基于DEM的坡度尺度效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
坡度是水文和土壤侵蚀模型的重要参数,认识理解坡度随分辨率变化规律对于土壤侵蚀定量评价研究十分重要。本研究以黄土丘陵沟壑区的县南沟流域为研究区,基于1:1万地形图,利用ANUDEM软件生成多种分辨率DEM,并利用ARC/INFO中计算坡度的方法提取了各种分辨率的坡度。综合运用数字地形分析、地统计学等方法,对坡度及相关地形因子随分辨率的变化及其空间格局进行了分析。主要结论如下:
     (1)分辨率对样点、地形特征线、正负地形等坡度提取结果的影响。随着DEM分辨率的降低,单个样点坡度值表现出不确定性,坡度较小的样点随分辨率变化的不确定性表现的更加明显,而坡度较陡的样点更表现出坡度衰减的趋势。沟沿线上坡度值随分辨率降低衰减速度最快,分水线和流水线上坡度缓慢下降。正负地形坡度均衰减,其中负地形坡度衰减比正地形快。较平缓坡度段(0~10°),平均坡度随分辨率降低表现为先升高后降低;中等坡度段(10~25°),分区平均坡度与DEM分辨率呈线性关系,其中10~12.5°坡度段,随DEM分辨率降低坡度几乎不变;陡坡段(>=25°),分区平均坡度与DEM分辨率呈对数变化。
     (2)平均坡度、平均剖面曲率提取结果与分辨率的关系。随着DEM分辨率的降低,平均坡度呈下降趋势,并且二者具有对数关系。粗分辨率DEM上提取的缓坡地面积会有所增加,陡坡地面积减少。对DEM分辨率与平均剖面曲率进行回归分析,得到二者呈幂函数关系。随着分辨率的降低,粗分辨率DEM上剖面曲率降低,地形起伏程度变小。
     (3)分辨率对地形因子频率曲线的影响。坡度累积频率曲线与分辨率有很大关系,随着分辨率的降低,坡度累积频率曲线向左上方移动,即坡度越来越向较小坡度值集中。随着分辨率的降低,剖面曲率频率曲线的峰值不断向左移动,剖面曲率越来越向较小曲率值集中。不同分辨率的坡向频率曲线均表现出“双峰”特征,并且差异比较小。
     (4)地形信息空间结构与分辨率关系。地统计学分析表明,坡度表现为强烈的空间相关性,其变异函数的最佳理论模型为指数模型,基台值、块金值随分辨率的降低而减小,变程随分辨率降低有增加的趋势。不同分辨率剖面曲率变异函数模型的变程随分辨率的降低而增加,其最佳理论模型也是指数模型。随分辨率降低,剖面曲率的基台值下降明显。基于空间频率理论,对制图综合过程中损失的高频信息进行分析。结果表明,制图综合过程起到了“削峰填谷”的作用,即沟谷处高程略有增加,梁上高程略微降低。
Slope is an important parameter for hydrology and soil erosion model, understanding changes of slope with the changing resolution is very important for improving the precision of hydrological simulation. In this study, taking Xiannangou watershed, representing the loess hilly geomorphology landscape, as the test area, a series of hydrologically corrected DEMs were generated using ANUDEM based on the 1:10,000 digital topographic map. Different resolution slope gradients were extracted within the ARC/INFO slope calculation methods. By applying terrain analysis and geostatistical methods, changes of DEM-derived slope with horizontal resolution and their spatial distribution were systematically investigated. The main conclusions are as follows:
     Research shows that with DEM resolution decreasing, slope at single point shows uncertainty. Slope at the edgeline decreases sharply, at borderline and streamline decrease slowly. slope at positive and negative terrain both decrease. Slope at negative terrain decrease faster than the positive terrain. low slope terrain increases at first and then decreases, middle slope terrain shows slight changes, and steep slope terrain decreases with logarithm greatly. With the decrease of DEM resolution, mean slope of the basin decreases with logarithm. With resolution reduction, ramp areas continue to increase while steep areas gradually decrease.With DEM resolution reduction, mean profile curvature of the watershed decreases with power function, profile curvature tend to concentrate at small values, topographic relief become smaller. The aspect frequency distribution with different resolutions both have“double peaks”.
     Slope cumulative frequency distribution with resolution reduction, the peak continuously move to left. The peak of profile curvature frequency distribution also move to left with resolution reduction, it means profile curvature tend to concentrate at small values, topographic relief become smaller.
     It is showed from the semi-variance analysis that slope is strongly spatially dependent, the exponential model can describe the spatial variability of slope. With DEM resolution reducing, sill and nugget decrease, range increases. The variograms of profile curvature have the similar laws.
     Make an Analysis of high frequency information based on spatial frequency theory. The results show that the process of cartographic generalization played an effect that reducing peak and filling valley.
引文
白美健,许迪,李益农,李福祥. 2006.畦面微地形空间变异性分析.水利学报, 35(7):813-819.
    毕华兴,谭秀英,李笑吟. 2005.基于DEM的数字地形分析.北京林业大学学报, 27(2):49-53.
    蔡强国. 1989.坡长在坡面侵蚀产沙过程中的作用.泥沙研究, (4):52-56.
    曹龙熹,符素华. 2007.基于DEM的坡长计算方法比较分析.水土保持通报, 27(5):58-62.
    程琳,杨勤科,谢红霞,王春梅,郭伟玲. 2009.基于GIS和CSLE的陕西省土壤侵蚀定量评价研究.水土保持学报, 23(5):61-66.
    郭超颖,毕华兴,陈涛,杜林芳,云雷,任怡. 2008.基于DEM的马莲河流域数字地形分析.中国水土保持科学, 6(1):101-106.
    郭伟玲,杨勤科,程琳,李俊,胡洁. 2010.区域土壤侵蚀定量评价中的坡长因子尺度变换方法.中国水土保持科学, 473-78.
    郭伟玲,杨勤科,汪翠英,李文凤. 2008.适用于地形复杂地区水土流失评价的高分辨率DEM建立方法.干旱地区农业研究, 26(003):246-252.
    郝振纯,池宸星,王玲,王跃奎. 2005. DEM空间分辨率的初步分析.地球科学进展, 20(5):499-504.
    郝振纯,池宸星. 2004.空间分辨率与取样方式对DEM流域特征提取的影响.冰川冻土, 26(5):610-616.
    何福红. 2006.基于“3S”技术的沟蚀研究方法构建与应用.北京:中国农业科学院.
    胡鹏,白轶多,胡海. 2009.数字高程模型生成中的高程序同构.武汉大学学报(信息科学版), 34(3).
    胡鹏,黄雪莲,吴艳兰,刘永琼. 2006. DEM若干理论问题思考.哈尔滨工业大学学报, 38(12):2143-2147.
    胡鹏,杨传勇,吴艳兰. 2007.新数字高程模型:理论、方法、标准和应用.北京:测绘出版社.
    孔亚平,张科利,唐克丽. 2001.坡长对侵蚀产沙过程影响的模拟研究.水土保持学报, 15(2):17-24.
    李丽,郝振纯. 2003.基于DEM的流域特征提取综述.地球科学进展, 18(2):251-256.
    李勉,李占斌,刘普灵,崔灵周,李雅琦. 2004.黄土高原水蚀风蚀交错带土壤侵蚀坡向分异特征.水土保持学报, 18(001):63-65.
    李志林,朱庆. 2003.数字高程模型.武汉:武汉大学出版社.
    刘昌明,李道峰,田英,郝芳华,杨桂莲. 2003.基于DEM的分布式水文模型在大尺度流域应用研究.地理科学进展, 22(5):437-445.
    刘纪根,蔡强国,樊良新. 2004.流域侵蚀产沙模拟研究中的尺度转换方法.泥沙研究, (3).
    刘学军,卢华兴,卞璐,任政. 2006.基于DEM的河网提取算法的比较.水利学报, 37(9):1134-1141.
    刘学军,卢华兴,仁政,任志峰. 2007.论DEM地形分析中的尺度问题.地理研究, 26(3):433-442.
    刘学军,王彦芳,晋蓓. 2009.利用点扩散函数进行DEM尺度转换.武汉大学学报:信息科学版, 34(12).
    闾国年,钱亚东,陈钟明. 1998a.流域地形自动分割研究.遥感学报, 2(4):298-304.
    闾国年,钱亚东,陈钟明. 1998b.基于栅格数字高程模型提取特征地貌技术研究.地理学报, 53(6):562-570.
    闾国年,钱亚东,陈钟明. 1998c.黄土丘陵沟壑区沟谷网络自动制图技术研究.测绘学报, 27(2):131-137.
    吕一河,傅伯杰. 2001.生态学中的尺度及尺度转换方法.生态学报, 21(2): 2096-2105.
    罗来兴. 1958.甘肃华亭粮食沟坡侵蚀量的野外观测及其初步分析结果.地理学资料, (2):111-118.
    彭剑峰,勾晓华,陈发虎,方克艳,张芬. 2010.坡向对海拔梯度上祁连圆柏树木生长的影响.植物生态学报, 34(5):517-525.
    孙立群,胡成,陈刚. 2008. TOPMODEL模型中的DEM尺度效应.水科学进展, 19(5):700-706.
    汤国安,龚健雅,陈正江,成燕辉,王占宏. 2001.数字高程模型地形描述精度量化模拟研究.测绘学报, 30(4):361-365.
    汤国安,刘学军,房亮,罗明良. 2006. DEM及数字地形分析中尺度问题研究综述.武汉大学学报:信息科学版, 31(12):1059-1066.
    汤国安,赵牡丹,李天文,刘咏梅,谢元礼. 2003. DEM提取黄土高原地面坡度的不确定性.地理学报, 58(6):824-830.
    万刚,朱长青. 1999.多进制小波及其在DEM数据有损压缩中的应用.测绘学报, 28(001):36-40.
    王春,刘学军,汤国安,陶旸. 2009.格网DEM地形模拟的形态保真度研究.武汉大学学报(信息科学版), 34(2).
    王光霞,朱长青. 2005.地形信息的LoD建模及精度分析.测绘学报, 34(003):228-232.
    王军,傅伯杰,邱扬,陈利顶. 2000.黄土丘陵小流域土壤水分的时空变异特征-半变异函数.地理学报, 55(4):428-438.
    王艳慧,李小娟,宫辉力. 2006.地理要素多尺度表达的基本问题.中国科学E辑, 36(增刊)38-44.
    王政权. 1999.地统计学及在生态学中的应用.北京:科学出版社.
    邬伦. 2001.地理信息系统:原理,方法和应用.北京:科学出版社.
    吴凡,祝国瑞. 2001.基于小波分析的地貌多尺度表达与自动综合.武汉大学学报:信息科学版, 26(002):170-176.
    吴险峰,刘昌明,王中根. 2003.栅格DEM的水平分辨率对流域特征的影响分析.自然资源学报, 18(2):148-154.
    徐建华. 2002.现代地理学中的数学方法.北京:高等教育出版社.
    徐静,程媛华,任立良,刘晓帆. 2007. DEM空间分辨率对TOPMODEL径流模拟的影响研究.水文, 27(6):28-32.
    杨勤科, Jupp, D.,郭伟玲,李锐. 2008.基于滤波方法的DEM尺度变换方法研究.水土保持通报, 28(006):58-62.
    杨勤科, McVicar, T. R., VanNiel, T. G.,李领涛. 2006. ANUDEM和TIN两种建立DEM方法的对比研究.水土保持通报, 26(6):84-88.
    杨勤科,赵牡丹,刘咏梅,郭伟玲,王雷,李锐. 2009. DEM与区域土壤侵蚀地形因子研究.地理信息世界, 7(1):25-31.
    杨昕,汤国安,刘学军,李发源,祝士杰. 2009.数字地形分析的理论、方法与应用.地理学报, 64(9):1058-1070.
    杨昕. 2007.基于DEM地形指数的尺度效应与尺度转换.南京:南京师范大学.
    杨族桥,郭庆胜. 2003.基于提升方法的DEM多尺度表达研究.武汉大学学报:信息科学版, 28(004):496-498.
    于浩,杨勤科,张晓萍,李锐. 2008.基于小波多尺度分析的DEM数据综合研究.测绘科学, 33(003):93-95.
    岳天祥,杜正平,刘纪远. 2004.高精度曲面建模与误差分析.自然科学进展, 14(2):83-89.
    岳天祥,刘纪远. 2003.生态地理建模中的多尺度问题.第四纪研究, 23(3):256-261.
    张彩霞,杨勤科,段建军. 2006.高分辨率数字高程模型的构建方法.水利学报, 37(8):1009-1013.
    张娜. 2007.生态学中的尺度问题——尺度上推.生态学报, 27(010):4252-4266.
    郑粉莉,唐克丽,周佩华. 1989.坡耕地细沟侵蚀影响因素的研究.土壤学报, 26(2):109-116.
    周买春,黎子浩. 2002.数值地形图的生成及其水文地貌特征评价.水利学报, (002):71-74.
    周启鸣,刘学军. 2006.数字地形分析:科学出版社.
    朱红春,汤国安,张友顺,易红伟,李明. 2003.基于DEM提取黄土丘陵区沟沿线.水土保持通报, 23(005):43-45.
    Armstrong R N, M. L. W. 2003. Topographic parameterization in continental hydrology: a study in scale. Hydrological Processes, 173763-3781.
    Beven, K. 2000. Uniqueness of place and process representations in hydrological modelling. Hydrology and Earth System Sciences, 4(2):203-213.
    Chang, K., Tsai, B. 1991. The effect of DEM resolution on slope and aspect mapping. Cartography and Geographic Information Science, 18(1):69-77.
    Collins, S. H. 1979. Algorithms for dense digital terrain models. New technology for mapping, 715-725.
    Costa-Cabral, M., S. Burges. 1994. Digital elevation model networks (DEMON): A model of flow over hillslopes for computation of contributing and dispersal areas. Water Resources Research, 30(6):1681-1692.
    Desmet, P., G. Govers. 1996. A GIS procedure for automatically calculating the USLE LS factor on topographically complex landscape units. Journal of soil and water conservation, 51(5):427-433.
    Ebner, H., Reinhardt, W., H ler, R. 1984. Generation, management and utilization of high fidelity digital terrain models. International Archives of Photogrammetry and Remote Sensing, 27(B11):556-566.
    Evans, I. S. 1980. An integrated system of terrain analysis and slope mapping: Dept. of Geography, University of Durham.
    Fairfield, J., Leymarie, P. 1991. Drainage networks from grid digital elevation models. Water Resources Research, 27(5):709-717.
    Fowler, R. J., Little, J. J. (1979). Automatic extraction of irregular network digital terrain models, vol. 13, pp. 199-207: ACM.
    Freeman, T. 1991. Calculating catchment area with divergent flow based on a regular grid. Computers & Geosciences, 17(3):413-422.
    Gallant, J., Hutchinson, M. 1997. Scale dependence in terrain analysis. Mathematics and Computers in Simulation, 43(3):313-322.
    Gallant, J., J. Wilson. 1996a. TAPES-G: a grid-based terrain analysis program for the environmental sciences. Computers and Geosciences, 22(7):713-722.
    Gallant, J., M. Hutchinson. 1996b. Towards an understanding of landscape scale and structure. Gao, J. 1997. Resolution and Accuracy of Terrain Representation by Grid DEMs at a Micro-scale. International Journal of Geographical Information Science, 11(2):199-212.
    Garbrecht, J., Martz, L. 2000. Digital elevation model issues in water resources modeling. Hydrologic and hydraulic modeling support with geographic information systems, 1-28.
    Gyasi-Agyei, Y., G. W., Troch, F. D. 1995. Effects of vertical resolution and map scale of digital elevation models on geomorphological parameters used in hydrology. Hydrological Processes,9(3):363-382.
    Hickey, R. 2000. Slope angle and slope length solutions for GIS. Cartography, 29(1):1-8.
    Hu, P., Liu, X., Hu, H. 2009. Accuracy Assessment of Digital Elevation Models based on Approximation Theory. Photogrammetric Engineering and remote sensing, 75(1):49-56.
    Hutchinson, M. 1989. A new procedure for gridding elevation and stream line data with automatic removal of spurious pits. Journal of hydrology, 106(3-4):211-232.
    Jenson, S., J. Domingue. 1988. Extracting topographic structure from digital elevation data for geographic information system analysis. Photogrammetric Engineering and remote sensing, 54(11):1593-1600.
    Jenson, S. K. (1985). Automated derivation of hydrologic basin characteristics from digital elevation model data, vol. 7, pp. 301-310.
    Kilpel?inen, T. 2000. Maintenance of multiple representation databases for topographic data. Journal of Geographical Systems, 37(2):101-107.
    Kolaczyk, E. D., Huang, H. 2001. Multiscale statistical models for hierarchical spatial aggregation. Geographical Analysis, 33(2):95-118.
    Lacroix M P, M., L W,Kite G W,et al. 2002. Using digital terrain analysis modeling techniques for the parameterization of a hydrologic model. Environmental Modelling&Software, 17127-136.
    Liu, B., M. Nearing,P. Shi,等. 2000. Slope length effects on soil loss for steep slopes. Soil Science Society of America Journal, 64(5):1759.
    Mallat, S. 1989. A theory for multiresolution signal decomposition: The wavelet representation. IEEE transactions on pattern analysis and machine intelligence, 11(7):674-693.
    Mark, D. M. 1984. Automated detection of drainage networks from digital elevation models. Cartographica, 21(2-3):168-178.
    McVicar, T., Z. Wen,T. Van Niel,等. 2005. Mapping Perennial Vegetation Suitability and Identifying Target and Priority Areas for Implementing the Re-Vegetation Program in the Coarse Sandy Hilly
    Catchments of the Loess Plateau, China. Canbarra: Australia: CSIRO Land and Water.
    Moore, I., G. Burch. 1986. Physical basis of the length-slope factor in the Universal Soil Loss Equation. Soil Science Society of America Journal, 50(5):1294.
    Moore, I., Grayson, R., Ladson, A. 1991. Digital terrain modelling. A review of hydrological, geomorphological, and biological applications. Hydrological Processes, 5(1):3-30.
    Moore, I., O'loughlin, E., Burch, G. 1988. A contour‐based topographic model for hydrological and ecological applications. Earth Surface Processes and Landforms, 13(4):305-320.
    O'callaghan, J., D. Mark. 1984. The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28(3):323-344.
    O'Callaghan, J. F., Mark, D. M. 1984. The extraction of drainage networks from digital elevation data. Computer vision, graphics, and image processing, 28(3):323-344.
    Quinn, P., Beven, K., Chevallier, P., Planchon, O. 1991. The prediction of hillslope flow paths for distributed hydrological modelling using digital terrain models. Hydrological Processes, 5(1):59-79.
    Saulnier, G., Beven, K., Obled, C. 1997. Digital elevation analysis for distributed hydrological modeling: Reducing scale dependence in effective hydraulic conductivity values. Water Resources Research, 4733(9):2097-2101.
    Shreve, R. 1967. Infinite topologically random channel networks. The Journal of Geology, 75(2):178-186.
    Tajchman, S. J. 1981. On computing topographic characteristics of a mountainous catchment. Canadian Journal of Forest Research, 11(4):768-774.
    Tang, G. A., Li, F. Y., Liu, X. J., Long, Y., Yang, X. 2008. Research on the slope spectrum of the Loess Plateau. Science in China Series E: Technological Sciences, 51175-185.
    Tarboton, D. 1997. A new method for the determination of flow directions and upslope areas in grid digital elevation models. Water Resources Research, 33(2).
    Tarboton, D. 2004. Terrain analysis using digital elevation models (TauDEM). Available at hydrology. neng. usu. edu/taudem.
    Thompson, J., Bell, J., Butler, C. 2001. Digital elevation model resolution: effects on terrain attribute calculation and quantitative soil-landscape modeling. Geoderma, 100(1-2):67-89.
    Walker, J., Willgoose, G. 1999. On the effect of digital elevation model accuracy on hydrology and geomorphology. Water Resources Research, 35(7):2259-2268.
    Webster, R., Oliver, M. A. 2007. Geostatistics for environmental scientists: John Wiley & Sons Inc. Weibel, R. (1987). An adaptive methodology for automated relief generalization, vol. 8, pp. 42-49.
    Wilson, J., Gallant, J. 2000. Terrain Analysis, principles and applications. New York: Wiley. Wischmeier, W., D. Smith. 1978. Predicting Rainfall-Erosion Losses: A Guide to Conservation Planning. Agricultural Handbook No. 537. US Department of Agriculture,Washington, DC, 58.
    Wolock, D. M., J, M. G. 2000. Differences in topographic characteristics computed from 100- and 1000-m resolution digital elevation model data. Hydrological Processes, 14(6):987-1002.
    Woodcock, C. E., Strahler, A. H. 1987. The factor of scale in remote sensing. Remote Sensing of Environment, 21(3):311-332.
    Yang, Q. K., Jupp, D., Li R,等. (2008). Re-scaling lower resolution slope by histogram matching. In Advances in Digital Terrain Analysis (Lecture Notes in Geoinformation and Cartograph).
    Yang, Q. K., Van Niel, T. G., McVicar, T. R., Hutchinson, M. F., Li, L. T. 2005. Developing a digital elevation model using ANUDEM for the Coarse Sandy Hilly Catchments of the Loess Plateau, China. CSIRO Land and Water Technical Report, 705-74.
    Yue, T. X., Du, Z. P., Song, D. J., Gong, Y. 2007. A new method of surface modeling and its application to DEM construction. Geomorphology, 91(1-2):161-172.
    Zevenbergen, L., Thorne, C. 1987. Quantitative analysis of land surface topography. Earth Surface Processes and Landforms, 12(1):47-56.
    Zhang, W., Montgomery, D. R. 1994. Digital elevation model grid size, landscape representation, and hydrologic simulations. Water Resources Research, 30(4):1019-1028.
    Zhang, X., Drake, N., Wainwright, J., Mulligan, M. 1999. Comparison of slope estimates from low resolution DEMs: scaling issues and a fractal method for their solution. Earth Surface Processes and Landforms, 24(9):763-779.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700