.
    [96]朱震达.应用数量方法来研究黄土丘陵地区的侵蚀地貌——以陕西绥德县韭园沟高舍窠“建设”高级农业生产合作社为例[J].地理学报,1958,24(03):275-307.
    [97]甘枝茂.黄土高原地貌与土壤侵蚀研究[M].西安:陕西人民出版社,1989.
    [98]黄秉维.编制黄河中游流域土壤侵蚀分区图的经验教训[J].科学通报,1955(12):14-21.
    [99]中国科学院黄河中游水土保持综合考察队.山西西部水土保持土地合理利用报告[M].北京:科学出版社,1957.
    [100]苏时雨,李钜章.地貌制图[M].北京:测绘出版社,1999.
    [101] Peucker T. K.,Douglas D. H. Detection of surface-specific points by local parallel processing ofdiscrete terrain elevation data[J]. Computer Graphics and Image Processing,1975,4(4):375-387.
    [102] Jenson S. K. Automated derivation of hydrologic basin characteristics from digital elevation modeldata[C]. in Proc. auto-carto.1985.
    [103] Band L. E. Topographic partition of watersheds with digital elevation models[J]. Water ResourcesResearch,1986,22(1):15-24.
    [104] O'Callaghan J.,Mark D. The extraction of drainage networks from digital elevation data[J]. Computervision, graphics, and image processing,1984,28(3):323-344.
    [105] Freeman T. Calculating catchment area with divergent flow based on a regular grid[J]. Computers&Geosciences,1991,17(3):413-422.
    [106] Quinn P., Beven K., Chevallier P.,Planchon O. The prediction of hillslope flow paths for distributedhydrological modelling using digital terrain models[J]. Hydrological processes,1991,5(1):59-79.
    [107] Costa-Cabral M. C.,Burges S. J. Digital elevation model networks (DEMON): A model of flow overhillslopes for computation of contributing and dispersal areas[J]. Water Resources Research,1994,30(6):1681-1692.
    [108] Tarboton D. A new method for the determination of flow directions and upslope areas in grid digitalelevation models[J]. Water Resources Research,1997,33(2):309-319.
    [109]闾国年,钱亚东,陈钟明.黄土丘陵沟壑区沟谷网络自动制图技术研究[J].测绘学报,1998,27(02):131-137.
    [110]陈楠,王钦敏,汤国安,赵元伟.基于bp神经网络自动提取沟谷研究[J].中国水土保持科学,2006,4(05):30-34.
    [111] Hanley J. Fourier analysis of the Catawba Mountain knolls, Roanoke county, Virginia[J].Mathematical Geology,1977,9(2):159-163.
    [112] Steyn D. G.,Ayotte K. Application of Two-Dimensional Terrain Height Spectra to MesoscaleModeling[J]. Journal of the Atmospheric Sciences,1985,42(24):2884–2887.
    [113] Ricard Y., Froidevaux C.,Simpson R. Spectral analysis of topography and gravity in the Basin andRange Province[J]. Tectonophysics,1987,133(3–4):175-187.
    [114] Mulla D. J. Using geostatistics and spectral analysis to study spatial patterns in the topography ofsoutheastern Washington State, U.S.A[J]. Earth Surface Processes and Landforms,1988,13(5):389-405.
    [115] Hwang C. Spectral analysis using orthonormal functions with a case study on the sea surfacetopography[J]. Geophysical Journal International,1993,115(3):1148-1160.
    [116] Brook G.,Hanson M. Double fourier series analysis of cockpit and doline and karst near brownstown[J]. Jamaica: Physical Geography,1991,12(1):37-54.
    [117] Harrison J. M.,Lo C.-P. PC-based two-dimensional discrete fourier transform programs for terrainanalysis[J]. Computers&Geosciences,1996,22(4):419-424.
    [118] Goff J. A.,Tucholke B. E. Multiscale spectral analysis of bathymetry on the flank of the Mid-AtlanticRidge: Modification of the seafloor by mass wasting and sedimentation[J]. Journal of GeophysicalResearch,1997,102(B7):15447-15,462.
    [119] Perron J., Kirchner J.,Dietrich W. Spectral signatures of characteristic spatial scales and nonfractalstructure in landscapes[J]. Journal of Geophysical Research,2008,113(F4): F04003.
    [120] Mallat S. G. Multifrequency channel decompositions of images and wavelet models[J]. Acoustics,Speech and Signal Processing, IEEE Transactions on,1989,37(12):2091-2110.
    [121] Gunawan D. Denoising images using wavelet transform[C]. in Communications, Computers andSignal Processing,1999IEEE Pacific Rim Conference on.1999: IEEE.
    [122]陈仁喜,赵忠明,王殷行.基于整型小波变换的DEM数据压缩[J].武汉大学学报(信息科学版),2006(04):344-347.
    [123]万刚,朱长青.多进制小波及其在DEM数据有损压缩中的应用[J].测绘学报,1999(01):38-42.
    [124]罗永,成礼智,陈波,吴翊.数字高程模型数据整数小波水印算法[J].软件学报,2005(06):1096-1103.
    [125] Kirby J. F. Which wavelet best reproduces the Fourier power spectrum?[J]. Computers&Geosciences,2005,31(7):846-864.
    [126] Booth A. M., Roering J. J.,Perron J. T. Automated landslide mapping using spectral analysis andhigh-resolution topographic data: Puget Sound lowlands, Washington, and Portland Hills, Oregon[J].Geomorphology,2009,109(3-4):132-147.
    [127] Jordan G.,Schott B. Application of wavelet analysis to the study of spatial pattern of morphotectoniclineaments in digital terrain models. A case study[J]. Remote Sensing of Environment,2005,94(1):31-38.
    [128] Lashermes B., Foufoula-Georgiou E.,Dietrich W. Channel network extraction from high resolutiontopography using wavelets[J]. Geophysical Research Letters,2007,34(23): L23S04.
    [129] Yu Q., Tian J.,Liu J. A NOVEL contour-based3D terrain matching algorithm using wavelettransform[J]. Pattern Recognition Letters,2004,25(1):87-99.
    [130]吴凡,祝国瑞.基于小波分析的地貌多尺度表达与自动综合[J].武汉大学学报(信息科学版),2001,26(2):170-176.
    [131]吴纪桃,王桥.复杂地貌形态多比例尺表达的二维小波分析研究[J].遥感学报,2003,7(2):93-97.
    [132]杨族桥,郭庆胜,牛冀平,肖小红. DEM多尺度表达与地形结构线提取研究[J].测绘科学,2005,34(2):134-137.
    [133]林璐.基于小波分析的多尺度KDEM表达及地形分析效应研究一一以黄土高原样区为例[D].西安:西北大学,2008.
    [134]王海江.多分辨率分析方法在DEM多尺度表达中的应用[D].杨凌:中国科学院大学,2012.
    [135]郭伟玲.坡度和坡长尺度效应与尺度变换研究[D].杨凌:中国科学院大学,2012.
    [136]刘春,王家林.多尺度小波分析用于DEM网格数据综合[J].中国图象图形学报,2004,9(3):340-344.
    [137]李含璞.基于小波变换的DEM多尺度综合研究[D].兰州:兰州大学,2006.
    [138]于浩,杨勤科,张晓萍,李锐.基于小波多尺度分析的DEM数据综合研究[J].测绘科学,2008,33(3):93-95,115.
    [139] CH/T9009.2-2010.基础地理信息成果1:5000、1:10000、1:25000、1:50000、1:100000数字高程模型[S].北京:测绘出版社,2010
    [140] GB/T7931-2008.1:5001:10001:2000地形图航空摄影测量外业规范[S].北京:中国标准出版社,2008
    [141] GB/T7930-2008.1:5001:10001:2000地形图航空摄影测量内业规范[S].北京:中国标准出版社,2008
    [142] CH/T9008.2-2010.基础地理信息成果1:500、1:1000、1:2000数字高程模型[S].北京:测绘出版社,2010
    [143]陈永刚,汤国安,祝士杰. DEM重采样误差空间分布格局及差异性分析[J].中国矿业大学学报,2011(04):653-659.
    [144]陈永宗,景可,蔡强国.黄土高原现代侵蚀与治理[M].北京:科学出版社,1988.
    [145] Strahler A. N. Hypsometric (area-altitude) analysis of erosional topography[J]. Geological Society ofAmerica Bulletin,1952,63(11):1117-1142.
    [146]承继成,江美球.流域地貌数学模型[M].北京:科学出版社,1986.
    [147]熊立华,郭生练.基于DEM的数字河网生成方法的探讨[J].长江科学院院报,2003(04):14-17.
    [148]李俊,汤国安,张婷,肖晨超.利用DEM提取陕北黄土高原沟谷网络的汇流阈值研究[J].水土保持通报,2007(02):75-78.
    [149]朱红春.数字高程模型(DEM)空间数据挖掘研究[D].西北大学,2003.
    [150] Bracewell R. N.傅里叶变换及其应用(第三版)[M].殷勤业,张建国译.西安:西安交通大学出版社,2005.
    [151]潘文杰.傅里叶分析及其应用[M].北京:北京大学出版社,2002.
    [152]张德丰. MATLAB小波分析[M].北京:机械工业出版社,2010.
    [153]徐杰.数字图像处理[M].武汉:华中科技大学出版社,2009.
    [154]华中科技大学数学系.复变函数与积分变换(第二版)[M].北京:高等教育出版社,2003.
    [155]祝国瑞,张根寿.地图分析[M].北京:测绘出版社,1994.
    [156]胡洁,杨勤科,郭兰勤.基于快速傅立叶变换(FFT)的地形剖面线的数学表达研究[J].长江科学院院报,2012(05):62-66.
    [157]胡洁.基于傅里叶变换的侵蚀地形频率研究[D].西北农林科技大学,2012.
    [158]陈彦光.地理数学方法:基础和应用[M].北京:科学出版社,2011.
    [159] Boggess A.,Narcowich F. J.小波与傅里叶分析基础(第二版)[M].芮国胜,康健译.北京:电子工业出版社,2010.
    [160] Gonzalez R. C., Woods R. E.,Eddins S. L.数字图像处理(MATLAB版)[M].阮秋琦等译.北京:电子工业出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700