桔小实蝇消化和解毒代谢相关基因鉴定及其对药剂胁迫的应激反应
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫通过消化代谢从食物中吸收营养物质,为自身的生长、发育和生殖提供必要的能量,同时通过解毒代谢抵御在取食和活动中接触到的外源毒素对自身的不利影响,这是昆虫体内两条非常重要的代谢通路。而由于此前相关分子生物学信息的不足,关于消化代谢和解毒代谢的研究,往往仅局限于某几个基因或者酶的特性解析,对大多数昆虫的消化和解毒代谢系统的分子生物学信息还缺乏全面的了解。随着第二代高通量测序技术的出现和成熟,使得即使在缺乏全基因组信息的情况下,也可以快速、高效的在转录组水平上获得某一个个体、器官或者组织的基因信息。该技术在昆虫研究中的应用和推广,极大地推动了昆虫分子生物学研究的进程。
     本学位论文以果树重要害虫桔小实蝇为研究对象,利用高通量测序技术,对其不同发育阶段的基因表达谱进行了检测,在发掘不同发育阶段差异表达基因的同时,明确了桔小实蝇体内主要消化酶和解毒代谢酶在不同虫态的表达分布情况。中肠是昆虫体内的第二大器官,是消化食物和吸收营养的主要场所,也是进行解毒代谢、阻隔外源毒素的一大屏障,因此进一步利用转录组测序技术在整体水平上解读了桔小实蝇幼虫中肠转录本信息,对功能基因进行了注释,为相关分子生物学研究的开展提供了充实的数据。并且从害虫防治的角度出发,围绕中肠的主要功能,筛选鉴定出了与食物消化、有毒物质代谢以及dsRNA作用通路上相关的基因,解析了它们的序列特征和系统进化关系。进而根据得到的丰富的基因信息,在内参基因筛选的基础上,利用qPCR技术系统开展了桔小实蝇解毒代谢酶基因(CCEs, P450s和GSTs)和消化酶基因在高效氯氰菊酯胁迫下的应激表达模式研究。研究发现桔小实蝇应对药剂胁迫时可能存在组织间的能量再分配,即通过组织间能量的转移和集中,高效表达解毒代谢酶基因的应对机制。本研究的主要结果如下:
     1桔小实蝇不同发育阶段基因表达谱分析
     1.1不同发育阶段基因表达谱测序概况
     以采自海南并在实验室建立的桔小实蝇种群为试虫,分别从卵、幼虫、蛹以及成虫体内提取高质量RNA,在Illumina HiSeq2000上进行基因表达谱测序。获得的数据提交至NCBI的SRA数据库,登录号分别为SRA043792, SRA043786,SRA043785以及SRA043783。经过对数据的统计分析发现,4个样品的reads数均在5百万以上,且所含有的低质量reads、不确定碱基以及接头序列的比例都低于1%,以数据库中已公布的桔小实蝇不同发育阶段转录组数据为参考,对4个发育阶段的基因表达谱序列进行比对后,有超过65%的序列的覆盖度达到50%以上,说明表达谱测序的质量较高。
     1.2不同发育阶段差异表达的基因
     按卵期和幼虫期、幼虫期和蛹期、蛹期和成虫期的分组对4个基因表达谱进行两两对比,统计桔小实蝇不同发育阶段差异表达的基因数量发现,卵期和幼虫期之间差异表达的基因数量最多。与卵期相比,幼虫期分别有7352和8164个基因的表达存在上调和下调的现象。蛹期和幼虫期相比,共有7581个基因在表达丰度上存在显著差异,在蛹期表达上调的基因数量为3786个,表达下调的基因数量为3795个。蛹期与成虫期相比,在表达丰度上存在显著差异的基因有10272个,其中在成虫期表达上调的基因数(3077)远少于表达下调的基因数(7195)。通过对各个发育阶段差异表达显著的基因进行功能分析发现,在卵期表达丰度较高的基因主要涉及胚胎发育和细胞分裂,而幼虫期则主要参与能量代谢以及肌肉形成,在蛹期表达丰度高的是与表皮形成相关的基因,同时,在卵期高量表达的与细胞分裂相关的基因在蛹期的表达也明显活跃。成虫期与幼虫期相似,负责能量代谢和运动能力的基因表达活跃,此外成虫期与嗅觉和视觉有关的基因的表达丰度也较高。这些差异表达的基因反映了桔小实蝇各个虫态生命活动的特征,卵期和蛹期调控细胞分裂分化的基因表达活跃,是变态发育的关键时期,而幼虫期和成虫期与能量代谢、解毒代谢以及行动能力相关的基因表达活跃。
     1.3消化、解毒代谢相关基因在不同发育阶段的表达分布
     基因注释结果表明,多种编码消化酶和解毒代谢酶的基因在桔小实蝇不同发育阶段均有表达。消化酶中,基因数量最多的是胰蛋白酶,共发现15个编码胰蛋白酶的Unigene,这类基因的表达具有非常明显的发育阶段特异性,即主要集中在成虫期和幼虫期表达,并且大部分在幼虫期的表达量最高,但是几乎都不在卵期表达。另外氨基肽酶N和羧肽酶基因亦有类似的表达分布。解毒代谢酶中,基因数量最多的是P450s,共发现76个编码P450s的Unigene,成虫期和幼虫期是该类基因表达的高峰期,分别有62个Unigene在这两个时期表达。另外,还发现编码GSTs的Unigene23个,编码CCEs的Unigene17个,它们在幼虫期和成虫期的表达最为活跃,而在卵期的表达丰度都非常低。这些基因在不同虫态的表达分布说明消化和解毒代谢主要在幼虫期和成虫期进行。
     2桔小实蝇中肠转录组分析
     2.1桔小实蝇中肠转录组测序及Unigene注释概况
     为明确中肠的基因转录本信息,以采自海南并在实验室建立的桔小实蝇种群为试虫,从幼虫中肠提取高质量RNA,在Illumina HiSeq2000上进行转录组测序。获得的数据提交至NCBI的SRA数据库,登录号为SRA056311。经测序共获得4755425400个核苷酸。使用Trinity软件将这些核苷酸组装成为53318个平均长度为379nt的contig,并运用paired-end joining和gap-filling技术将这些contig进一步拼接成为25236个Unigene。
     将得到的Unigene提交NCBI蛋白质数据库(Nr)进行BLASTX比对,设阈值为E=10-5,25236个Unigene中,共有16531个返回有效结果。此外,还在其它数据库中进行了Unigene的注释工作,其中在Swiss-Prot数据库比对成功的Unigene为13026个,在KEGG数据库中比对成功的Unigene为11488个,在GO数据库中比对成功的Unigene为11575个,在Nt数据库中比对成功的Unigene为9825个,在COG数据库中比对成功的Unigene为5595个。综合以上所有数据库的比对结果,共有17308个Unigene得到成功注释。
     2.2Unigene分布概况
     在Nr数据库中成功注释的16531个Unigene中,E值小于10-45的占48.6%,另外51.4%的序列的E值在10-45到10-5之间。与数据库中的序列同源性在80%以上的Unigenen占24%。Unigene的同源性分布主要集中在果蝇属,在成功注释的序列中,75.74%的Unigene与果蝇属的相关基因同源性最高。其中,同源性最高的物种依次为Drosophila. virilis (11.03%),D. willistoni (10.32%)和D. mojavensis(9.86%)等。与其它双翅目昆虫相比较结果发现,桔小实蝇与刺舌蝇Glossina morsitans morsitans同源性较高(5.51%),其次分别为埃及伊蚊Aedes aegypti(1.03%)、致乏库蚊Culex quinquefasciatus (0.79%)和冈比亚按蚊Anopheles gambiae(0.62%)。仅有136个Unigene与果实蝇属的昆虫同源性最高,分别为橄榄实蝇B.oleae (68个)、木瓜实蝇B. papaya (7个)、昆士兰实蝇B. tryoni (6个)、瓜实蝇B.cucurbitae (5个)、以及菲律宾实蝇B. philippinensis (4个)。而与数据库中已登录的桔小实蝇B. dorsalis序列相吻合的Unigene仅有46个,这说明目前数据库中的桔小实蝇基因信息还有很大的不足。
     2.3Unigene的GO以及COG分类
     对Unigene进行GO功能分类发现,桔小实蝇中肠转录组数据库中共有11575个Unigene在GO分类中被划分到61个功能组中,这些组分别属于"biological process"、"cellular component"和"molecular function"3个大类。在"biological process"中,包含Unigene较多的是"cellular process","metabolic process","multicellular organismal process"以及‘'biological regulation",有多达4000余个Unigene参与了这些生命活动。"biological process"中最小的组为‘'carbon utilization",仅仅包含2个Unigene o在“cellular component"类群里,“cell"和“cell part"是最大的两个组,包含了超过6000个Unigene o在‘" molecular function "中,最大的功能组‘" binding "包含了6845个Unigene。
     同时对Unigene进行了COG功能分类,结果表明该分类共注释了5595个Unigene o其中,2130个Unigene属于‘'General function prediction",另外,1173个Unigene属于"Transcription ",926个Unigene属于‘'Translation, ribosomal structure and biogenesis"以及886个Unigene属于"Replication, recombination and repair"等类群。GO和COG分类的结果说明桔小实蝇体内绝大多数的基因都承担着与基础生命活动相关的功能,如参与细胞的组成,新陈代谢以及生物调控等。
     3功能基因分析
     3.1消化代谢酶相关基因分析
     将Unigene提交Nr数据库,与近源物种的基因序列进行比对,从桔小实蝇中肠转录组数据中筛选鉴定出106个与消化代谢酶相关的Unigene,包括蛋白酶、酯酶以及糖酶等。其中,共发现6种蛋白酶,分别是氨基肽酶(22个)、胰蛋白酶(22个)、天冬氨酸蛋白酶(3个)、羧肽酶(7个)、糜蛋白酶(2个)以及半胱氨酸蛋白酶(3个)。通过同源性比对分析,这些序列与双翅目昆虫如黑腹果蝇D.melanogaster、刺舌蝇G. morsitans morsitans、致乏库蚊C. quinquefasciatus以及埃及伊蚊A. aegypti等具有较高的同源性。说明蛋白酶在桔小实蝇中肠的消化过程中起着非常重要的作用,其中胰蛋白酶和氨基肽酶是两种最活跃的蛋白酶。
     3.2RNAi作用通路相关基因分析
     中肠作为dsRNA进入昆虫体内的一个重要器官,其中与dsRNA吸收、剪切等功能相关基因的表达对RNAi的效果起着至关重要的影响。通过在Nr数据库中的比对,从中肠转录组数据中筛选出了RNAi作用通路上的一系列基因。包括将dsRNA剪切成siRNA的Dicer-2,与siRNA形成复合蛋白的R2D2以及AGO2。但是在桔小实蝇的中肠没有发现对dsRNA的吸收起着关键作用的基因如SID-1,SR-CI等。只发现了1个可能与dsRNA在中肠里的跨膜运输有关的基因Eater。桔小实蝇中肠dsRNA作用通路上的基因具有双翅目昆虫的特征,但同时也缺失了一些在果蝇中较为典型的基因,说明桔小实蝇中可能存在其它的替代基因。
     3.3解毒代谢酶相关基因分析
     通过将Unigene与Nr数据库中多种昆虫的解毒代谢酶基因进行比对,从桔小实蝇中肠转录本数据中鉴定出编码GSTs的Unigene9个,平均长度为793nt,其中8个包括完整的开放阅读框,新发现GSTs基因1个。这8个GSTs基因的开放阅读框平均长度为639nt,编码177~234个氨基酸。根据同源性分析,这些基因属于Delta家族的有4个,属于Theta、Zeta家族以及微粒体型的GSTs基因各1个,此外,还有1个基因暂未有明确的分类。
     在桔小实蝇中肠转录组中编码CCEs的Unigene10个,包含完整开放阅读框的基因有6个,其中5个基因为新发现的CCEs。在中肠表达的CCEs基因开放阅读框平均长度为1695nt,编码545~574个氨基酸。同源性分析发现,这些基因均属于α酯酶,具有典型的"FGESAG"和"EDCLYLN"胆碱酯酶和催化三联体的标签序列。并且这些CCEs基因在酯酶中属于"dietary"类群,该类群与高效氯氰菊酯以及氰戊菊酯的代谢相关。
     此外经比对,桔小实蝇中肠转录组中鉴定出编码P450s的Unigene22个,平均长度为1461nt,包含完整开放阅读框的基因有16个,其中新发现的P450s基因有8个。P450s基因开放阅读框平均长度为1556nt,编码489~542个氨基酸,均具有典型的K螺旋结构"ExxR"以及血红素结合位点"PFxxGxRxCxG/A"。同源性比对分析发现,这些基因分属CYP4、CYP6、CYP12、CYP317、CYP309和CYP9六个家族。其中基因最多的是CYP4和CYP6家族,分别包含了6和5个基因。
     4药剂胁迫下解毒代谢酶和消化酶基因的应激反应模式
     4.1高效氯氰菊酯对桔小实蝇幼虫的胁迫及其对看家基因稳定性的影响
     以混入不同剂量高效氯氰菊酯的人工饲料将桔小实蝇幼虫从一龄饲喂至三龄,统计相对存活率。发现当高效氯氰菊酯的剂量为1μg/g(药剂/饲料)和33μg/g时,桔小实蝇幼虫存活率显著降低,仅为14.8%和10.8%。而当高效氯氰菊酯的剂量为0.3μg/g时,桔小实蝇幼虫的存活受到的影响相对较小,存活率约为88.5%。因此,本研究选择0.3μg/g这一对幼虫的存活有一定压力但是又不会引起大量死亡的剂量作为测试解毒代谢酶应激反应的胁迫压力。
     运用geNormplus和NormFinder两种软件,对桔小实蝇9个看家基因18S、Actin、Ef-la、GAPDH、RPL13、α-Tubulin、β-Tubulin、SDHA以及RPE经高效氯氰菊酯胁迫后,在幼虫、中肠和脂肪体中的表达稳定性进行了评估。结果表明,在整个幼虫和中肠里,经药剂处理前后,表达最为稳定的看家基因是EFla;而脂肪体经药剂处理前后,表达最为稳定的看家基因是RPL13。据此分别以这两个基因作为后续定量表达分析中的内参基因。
     4.2高效氯氰菊酯胁迫下桔小实蝇解毒代谢酶以及消化酶基因的应激表达模式
     在内参基因筛选的基础上,以桔小实蝇EFla和RPL13基因分别作为桔小实蝇幼虫、中肠和脂肪体定量表达分析的内参基因,采用qPCR方法对3种主要解毒代谢酶在高效氯氰菊酯胁迫下的应激表达模式进行了解析。
     桔小实蝇8个GSTs基因的定量分析结果表明,参与高效氯氰菊酯代谢的主要是Delta家族的4个基因,它们在中肠和脂肪体均出现了5.6~32.5倍的过量表达,而其它家族的GSTs经药剂胁迫后没有出现明显的应激反应。同时发现,Delta家族的GSTs基因虽然在中肠和脂肪体对药剂胁迫有积极的响应,但是它们的表达在整虫却没有明显的变化。说明此时其它组织器官中,GSTs的表达量呈下调的趋势。可以推测,桔小实蝇在应对药剂压力时,将能量转移集中到了重要的组织器官进行相关基因的表达。
     分析6个CCEs基因的定量结果发现,药剂胁迫后,桔小实蝇CCEs基因在整头幼虫中出现一定程度的上调,其中α-E3基因的表达量上调了4.1倍。但是这些基因在中肠和脂肪体均没有出现上调的情况。结合GSTs的表达模式分析,推测部分CCEs基因参与了高效氯氰菊酯的代谢,但是CCEs基因的主要作用组织器官不是脂肪体和中肠,而可能是其它使用解毒代谢功能的器官,比如马氏管。
     桔小实蝇16个P450s基因的定量分析结果表明,有多个P450s基因参与了高效氯氰菊酯的代谢,其中大部分属于CYP4和CYP6两个家族。CYP4家族中出现明显上调反应的主要有CYP4D47(中肠)、CYP4E9(幼虫、脂肪体)和CYP4P5(幼虫、脂肪体)。CYP4AD1的表达量在中肠和脂肪体均有一定程度的上调,而在整头幼虫没有变化。另外,CYP4S18和CYP4AC4没有出现应激表达或者表达量的变化不明显。CYP6家族中,CYP6A48和CYP6A41在脂肪体的表达量显著增加,分别提高了18.0和9.6倍,CYP6G6和CYP6A50在脂肪体的表达量也有一定程度的上升,而CYP6EK1的表达量虽然在整头幼虫提高了4.8倍,但是在中肠和脂肪体并没有明显的变化,推测该基因主要在其它组织如马氏管起作用。其它家族的P450,如CYP12C2,在脂肪体中出现了12.6倍的高表达,并且在幼虫和中肠的表达量也均提高了两倍。CYP9F6在脂肪体的表达量提高了5.4倍,CYP12N1,CYP309B1表达量在脂肪体也有两倍以上的变化,但是CYP317B1的表达量在药剂压力下并没有明显的变化。
     除了解毒代谢酶,本研究还检测了药剂胁迫对桔小实蝇中肠消化酶基因表达的影响。结果发现,所检测的6种消化酶基因的表达量均出现了3倍以上的提高,特别是胰蛋白酶,其表达量提高了10.7倍,说明经药剂处理后,桔小实蝇幼虫中肠的消化代谢活动增强。
     综上所述,本研究应用高通量测序技术完成了桔小实蝇不同发育阶段的基因表达谱检测以及幼虫中肠的转录组测序工作,通过对数据进行详尽的解析和注释,在分析各虫态差异表达基因的同时,明确了消化酶和解毒代谢酶基因在各虫态的表达分布,并重点筛选出了在中肠特异表达的与消化、RNAi作用通路以及解毒代谢相关的基因,阐释了这些基因的分子生物学特性。在此基础上,利用qPCR技术检测了主要的解毒代谢酶以及消化酶基因在药剂胁迫下的应激反应,鉴定出了参与高效氯氰菊酯代谢的主要基因,同时发现这些基因的表达存在明显的组织特异性。研究结果提供了桔小实蝇大量详实的基因信息,为从分子生物学角度深入研究中肠等组织器官的功能奠定了坚实的基础。
Digestion and detoxification are two important metabolic pathways in insects. The digestion provides enough energy for growth, development and reproduction, and detoxification can prevent damage from xenobiotics. During a long period, researches have been just focused on a few genes or enzymes. Without sufficient molecular information, it was hard to get a broad view of this part. At present, high throughput sequencing technology has become the best choice to screen out the gene information of the organism of interest without reference genome. This technology provides a short cut that can effectively and rapidly characterize the unique transcripts from individuals or specific tissues, and make great promotion to molecular studies.
     This study focused on an important agriculture pest, the oriental fruit fly, Bactrocera dorsalis. Firstly, we compiled four digital gene expression (DGE) libraries to investigate the expression profiles of genes at different developmental stages (egg, third-instar larva, pupa, and adult). The differently expressed genes were annotated and the expression distribution of digestion and detoxification genes were determined. Larva was found an important stage for the expression of these genes. As the second largest organ in insects, the insect midgut is the major tissue for digestion of food and detoxification of xenobiotics, and the first barrier and target against exogenous toxin. The functions and related mechanisms of midgut are always deemed as hot points by researchers. Secondly, we performed a midgut-specific transcriptome analysis of this insect. The annotation of gene transcripts provided sufficient molecular information for the fruit fly database and was useful for studying the biochemical and physiological mechanisms at molecular level. Meanwhile, for the pest control, we screened out the genes involved in digestion, RNAi mechanism and detoxification, which were important functions of the midgut, and conducted sequence characterization and phylogenic analysis of these genes. It is meaningful for finding the potential insecticide target, understanding the mechanism of detoxification, or developing new ways for pest control via RNAi. Using the transcriptome data, we futhur examined the expression reaction of detoxification and digestion genes under the stress. Based on the reference evaluation, our qPCR data showed the expression model of these genes in the midgut after stimulated by β-Cypermethrin. Compared with the data from the whole body of larvae and fat body, tissue specific genes related to detoxification were identified, and revealed some energy distribution strategies of this insect when stimulated by insecticides.
     In conclusion, this study forms a solid basis for the function study of insect digestion and detoxification at molecular level, and provids a insight view for the future studies in this aspect. The analysis of gene sequences related to digestion, RNAi mechanism and detoxification will give new ideas and directions for pest control, especially for the identification of a number of specific genes that were considered to be significant to resistance.
     1Comparison of gene expression among different developmental stages of Bactrocera dorsalis
     1.1Summary of DGE libraries
     RNA of different development stages was extracted from the lab population, which were initially collected from Hai Nan province, China. Based on the previous transcriptome data of developmental stages, four DGE libraries were constructed by Illumina HiSeq2000to identify the Unigene expression profiles of the different developmental stages (accession numbers:SRA043792for egg, SRA043786for third-instar larva, SRA043785for pupa, and SRA043783for adult). After excluding low-quality reads, each library generated above five million clean reads, and the distribution of genes with coverage above50%was75%in egg,60%in larva,77%in pupa, and63%in adult. These results indicated high quality of DGE library sequencing.
     1.2Differently expressed genes among developmental stages
     The four developmental stages were evaluated in three pairwise comparisons:egg vs. third-instar larva (E vs. L), third-instar larva vs. pupa (L vs. P), and pupa vs. adults(P vs. A). Genes found to have significant differences in expression were identified in each comparison. The results suggested that the expression of15516genes was significantly different between egg and third-instar larva. Of these genes7352were up-regulated and8164were down-regulated in the E vs. L comparison. In the comparison of third-instar larva and pupa, the expression profiles of7581genes were changed. There were3786genes up-regulated in pupa and3795genes down-regulated. When comparing pupa and adult,3077genes were up-regulated in adults and7195genes were down-regulated.
     By the gene function annotation, we found in egg, the highly expressed genes were involved in embryo development and cell mitosis regulation. In larva, the expressions of genes involved in energy metabolism and muscle composition were the most active. In pupae, genes encoding chitinase were highly expressed, which indicated that in this period, cuticle was remodeling, and meanwhile, the the expressions of genes related to cell mitosis regulation were also very active. The genes highly expressed in adults were similar to larva, most of them were related to energy metabolism and muscle composition, and some genes related to visual and auditory sense were specifically identified in this stage. The differently expressed genes in different developmental stages reflected the most important actions in each stage. In egg and pupa, genes related to cell mitosis regulation were highly expressed, wich indicates these two period were crucial for metamorphosis. In larva and adult, the highly expressed genes were involved in energy, detoxification and movability.
     1.3Expression distribution of digestion and detoxification genes
     The expression distribution of genes involved in digestion and detoxification were determined in different developmental stages. The most abundant digestion enzyme was trypsin.15seqences were found highly expressed in adult and larva, but most of them were not found in egg. The expression distribution of some other digestion enzymes were similar to that of trypsin, such as aminopeptidase N and carboxypeptidase.
     The most abundant detoxification enzyme was P450s.76sequences were found expressed in different developmental stages. P450s were also enriched in adult and larva, and62sequences were expressed in these two stages, respectively. Besides,23sequences encoding GSTs and17sequences encoding CCEs were identified. They were also most active in larva, but not enriched in egg.
     2The midgut-specific transcriptome analysis of B. dorsalis
     2.1Data assembly and annotation of midgut transcripts
     The insect was initially collected from Hai Nan province, China, and RNA was extracted from the midgut of larva. A cDNA library (SRA submission number: SRA056311) was constructed by Illumina HiSeq2000, and this generated52838060total clean reads and4755425400nucleotides. These reads with certain length of overlap were assembled to53318contigs with an average length of379nt via the Trinity program. Using paired-end joining and gap-filling, the contigs were further assembled to25236Unigenes.
     To annotate Unigenes, sequences were searched in the nonredundant (Nr) NCBI protein database using BLASTX with a cutoff E-value of10-5. A total of16531distinct sequences returned a blast result, which meant that these Unigenes were successfully mapped to known function genes. Besides the Nr database, there were13026Unigenes successfully annotated in Swiss-Prot,11488in KEGG,11575in GO,9825in Nt, and5595in COG. Totally,17308Unigenes were annotated across these databases.
     2.2Unigene distribution
     Of the16531annotated Unigenes in Nr,48.6%had an E-value of10-45, showing a significant homology matching in the NCBI database, while51.4%had an E-value ranging from10-45to10-5. The similarity distribution showed that24%of the sequences had a significant homology higher than80%. Among the annotated Unigenes,5273sequences were longer than1000nt.4386sequences between500nt to1000nt were successfully annotated, and6873sequences shorter than500nt returned a blast result. According to the best hit at Nr database, the majority of Unigenes (75.74%) had strong homology with Drosophila. Of these,11.03%Unigenes were best matched to sequences from D. virilis, followed by D. willistoni (10.32%), D. mojavensis (9.86%), and other species of Drosophila.24.26%of Unigenes matched to other Diptera species, such as Glossina morsitans morsitans (5.51%), Aedes aegypti (1.03%), Culex quinquefasciatus (0.79%) and Anopheles gambiae (0.62%). Only136Unigenes had a best hit to Bactrocera, such as B. oleae (68Unigenes), B. papaya (7), B. tryoni (6), B. cucurbitae (5), and B. philippinensis (4). There were only46sequences matched the genes of B. dorsalis, which indicated that in the data base, the sequence imformation of B. dorsalis was still far from sufficiency.
     2.3Classification of gene ontology (GO) and Clusters of orthologous groups (COG)
     The result of GO classification showed that11575Unigenes (45.87%of total) were mapped to61functional groups. These functional groups were classified into three categories:nameliy "biological process","cellular component" and "molecular function". In the "biological process","cellular process" was the most abundant group, followed by "metabolic process","multicellular organismal process", and "biological regulation". More than4000Unigenes were identified to be involved in these processes. In contrast, only2Unigenes were classified in "carbon utilization", which was the smallest group in this category,"cell" and "cell part" were the two largest groups in "cellular component" with>6000Unigenes in each group. In "molecular function", "binding" was the largest group containing6854Unigenes, while there was only1Unigene in "receptor regulator activity".
     5595sequences had a COG annotation. Among the COG categories, most Unigenes (2130) were mapped to the "General function prediction". The largest three groups presenting specific functions were "Transcription"(1173),"Translation, ribosomal structure and biogenesis"(926),"Replication, recombination and repair"(886).
     3Gene function classification
     3.1Analysis of genes involved in digestion
     In the midgut-specific transcriptome data of this study, we identified106Unigenes encoding various proteases, lipases, and carbohydrases related to digestion by BLAST in Nr. Among the proteases, Unigenes were divided into6groups:namely trypsins (22Unigenes), aminopeptidases (22), chymotrypsins (2), cysteine proteases (3), aspartic proteases (3), and carboxypeptidases (7). These sequences shared homology with aminopeptidases from Drosophila, C. quinquefasciatus, A. aegypti and G. morsitans morsitans.4sequences were characterized as aminopeptidases N, which were the target for Bt. The identification of these sequences will provide useful information for control and resistance management of B. dorsalis at molecular level.
     3.2Transcripts encoding genes involved in RNAi mechanisms
     Midgut is an important entrance for dsRNA. The uptake and cleavage of dsRNA are key factors for RNAi. To ensure the RNAi working in B. dorsalis, we characterized the genes involved in RNAi mechanisms. Four kinds of genes with great significance to RNAi were classified, such as Dicer-2i, that can cut dsRNA fragments into short nucleotides; R2D2and AGO2, that were important for RNA-initiated silencing complex (RISC). However, no SID-1orthologs were found in Diptera insects, as well as B. dorsalis, and we could not find a sequence encoding SR-CI. In addition, Eater and another scavenger receptor was classified. Further study can be focused on the RNAi mechanism and pest management via RNAi.
     3.3Midgut specific sequences encoding detoxification genes
     By BLAST in Nr,9sequences encoding GSTs were identified from the annotation results of the midgut transcriptome data of B. dorsalis, and8of them were found to represent full length of ORF. It was confirmed by ORF finding and protein BLAST at NCBI. The average length of ORF was639nt, ranging from531to702nt. Based on the BLAST results and phylogenetic analysis, these sequences were divided into different GSTs families. We found4delta genes and1gene in each of the theta, zeta family and a microsomal GST, and there was1unclassified gene (U).
     In the transcriptome data,10sequences were found encoding CCEs, and6of these were fully sequenced, containing the complete ORF. ORF finder analysis and protein BLAST results at NCBI showed that the average length of CCEs ORF was1695nt, ranging from1635to1722nt. Further phylogenetic analysis with esterase genes from other insect species demonstrated that these6esterase genes were all a-esterase, and the highly conserved motif "FGESAG" and "EDCLYLN" of cholinesterases and the catalytic triad were found in all amino acid sequences. All of these genes were classified to the dietary class. Hence, it is known that the genes of this class are also involved in detoxification and xenobiotic resisatance.
     22sequences encoding P450s were isolated, and16of these were fully sequenced with the complete ORF. The average length of fully sequenced ORFs was1556nt, ranging from1467to1626. In the deduced amino acid sequences of these P450genes, the typical conserved P450motifs were identified, including the absolutely conserved ExxR motif found in the Helix-K (hydrogen bonding), and the heme-binding domain (PFxxGxRxCxG/A). Phylogenetic analysis identified6families:6genes in the CYP4family,5genes in the CYP6family,2genes in the CYP12family, and1gene in the CYP317, CYP309and CYP9family each.
     4The expression model of detoxification and digestion genes when stimulated by insecticide
     4.2Effect of P-Cypermethrin exposure on larval survival and the stability of housekeeping genes
     To determine the appropriate concentration of β-Cypermethrin against larvae in the exposure experiment, different doses of β-Cypermethrin were mixed into the diet that was fed to the larvae. The survive rate and the relative mortality were normalized by a control group.0.33μg/g (P-Cypermethrin/artificial diet) was determined as a suitable concentration to stimulate the larvae. Such a concentration would not cause apparent death as1μg/g and33μg/g, and most individuals could normally develop under the toxicity stress.
     To ensure the accuracy of qPCR results, we firstly evaluated the expression stability of housekeeping genes under the experimental conditions. GeNormplus and Normfinder were used to estimate the stability of9housekeeping genes in the whole body of larvae, midgut and fat body under toxicity stress. EFla was found the best one for both larvae and midgut. In fat body, the most stable housekeeping gene was RPL13. Thus, these two genes were used as reference gene in qPCR study, respectively.
     4.2The expression model of detoxification and digestion genes when stimulated by insecticide
     Based on the reference evaluation, we analyzed the expression model of detoxification genes under toxicity stress. The qPCR results of8GSTs genes showed the genes from Delta family were involved in the detoxification, but other genes did not show very active reaction. The expressions of Delta genes were up-regulated5.6~32.5fold in the midgut and fat body. But in larvae, the expression changes of these genes were not so apparent, which indicated that their expression in other tissues were down-regulated. The results revealed some energy distribution strategy of this insect under survival stress. The energy was focused to important tissues when stimulated by insecticide to expression detocification genes.
     In larvae, the expression of6CCEs genes was up-regulated in some degree, and a-E3was up-regulated4.1fold. But in the midgut and fat body, the expressions of most CCEs genes were not significantly changed. We assume that the up-regulation in larvae showed the relation between the CCEs and detoxcification of β-Cypermethrin. This kind of gene did not work in the midgut or fat body, but in other tissues, such as Malpighian tubes.
     The qPCR results of16P450genes showed that most P450s genes were involved in the detoxification of β-cypermethrin, especially the CYP4and CYP6family. In CYP4family, the expression of CYP4D47(midgut), CYP4E9(larvae and fat body), CYP4P5(Larvae and fat body) was highly up-regulated. The expression of CYP4AD1increased in some degree in the midgut and fat body, but no significant changes were found in larvae. CYP4S18and CYP4AC4did not show any positive reaction when stimulated. In CYP6family, the expression of CYP6A48and CYP6A41has a significant increase in the fat body,18.0and9.6fold up-regulated, respectively. The expression of others like CYP6G6and CYP6A50also increased but not highly. The expression of CYP6EK1was up-regulated by4.8fold, but showed no apparent changes in midgut and fat body, which indicated that it might work in Malpighian tubes. It suggested that this gene play a role in metabolic of β-cypermethrin, and worked in fatbody. CYP12C2was12.6fold up-regulated in fat body, and2fold upregulated in larvae and midgut. Other genes, such as CYP12N1, CYP9F6, and CYP309B1also returned a positive reaction to stimulation in the fat body. But no significant expression of CYP317B1was detected under the stress.
     We also detected the expression of6digestion genes. They all expressed highly after stimulated, more than3fold up-regulated. The increasing of trypsin was up to10.7fold. The results showed that under toxicity stress, the digestion of midgut was improved.
     In conclusion, this study conducted DGE analysis of different developmental stages and transcriptome analysis of midgut from the larvae of B. dorsalis via high throughput sequencing technology. Through data analysis and annotation, we characterized the differently expressed genes, and showed the expression distribution of detoxification and digestion genes in developmental stages. From the transcriptome data, we screened out the genes related to digestion, RNAi mechanism, and detoxification, and characterized their molecular information. The expression models of detoxification and digestion genes under toxicity stress were further detected. The results revealed some energy distribution strategy of this insect when stimulated by insecticide. Our data provides sufficient gene information of B. dorsalis, and will promote the function study of midgut at molecular level.
引文
1.林进添,曾玲,吴仕豪(2005)桔小实蝇自然种群生命表的组建与分析.华中农业大学学报:138-142.
    2. Fletcher B (1987) The biology of dacine fruit flies. Annu Rev Entomol 32:115-144.
    3. Follett PA, Neven LG (2005) Current trends in quarantine entomology. Annu Rev Entomol 51:359-385.
    4. Aluja M, Mangan RL (2007) Fruit fly (Diptera:Tephritidae) host status determination: critical conceptual, methodological, and regulatory considerations. Annu Rev Entomol 53:473-502.
    5.周国梁,陈晨,叶军,胡白石,刘凤权(2007)利用GARP生态位模型预测桔小实蝇(13actrocera dorsalis)在中国的适生区域.生态学报27:3362-3369.
    6. Brown TM, Payne GT (1988) Experimental selection for insecticide resistance. J Econ Entomol 81:49-56.
    7. Hsu J, Feng H (2002) Susceptibility of melon fly(Bactrocera cucurbitae) and oriental fruit fly (B. dorsalis) to insecticides in Taiwan. Plant Prot Bull 44: 303-316.
    8.潘志萍,曾玲(2005)华南地区桔小实蝇对几种农药的抗药性研究.华南农业大学学报(自然科学版)26:23-26.
    9.潘志萍,陆永跃,曾玲,曾鑫年(2008)桔小实蝇实验种群对敌百虫、高效氯氰菊酯和阿维菌素的抗性增长规律.昆虫学报20:609-617.
    10. Jin T, Zeng L, Lin YY, Lu YY, Liang GW (2011) Insecticide resistance of the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera:Tephritidae), in mainland China. Pest Manag Sci 67:370-376.
    11. Organization WH (1998) Techniques to detect insecticide resistance mechanisms (field and laboratory manual). WHO, Geneva, Switzerland 1-34.
    12. ffrench-Constant RH (2007) Which came first:insecticides or resistance? Trends in Genet 23:1-4.
    13. Casida JE, Quistad GB (1998) Golden age of insecticide research:past, present, or future? Annu Rev Entomol 43:1-16.
    14. Hsu J, Haymer D, Wu W, Feng H (2006) Mutations in the acetylcholinesterase gene of Bactrocera dorsalis associated with resistance to organophosphorus insecticides. Insect Biochem Mol Biol 36:396-402.
    15. Hsu J, Wu W, Haymer D, Liao H, Feng H (2008) Alterations of the acetylcholinesterase enzyme in the oriental fruit fly Bactrocera dorsalis are correlated with resistance to the organophosphate insecticide fenitrothion. Insect Biochem Mol Biol 38:146-154.
    16. Shen GM, Wang XN, Dou W, Wang JJ (2012) Biochemical and molecular characterization of acetylcholinesterase in four field populations of Bactrocera dorsalis (Hendel)(Diptera:Tephritidae). Pest Manag Sci 68:1553-1563.
    17. Tomizawa M, Lee DL, Casida JE (2000) Neonicotinoid insecticides:molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J Agric Food Chem 48:6016-6024.
    18. Yang WJ, Tian Y, Cong L, Dou W, Wang JJ (2012) cDNA cloning and expression analysis of the nicotinic acetylcholine receptor alpha6 subunit in the oriental fruit fly, Bactrocera dorsalis (Diptera:Tephritidae). Fla Entomol 95:253-260.
    19.杨文佳,丛林,谢逸菲,陈力,豆威,et al.(2012)桔小实蝇烟碱型乙酰胆碱受体β亚基基因的克隆及mRNA表达分析.应用昆虫学报49:335-341.
    20. Hsu JC, Feng HT, Wu WJ, Geib SM, Mao CH, et al. (2012) Truncated transcripts of nicotinic acetylcholine subunit gene Bda6 are associated with spinosad resistance in Bactrocera dorsalis. Insect Biochem Mol Biol 42:806-815.
    21.蒋玄赵,魏丹丹,申光茂,豆威,王进军(2012)桔小实蝇电压门控钠离子通道基因cDNA克隆及其生物信息学分析.中国农业科学45:3996-4003.
    22. Soderlund D, Knipple D (2003) The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochem Mol Biol 33:563-577.
    23.黄勇,申光茂,刘丽,熊赛,蒋红波,et al.(2010)桔小实蝇CYP4D46的克隆及其组织特异性表达研究.环境昆虫学报32:180-187.
    24. Huang Y, Jiang HB, Shen GM, Dou W, Wang JJ (2012) Molecular characterizations of two Cypochrome P450 genes encoding CYP6A41 and CYP6EK1 from the oriental fruit fly, Bactrocera dorsalis (Diptera:Tephritidae). Arch Insect Biochem Physiol 79:31-46.
    25. Shen GM, Dou W, Niu JZ, Jiang HB, Yang WJ, et al. (2011) Transcriptome analysis of the oriental fruit fly (Bactrocera dorsalis). PLoS One 6:e29127.
    26. Huang Y, Shen GM, Jiang HB, Jiang XZ, Dou W, et al. (2013) Multiple P450 genes: Identification, tissue-specific expression and their responses to insecticide treatments in the oriental fruit fly, Bactrocera dorsalis (Hendel) (Diptera: Tephritidea). Pestic Biochem Physiol Accepted article.
    27.胡飞(2012)桔小实蝇GSTs生化及分子毒理学研究.博士学位论文重庆:西南大学.
    28. Lin Y, Jin T, Zeng L, Lu Y (2012) Cuticular penetration of β-cypermethrin in insecticide-susceptible and resistant strains of Bactrocera dorsalis. Pestic Biochem Physiol 103:189-193.
    29. Jin T, Zeng L, Lu YY, Xu YJ, Liang GW (2010) Identification of resistance-responsive proteins in larvae of Bactrocera dorsalis (Hendel), for pyrethroid toxicity by a proteomic approach. Pestic Biochem Physiol 96:1-7.
    30. Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, et al. (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806-811.
    31. Pai S, Lin Y, Macaes B, Meneshian A, Hung C, et al. (2005) Prospects of RNA interference therapy for cancer. Gene Ther 13:464-477.
    32. Tang T, Zhao C, Feng X, Liu X, Qiu L (2012) Knockdown of several components of cytochrome P450 enzyme systems by RNA interference enhances the susceptibility of Helicoverpa armigera to fenvalerate. Pest Manag Sci 68: 1501-1511.
    33. Zha W, Peng X, Chen R, Du B, Zhu L, et al. (2011) Knockdown of midgut genes by dsRNA-transgenic plant-mediated RNA interference in the hemipteran insect Nilaparvata lugens. PLoS One 6:e20504.
    34. Lee YS, Nakahara K, Pham JW, Kim K, He Z, et al. (2004) Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117:69-82.
    35. Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146-1150.
    36. Liu Q, Rand TA, Kalidas S, Du F, Kim HE, et al. (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301: 1921-1925.
    37. Plasterk RH (2002) RNA silencing:the genome's immune system. Science Signaling 296:1263.
    38. Wang C, Zhang J, Tobe SS, Bendena WG (2012) Defining the contribution of select neuropeptides and their receptors in regulating sesquiterpenoid biosynthesis by Drosophila melanogaster ring gland/corpus allatum through RNAi analysis. Gen Comp Endocrinol 176:347-353.
    39. Tomoyasu Y, Denell RE (2004) Larval RNAi in Tribolium (Coleoptera) for analyzing adult development. Dev Genes Evol 214:575-578.
    40. Hossain M, Shimizu S, Matsuki M, Imamura M, Sakurai S, et al. (2008) Expression of 20-hydroxyecdysone-induced genes in the silkworm brain and their functional analysis in post-embryonic development. Insect Biochem Mol Biol 38: 1001-1007.
    41. Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, et al. (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307-1313.
    42. Huvenne H, Smagghe G (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control:a review. J Insect Physiol 56:227-235.
    43. Chen SL, Dai SM, Lu KH, Chang C (2008) Female-specific doublesex dsRNA interrupts yolk protein gene expression and reproductive ability in oriental fruit fly, Bactrocera dorsalis (Hendel). Insect Biochem Mol Biol 38:155-165.
    44. Suganya R, Chen SL, Lu KH (2010) Target of rapamycin in the oriental fruit fly Bactrocera dorsalis (Hendel):its cloning and effect on yolk protein expression. Arch Insect Biochem Physio175:45-56.
    45. Zheng W, Zhu C, Peng T, Zhang H (2012) Odorant receptor co-receptor Orco is upregulated by methyl eugenol in male Bactrocera dorsalis (Diptera: Tephritidae). J Insect Pathol 58:1122-1127.
    46. Li X, Zhang M, Zhang H (2011) RNA interference of four genes in adult Bactrocera dorsalis by feeding their dsRNAs. PLoS One 6:e17788.
    47.彩万志,庞雄飞,花保祯,梁广文,宋敦伦(2001)《普通昆虫学》.北京:中国农业大学出版社.
    48. Hung CN, Lin TL, Lee WY (2000) Morphology and ultrastructure of the alimentary canal of the oriental fruit fly, Bactrocera dorsalis (Hendel)(Diptera: Tephritidae)(2):the structure of the midgut. Zool Stud 39:387-394.
    49. Gill SS, Cowles EA, Pietrantonio PV (1992) The mode of action of Bacillus thuringiensis endotoxins. Annu Rev Entomol 37:615-634.
    50. Hakim RS, Baldwin K, Smagghe G (2010) Regulation of midgut growth, development, and metamorphosis. Annu Rev Entomol 55:593-608.
    51. Applebaum S (1985) Biochemistry of digestion. Comprehensive insect physiology, biochemistry and pharmacology 4:279-311.
    52. Wolfson JL, Murdock LL (1990) Diversity in digestive proteinase activity among insects. J Chem Ecol 16:1089-1102.
    53. Crava CM, Bel Y, Lee SF, Manachini B, Heckel DG, et al. (2010) Study of the aminopeptidase N gene family in the lepidopterans Ostrinia nubilalis (Hiibner) and Bombyx mori (L.):Sequences, mapping and expression. Insect Biochem Mol Biol 40:506-515.
    54. Veloso RVS, Pereira EJG, Guedes RNC, Oliveira MGA (2012) Does cypermethrin affect enzyme activity, respiration rate and walking behavior of the maize weevil (Sitophilus zeamais)? Insect Sci 20:1-9.
    55. Silva L, Reis A, Pereira E, Oliveira M, Guedes R (2010) Partial purification and characterization of trypsin-like proteinases from insecticide-resistant and-susceptible strains of the maize weevil, Sitophilus zeamais. Comp Biochem Physiol B 155:12-19.
    56. Willoughby L, Chung H, Lumb C, Robin C, Batterham P, et al. (2006) A comparison of Drosophila melanogaster detoxification gene induction responses for six insecticides, caffeine and phenobarbital. Insect Biochem Mol Biol 36:934-942.
    57. Liu N, Li T, Reid WR, Yang T, Zhang L (2011) Multiple cytochrome P450 genes: their constitutive overexpression and permethrin induction in insecticide resistant mosquitoes, Culex quinquefasciatus. PLoS One 6:e23403.
    58. Wu SW, Yang YH, Yuan GR, Campbell PM, Teese MG, et al. (2011) Overexpressed esterases in a fenvalerate resistant strain of the cotton bollworm, Helicoverpa armigera. Insect Biochem Mol Biol 41:14-21.
    59. Zhou WW, Li XW, Quan YH, Cheng J, Zhang CX, et al. (2011) Identification and expression profiles of nine glutathione S-transferase genes from the important rice phloem sap-sucker and virus vector Laodelphax striatellus (Fallen) (Hemiptera:Delphacidae). Pest Manag Sci 68:1296-1305.
    60. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74:5463-5467.
    61.王兴春,杨致荣,王敏,李玮,李生才(2012)高通量测序技术及其应用.中国生物工程杂志32:109-144.
    62. Morozova O, Marra MA (2008) Applications of next-generation sequencing technologies in functional genomics. Genomics 92:255-264.
    63. Metzker ML (2009) Sequencing technologies-the next generation. Nat Rev Genet 11: 31-46.
    64. Grabherr M G, Haas BJ, Yassour M, Levin JZ, Thompson DA, et al. (2011) Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol 29:644-652.
    65. He W, You M, Vasseur L, Yang G, Xie M, et al. (2012) Developmental and insecticide-resistant insights from the de novo assembled transcriptome of the diamondback moth, Plutella xylostella. Genomics 99:169-177.
    66. Wang XW, Luan JB, Li JM, Bao YY, Zhang CX, et al. (2010) De novo characterization of a whitefly transcriptome and analysis of its gene expression during development. BMC Genomics 11:400.
    67. Jiang F, Yang M, Guo W, Wang X, Kang L (2012) Large-scale transcriptome analysis of retroelements in the migratory locust, Locusta migratoria. PLoS One 7:e40532.
    68. Karatolos N, Pauchet Y, Wilkinson P, Chauhan R, Denholm I, et al. (2011) Pyrosequencing the transcriptome of the greenhouse whitefly, Trialeurodes vaporariorum reveals multiple transcripts encoding insecticide targets and detoxifying enzymes. BMC Genomics 12:56.
    69. Bai X, Zhang W, Orantes L, Jun TH, Mittapalli O, et al. (2011) Combining next-generation sequencing strategies for rapid molecular resource development from an invasive aphid species, Aphis glycines. PLoS One 5:e11370.
    70. Chen X, Hu Y, Zheng H, Cao L, Niu D, et al. (2012) Transcriptome comparison between honey bee queen-and worker-destined larvae. Insect Biochem Mol Biol 42:665-673.
    71. Muller L, Hutter S, Stamboliyska R, Saminadin-Peter S, Stephan W, et al. (2011) Population transcriptomics of Drosophila melanogaster females. BMC Genomics 12.
    72. Burke G, Moran N (2011) Responses of the pea aphid transcriptome to infection by facultative symbionts. Insects Mol Biol 20:357-365.
    73. Xu Q, Lu A, Xiao G, Yang B, Zhang J, et al. (2012) Transcriptional profiling of midgut immunity response and degeneration in the wandering silkworm, Bombyx mori. PLoS One 7:e43769.
    74. Attardo GM, Ribeiro JMC, Wu YN, Berriman M, Aksoy S (2010) Transcriptome analysis of reproductive tissue and intrauterine developmental stages of the tsetse fly (Glossina morsitans morsitans). BMC Genomics 11:160.
    75. Choi YJ, Fuchs JF, Mayhew GF, Yu HE, Christensen BM (2012) Tissue-enriched expression profiles in Aedes aegypti identify hemocyte-specific transcriptome responses to infection. Insect Biochem Mol Biol 42:729-738.
    76. Bao YY, Wang Y, Wu WJ, Zhao D, Xue J, et al. (2012) De novo intestine-specific transcriptome of the brown planthopper Nilaparvata lugens revealed potential functions in digestion, detoxification and immune response. Genomics 99: 256-264.
    77. Pauchet Y, Wilkinson P, Vogel H, Nelson D, Reynolds S, et al. (2011) Pyrosequencing the Manduca sexta larval midgut transcriptome:messages for digestion, detoxification and defence. Insect Mol Biol 19:61-75.
    78. Medeiros MN, Logullo R, Ramos IB, Sorgine MHF, Paiva-Silva GO, et al. (2011) Transcriptome and gene expression profile of ovarian follicle tissue of the triatomine bug Rhodnius prolixus. Insect Biochem Mol Biol 41:823-831.
    79. Zheng WW, Peng T, He W, Zhang HY (2012) High-throughput sequencing to reveal genes involved in reproduction and development in Bactrocera dorsalis (Diptera: Tephritidae). PLoS One 7:e36463.
    80. Hsu JC, Chien TY, Hu CC, Chen MJM, Wu WJ, et al. (2012) Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome. PLoS One 7:e40950.
    81. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B (2008) Mapping and quantifying mammalian transcriptomes by RNA-Seq. Nat Meth 5:621-628.
    82. Audic S, Claverie JM (1997) The significance of digital gene expression profiles. Genome Res 7:986-995.
    83. Krauss J, Lopez de Quinto S, Nusslein-Volhard C, Ephrussi A (2009) Myosin-V regulates oskar mRNA localization in the Drosophila Oocyte. Curr Biol 19: 1058-1063.
    84. Stathopoulos A, Van Drenth M, Erives A, Markstein M, Levine M (2002) Whole-genome analysis of dorsal-ventral patterning in the Drosophila embryo. Cell 111:687-702.
    85.张清源,林振基,陈华忠,高泉准,孙国坤,et al.(1998)桔小实蝇生物学特性.华东昆虫学报7:68-71.
    86. Morozova O, Hirst M, Marra MA (2009) Applications of new sequencing technologies for transcriptome analysis. Annu Rev Genomics Hum Genet 10: 135-151.
    87. Cong L, Yang WJ, Shen GM, Dou W, Wang JJ (2012) Molecular characterization of the cDNA encoding ecdysone receptor isoform Bl and its expression in the oriental fruit fly, Bactrocera dorsalis (Diptera:Tephritidae). Fla Entomol 95: 650-658.
    88. Gao XM, Jia FX, Shen GM, Jiang HQ, Dou W, et al. (2012) Involvement of superoxide dismutase in oxidative stress in the oriental fruit fly, Bactrocera dorsalis:Molecular cloning and expression profiles. Pest Manag Sci In Press.
    89.夹福先(2012)桔小实蝇抗热胁迫反应的机制研究.博士学位论文重庆:西南大学.
    90. Pertea G, Huang X, Liang F, Antonescu V, Sultana R, et al. (2003) TIGR Gene Indices clustering tools (TGICL):a software system for fast clustering of large EST datasets. Bioinformatics 19:651-652.
    91. Iseli C, Jongeneel CV, Bucher P (1999) ESTScan:a program for detecting, evaluating, and reconstructing potential coding regions in EST sequences. Proc Int Conf Intell Syst Mol Biol 7:138-148.
    92. Conesa A, G tz S, Garcia-Gomez JM, Terol J, Talon M, et al. (2005) Blast2GO:a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics 21:3674.
    93. Ye J, Fang L, Zheng H, Zhang Y, Chen J, et al. (2006) WEGO:a web tool for plotting GO annotations. Nucleic Acids Research 34:W293.
    94. Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, et al. (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Research 36:D480.
    95. Li R, Yu C, Li Y, Lam TW, Yiu SM, et al. (2009) SOAP2:an improved ultrafast tool for short read alignment. Bioinformatics 25:1966-1967.
    96. Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L, et al. (2007) Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450:219-232.
    97. Pauchet Y, Wilkinson P, Van Munster M, Augustin S, Pauron D (2009) Pyrosequencing of the midgut transcriptome of the poplar leaf beetle Chrysomela tremulae reveals new gene families in Coleoptera. Insect Biochem Mol Biol 39:403-413.
    98. Xue JA, Bao YY, Li BL, Cheng YB, Peng ZY, et al. (2010) Transcriptome analysis of the brown planthopper Nilaparvata lugens. PLoS One 5:e14233.
    99. Macedo MR, Freire MGM (2011) Insect digestive enzymes as a target for pest control. ISJ 8:190-198.
    100. Ross J, Jiang H, Kanost MR, Wang Y (2003) Serine proteases and their homologs in the Drosophila melanogaster genome:an initial analysis of sequence conservation and phylogenetic relationships. Gene 304:117-131.
    101. Ge ZY, Wan PJ, Han ZJ, Golding B (2012) Cloning and characterization of trypsin-and chymotrypsin-like genes in the striped rice stem borer, Chilo suppressalis. Genome 55:281-288.
    102. Srinivasan A, Giri AP, Gupta VS (2006) Structural and functional diversities in lepidopteran serine proteases. Cell Mol Biol Lett 11:132-154.
    103. van Hoef V, Breugelmans B, Spit J, Simonet G, Zels S, et al. (2011) Functional analysis of a pancreatic secretory trypsin inhibitor-like protein in insects: Silencing effects resemble the human pancreatic autodigestion phenotype. Insect Biochem Mol Biol 41:688-695.
    104. Soares TS, Soares Torquato RJ, Alves Lemos FJ, Tanaka AS (2012) Selective inhibitors of digestive enzymes from Aedes aegypti larvae identified by phage display. Insect Biochem Mol Biol 43:9-16.
    105. Zibaee A, Bandani AR, Fazeli-Dinan M, Zibaee I, Sendi JJ, et al. (2011) A trypsin-like protease in rice green semi-looper, Naranga aenescens moore (lepidoptera:Noctuidae):purification and characterization. Arch Insect Biochem Physiol 78:1-16.
    106. Zhang C, Zhou D, Zheng S, Liu L, Tao S, et al. (2010) A chymotrypsin-like serine protease cDNA involved in food protein digestion in the common cutworm, Spodoptera litura:Cloning, characterization, developmental and induced expression patterns, and localization. J Insect Physiol 56:788-799.
    107. Zhan Q, Zheng S, Feng Q, Liu L (2011) A midgut-specific chymotrypsin cDNA (Slctlp1) from Spodoptera litura:cloning, characterization, localization and expression analysis. Arch Insect Biochem Physiol 76:130-143.
    108. Terra WR, Ferreira C (1994) Insect digestive enzymes:properties, compartmentalization and function. Comp Biochem Physiol B 109:1-62.
    109. Bravo A, Gill SS, Soberon M (2007) Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon 49:423-435.
    110. Knowles BH, Ellar DJ (1987) Colloid-osmotic lysis is a general feature of the mechanism of action of Bacillus thuringiensis σ-endotoxins with different insect specificity. Biochim Biophys Acta 924:509-518.
    111. Herrero S, Gechev T, Bakker PL, Moar WJ, De Maagd RA (2005) Bacillus thuringiensis CrylCa-resistant Spodoptera exigua lacks expression of one of four Aminopeptidase N genes. BMC Genomics 6:96.
    112. Zhang S, Cheng H, Gao Y, Wang G, Liang G, et al. (2009) Mutation of an aminopeptidase N gene is associated with Helicoverpa armigera resistance to Bacillus thuringiensis Cry1Ac toxin. Insect Biochem Mol Biol 39:421-429.
    113. Likitvivatanavong S, Chen J, Bravo A, Soberon M, Gill SS (2011) Cadherin, alkaline phosphatase, and aminopeptidase N as receptors of Cry 11 Ba toxin from Bacillus thuringiensis subsp. jegathesan in Aedes aegypti. Appl Environ Microbiol 77:24-31.
    114. Abdullah MA, Valaitis AP, Dean DH (2006) Identification of a Bacillus thuringiensis Cry 11 Ba toxin-binding aminopeptidase from the mosquito, Anopheles quadrimaculatus. BMC Biochem 7:16.
    115. Chen J, Aimanova KG, Pan S, Gill SS (2009) Identification and characterization of Aedes aegypti aminopeptidase N as a putative receptor of Bacillus thuringiensis Cry 11 A toxin. Insect Biochem Mol Biol 39:688-696.
    116. Winston WM, Molodowitch C, Hunter CP (2002) Systemic RNAi in C. elegans requires the putative transmembrane protein SID-1. Science 295:2456-2459.
    117. Xu W, Han Z (2008) Cloning and phylogenetic analysis of sid-1-like genes from aphids. J Insect Sci 8.
    118. Weinstock GM, Robinson GE, Gibbs RA, Worley KC, Evans JD, et al. (2006) Insights into social insects from the genome of the honeybee Apis mellifera. Nature 443:931-949.
    119. Tomoyasu Y, Miller SC, Tomita S, Schoppmeier M, Grossmann D, et al. (2008) Exploring systemic RNA interference in insects:a genome-wide survey for RNAi genes in Tribolium. Genome Biol 9:RIO.
    120. Ulvila J, Parikka M, Kleino A, Sormunen R, Ezekowitz RA, et al. (2006) Double-stranded RNA is internalized by scavenger receptor-mediated endocytosis in Drosophila S2 cells. J Biol Chem 281:14370-14375.
    121. Nelson DR (2009) The cytochrome P450 homepage. Hum Genet 4:59-65.
    122. Taylor P, Radic Z (1994) The cholinesterases:from genes to proteins. Annu Rev Pharmacool Toxicol 34:281-320.
    123. Sogorb MA, Vilanova E (2002) Enzymes involved in the detoxification of organophosphorus, carbamate and pyrethroid insecticides through hydrolysis. Toxicol Lett 128:215-228.
    124. Cui F, Lin Z, Wang HS, Liu SL, Chang HJ, et al. (2011) Two single mutations commonly cause qualitative change of nonspecific carboxylesterases in insects. Insect Biochem Mol Biol 41:1-8.
    125. Epstein L, Bassein S (2003) Patterns of pesticide use in California and the implications for strategies for reduction of pesticides. Annu Rev Phytopathol 41: 351-375.
    126. Oakeshott J, Claudianos C, Russell R, Robin G (1999) Carboxyl/cholinesterases:a case study of the evolution of a successful multigene family. BioEssays 21: 1031-1042.
    127. Zhang L, Shi J, Shi X, Liang P, Gao J, et al. (2010) Quantitative and qualitative changes of the carboxylesterase associated with beta-cypermethrin resistance in the housefly, Musca domestica (Diptera:Muscidae). Comp Biochem Physiol B 156:6-11.
    128. Qiu X, Pan J, Li M, Li Y (2012) PCR-RFLP methods for detection of insecticide resistance-associated mutations in the house fly(Musca domestica). Pestic Biochem Physiol 104:201-205.
    129. Sheehan D, Meade G, Foley VM, Dowd CA (2001) Structure, function and evolution of glutathione transferases:implications for classification of non-mammalian members of an ancient enzyme superfamily. Biochem J 360:1.
    130. Ranson H, Claudianos C, Ortelli F, Abgrall C, Hemingway J, et al. (2002) Evolution of supergene families associated with insecticide resistance. Science 298:179-181.
    131. Adams MD, Celniker SE, Holt RA, Evans CA, Gocayne JD, et al. (2000) The genome sequence of Drosophila melanogaster. Science 287:2185-2195.
    132. Ding Y, Ortelli F, Rossiter LC, Hemingway J, Ranson H (2003) The Anopheles gambiae glutathione transferase supergene family:annotation, phylogeny and expression profiles. BMC Genomics 4:35.
    133. Yu Q, Lu C, Li B, Fang S, Zuo W, et al. (2008) Identification, genomic organization and expression pattern of glutathione S-transferase in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38:1158-1164.
    134. Feyereisen R (1999) Insect P450 enzymes. Annu Rev of Entomol 44:507-533.
    135. Scott JG (2008) Insect cytochrome P450s:thinking beyond detoxification. Recent Advances in Insect Physiology, Toxicology and Molecular Biology 1:17-124.
    136. Tijet N, Helvig C, Feyereisen R (2001) The cytochrome P450 gene superfamily in Drosophila melanogaster:Annotation, intron-exon organization and phylogeny. Gene 262:189-198.
    137. Chung H, Sztal T, Pasricha S, Sridhar M, Batterham P, et al. (2009) Characterization of Drosophila melanogaster cytochrome P450 genes. Proc Natl Acad Sci 106:5731-5736.
    138. Jiang HB, Tang PA, Xu YQ, An FM, Wang JJ (2010) Molecular characterization of two novel deltamethrin-inducible P450 genes from Liposcelis bostrychophila Badonnel (Psocoptera:Liposcelididae). Arch Insect Biochem Physiol 74:17-37.
    139. Yang T, Liu N (2011) Genome analysis of cytochrome P450s and their expression profiles in insecticide resistant mosquitoes, Culex quinquefasciatus. PLoS One 6: e29418.
    140.章玉苹,曾玲,陆永跃,梁广文(2007)华南地区桔小实蝇抗药性动态监测.华南农业大学学报28:20-23.
    141. Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, et al. (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.
    142. Hellemans J, Mortier G, De Paepe A, Speleman F, Vandesompele J (2007) qBase relative quantification framework and software for management and automated analysis of real-time quantitative PCR data. Genome Biol 8:14.
    143. Andersen CL, Jensen JL, Orntoft TF (2004) Normalization of real-time quantitative reverse transcription-PCR data:a model-based variance estimation approach to identify genes suited for normalization, applied to bladder and colon cancer data sets. Cancer Res 64:5245-5250.
    144. Wong ML, Medrano JF (2005) Real-time PCR for mRNA quantitation. BioTechniques 39.
    145. Huggett J, Dheda K, Bustin S, Zumla A (2005) Real-time RT-PCR normalisation; strategies and considerations. Genes Immun 6:279-284.
    146. Bustin SA, Benes V, Nolan T, Pfaffl MW (2005) Quantitative real-time RT-PCR-a perspective. J Mol Endocrinol 34:597-601.
    147. Folkersen L, Kurtovic S, Razuvaev A, Agardh HE, Gabrielsen A, et al. (2009) Endogenous control genes in complex vascular tissue samples. Bmc Genomics 10:516.
    148. Bustin SA (2002) Quantification of mRNA using real-time reverse transcription PCR (RT-PCR):trends and problems. J Mol Endocrinol 29:17.
    149. Thorrez L, Van Deun K, Tranchevent LC, Van Lommel L, Engelen K, et al. (2008) Using ribosomal protein genes as reference:a tale of caution. PLoS One 3: e1854.
    150. Infante C, Matsuoka MP, Asensio E, Canavate JP, Reith M, et al. (2008) Selection of housekeeping genes for gene expression studies in larvae from flatfish using real-time PCR. BMC Mol Bio19:28.
    151. Ruan WJ, Lai MD (2007) Actin, a reliable marker of internal control? Clinica Chimica Acta 385:1-5.
    152. Thellin O, Zorzi W, Lakaye B, De Borman B, Coumans B, et al. (1999) Housekeeping genes as internal standards:use and limits. J Biotechnol 75: 291-295.
    153. Boda E, Pini A, Hoxha E, Parolisi R, Tempia F (2009) Selection of reference genes for quantitative real-time RT-PCR studies in mouse brain. J Mol Neurosci 37: 238-253.
    154. Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11.
    155. Cicinnati VR, Shen QL, Sotiropoulos GC, Radtke A, Gerken G, et al. (2008) Validation of putative reference genes for gene expression studies in human hepatocellular carcinoma using real-time quantitative RT-PCR. Bmc Cancer 8: 350.
    156. Niu JZ, Dou W, Ding TB, Yang LH, Shen GM, et al. (2012) Evaluation of suitable reference genes for quantitative RT-PCR during development and abiotic stress in Panonychus citri (McGregor)(Acari:Tetranychidae). Mol Biol Rep 39: 5841-5849.
    157. Jiang HB, Liu YH, Tang PA, Zhou AW, Wang JJ (2010) Validation of endogenous reference genes for insecticide-induced and developmental expression profiling of Liposcelis bostsrychophila (Psocoptera:Liposcelididae). MolBiol Rep 37: 1019-1029.
    158. Mateyak MK, Kinzy TG (2010) eEF1A:Thinking outside the ribosome. J Biol Chem 285:21209-21213.
    159. Ponton F, Chapuis MP, Pernice M, Sword GA, Simpson SJ (2011) Evaluation of potential reference genes for reverse transcription-qPCR studies of physiological responses in Drosophila melanogaster. J Insect Physiol 57:840-850.
    160. Shen GM, Jiang HB, Wang XN, Wang JJ (2010) Evaluation of endogenous references for gene expression profiling in different tissues of the oriental fruit fly Bactrocera dorsalis (Diptera:Tephritidae). BMC Mol Biol 11:76.
    161. Cleveland DW, Sullivan KF (1985) Molecular biology and genetics of tubulin. Annu Rev Biochem 54:331-366.
    162. Oakley CE, Oakley BR (1989) Identification of y-tubulin, a new member of the tubulin superfamily encoded by mipA gene of Aspergillus nidulans. Nature 338: 662-664.
    163. Cao S, Zhang X, Ye N, Fan X, Mou S, et al. (2012) Evaluation of putative internal reference genes for gene expression normalization in Nannochloropsis sp. by quantitative real-time RT-PCR. Biochem Biophys Res Commun 424:118-123.
    164. Zhong HY, Chen JW, Li CQ, Chen L, Wu JY, et al. (2011) Selection of reliable reference genes for expression studies by reverse transcription quantitative real-time PCR in litchi under different experimental conditions. Plant Cell Rep 30:641-653.
    165. Le Goff G, Hilliou F, Siegfried BD, Boundy S, Wajnberg E, et al. (2006) Xenobiotic response in Drosophila melanogaster. Sex dependence of P450 and GST gene induction. Insect Biochem Mol Biol 36:674-682.
    166. Montella IR, Schama R, Valle D (2012) The classification of esterases:an important gene family involved in insecticide resistance-A review. Mem Inst Oswaldo Cruz 107:437-449.
    167. Li X, Schuler MA, Berenbaum MR (2007) Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev of Entomol 52: 231-253.
    168. Zhang L, Gao X, Liang P (2007) Beta-cypermethrin resistance associated with high carboxylesterase activities in a strain of house fly, Musca domestica (Diptera: Muscidae). Pestic Biochem Physiol 89:65-72.
    169. Zhou WW, Liang QM, Xu Y, Gurr GM, Bao YY, et al. (2013) Genomic insights into the glutathione S-transferase gene family of two rice planthoppers, Nilaparvata lugens (Stal) and Sogatella furcifera (Horvath) (Hemiptera: Delphacidae). PLoS One 8:e56604.
    170. Liu N, Scott JG (1998) Increased transcription of CYP6D1 causes cytochrome P450-mediated insecticide resistance in house fly. Insect Biochem Mol Biol 28: 531-535.
    171. Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Research 29:2002-2007.
    172. Wolansky M, Harrill J (2008) Neurobehavioral toxicology of pyrethroid insecticides in adult animals:a critical review. Neurotoxicol Teratol 30:55-78.
    173.张为农(2008)部分拟除虫菊酯杀虫剂品种市场行情分析.中国农药3:49.
    174. Singh AK, Tiwari MN, Prakash O, Singh MP (2012) A current review of Cypermethrin-induced neurotoxicity and nigrostriatal dopaminergic neurodegeneration. Curr Neuropharm 10:64.
    175. Wang JJ, Wei D, Dou W, Hu F, Liu WF, et al. (2013) Toxicities and synergistic effects of several insecticides against the oriental fruit fly (Diptera:Tephritidae). J Econ Entomol Accepted article.
    176. Wang SP, He GL, Chen RR, Li F, Li GQ (2012) The involvement of cytochrome, P450 monooxygenases in methanol elimination in Drosophila melanogaster larvae. Arch Insect Biochem Physiol 79:264-275.
    177. Baskurt S, Dogac E, Taskin V, Taskin BG (2011) Frequencies of organophosphate resistance-associated mutations in the acetylcholinesterase gene of field collected olive fly (Bactrocera Oleae) populations under different insecticide regimes. Acta Biol Hung 62:22-33.
    178. Kakani EG, Bon S, Massoulie J, Mathiopoulos KD (2011) Altered GPI modification of insect AChE improves tolerance to organophosphate insecticides. Insect Biochem Mol Biol 41:150-158.
    179. da Silva NM, de Carvalho RA, de Azeredo-Espin AML (2011) Acetylcholinesterase cDNA sequencing and identification of mutations associated with organophosphate resistance in Cochliomyia hominivorax (Diptera:Calliphoridae). Vet Parasitol 177:190-195.
    180. Hotelier T, Negre V, Marchot P, Chatonnet A (2010) Insecticide resistance through mutations in cholinesterases or carboxylesterases:data mining in the ESTHER database. J Pestic Sci 35:315-320.
    181. de Carvalho RA, Torres TT, de Azeredo-Espin AML (2006) A survey of mutations in the Cochliomyia hominivorax (Diptera:Calliphoridae) esterase E3 gene associated with organophosphate resistance and the molecular identification of mutant alleles. Vet Parasitol 140:344-351.
    182. Karban R, Agrawal AA (2002) Herbivore offense. Annu Rev Ecol Syst 33: 641-664.
    183. Appel HM, Martin MM (1992) Significance of metabolic load in the evolution of host specificity of Manduca sexta. Ecology:216-228.
    184.刘凤沂,须志平,薄仙萍,沈晋良(2008)昆虫抗药性与适合度.昆虫知识45:374-378.
    185. Castaneda LE, Figueroa CC, Fuentes-Contreras E, Niemeyer HM, Nespolo RF (2010) Physiological approach to explain the ecological success of'superclones' in aphids:Interplay between detoxification enzymes, metabolism and fitness. J Insect Physiol 56:1058-1064.
    186. Silva L, Reis A, Pereira E, Oliveira M, Guedes R (2010) Altered cysteine proteinase activity in insecticide-resistant strains of the maize weevil: Purification and characterization. Comp Biochem Physiol B 157:80-87.
    187. Ahmed S, Wilkins RM, Mantle D (1998) Comparison of proteolytic enzyme activities in adults of insecticide resistant and susceptible strains of the housefly M. domestica L. Insect Biochem Mol Biol 28:629-639.
    188. Wilkins RM, Ahmed S, Mantle D (1999) Comparative effect of fenitrothion treatment on intracellular protease activities in insecticide-resistant and susceptible strains of Musca domestica L. Comp Biochem Physiol C 124: 337-343.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700