二化螟体内生物胺受体的药理学与生理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
昆虫体内的生物胺,主要包括章鱼胺(octopamine, OA)、酪胺(tyramine, TA)(?)口多巴胺(dopamine, DA)等。它们在昆虫体内扮演着各种重要的生理角色,协同或各自调控着昆虫的多种行为和生理过程,如影响昆虫的产卵、昼夜节律、嗅觉、抉择、相变、好斗和飞翔以及学习和记忆等。三者的合成底物都是氨基酸酪氨酸,且酪胺是章鱼胺的合成前体。在昆虫体内,它们主要是通过结合各自特异性的G蛋白偶联受体来发挥作用。由于昆虫体内的生物胺受体一直被视为杀虫剂的潜在作用靶标,近年来,对昆虫体内生物胺,尤其是其对应受体的药理学性质和生理学功能研究日益受到关注。有鉴于此,本研究以水稻生产上的重要害虫二化螟Chilo suppressalis(鳞翅目Lepidoptera:草螟科Crambidae)为研究对象,采用分子生物学等手段对其体内的章鱼胺受体(octopamine receptors, OARs),酪胺受体(tyramine receptos, TARs)和多巴胺受体(dopamine receptors, DARs)的药理学与生理学功能做了系统研究。
     1. CsOAl受体调控细胞免疫的研究
     本研究探索了章鱼胺对昆虫细胞免疫影响的分子机制(第二信使系统)。章鱼胺在低浓度时(<10-6M)能够提高二化螟幼虫血细胞的延展和吞噬能力,然而在高浓度(>10-5M)时却抑制血细胞的延展和吞噬反应。相应的,章鱼胺刺激血细胞能够偶联胞内两种不同的信号通路,钙离子(Ca2+)和环腺昔酸(cAMP)。在低浓度章鱼胺刺激血细胞时,其仅能提高胞内Ca2+浓度,而在高浓度章鱼胺刺激血细胞时,其既能引起Ca2+上升,又能引起胞内cAMP升高。我们在血细胞上克隆到1型章鱼胺受体(CsOA1),通过原位杂交和免疫荧光等实验技术确定其mRNA和受体蛋白表达于二化螟血细胞上。将其异源表达于HEK-293细胞后,与章鱼胺对血细胞所引起的反应类似,CsOA1也展示出了不同浓度章鱼胺刺激可偶联两种信号通路的特性。因此,本实验支持了以前的研究,章鱼胺对昆虫先天免疫反应的激活或抑制和其胞内浓度有很大的关系。我们的结果也揭示出章鱼胺很有可能是通过结合于血细胞膜上的CsOA1受体进而偶联不同信号通路来发挥免疫功能的。生物应激反应时所产生的激素对其免疫系统有着复杂的作用,本研究所得的结果可为肾上腺素及其受体是如何参与调控脊椎动物免疫反应的研究提供参考。
     2. CsOA2B2受体的药理学与生理学研究
     从二化螟体内克隆得到一类2型章鱼胺受体(CsOA2B2),该基因与果蝇体内的CG6989(DmOA2B2)基因同源。表达谱分析表明,该基因主要表达于二化螟幼虫神经组织中。将其表达于HEK-293细胞后,在受到章鱼胺刺激时,该受体能够偶联Gs蛋白引起胞内cAMP的上升,EC50值为2.33nM,在章鱼胺浓度为100nM时所引起的cAMP反应最大。药理学实验表明,激动剂中naphazoline特异性大于clonidine;拮抗剂中phentolamine,mianserin和chlorpromazine能够显著拮抗章鱼胺的激动效果。用这3种拮抗剂对二化螟幼虫进行活体药理学干扰后,进行行为测定的数据表明,经mianserin和phentolamine处理的幼虫运动能力显著下降。
     3.一种新型章鱼胺受体CsOA3的功能研究
     从二化螟体内克隆得到一类孤儿受体,生物信息学分析表明其与果蝇体内的CG18208基因同源,可能属于生物胺受体家族成员。该基因通过可变剪切可产生两个剪切体,CsOA3S和CsOA3L。CsOA3L在内膜3区处比CsOA3S多了30个氨基酸,该区域可能参与了受体与G蛋白的结合。为了研究其配体信息,偶联的下游信号通路以及药理学性质,我们分别将两种剪切体真核表达于HEK-293细胞中。实验表明,两类受体均能引起胞内Ca2+的上升,而CsOA3S受体还可被章鱼胺激活引起胞内cAMP的下降,酪胺虽也可激活此类受体但特异性没有章鱼胺高。药理学实验表明,CsOA3受体可被多种激动剂激活,包括有机氮类杀虫剂杀虫脒和双甲脒等,而拮抗剂中唯有phentolamine和epinastine具有显著的拮抗效果。定量PCR实验表明,该基因主要以短剪切体CsOA3S的形式出现,并且广泛表达于各类受测组织中,其中在神经节和马氏管中表达量最高。据我们所知,CsOA3是一类新型的章鱼胺受体。
     4. CsTyR1受体的药理学研究
     从二化螟内获得一个全长cDNA,序列分析表明,其为昆虫TyR1受体家族,将其命名为CsTyR1。CsTyR1基因表达于各组织中,包括血细胞,脂肪体,中肠,马氏管,神经节和表皮,而在神经节中的表达量是其它组织的16-80倍。我们将构建的CsTyR1真核表达质粒转染于HEK-293细胞中,对其功能和药理学特性做了系统研究。结果表明,酪胺和章鱼胺能够显著降低forskolin诱导的cAMP含量,并且存在剂量效应反应(酪胺,ECso=369nM;章鱼胺,EC50=978nM).结果表明,该类受体主要是偶联Gi蛋白引起胞内cAMP的下降。在受测的激动剂中,CsTyR1可被clonidine和双甲脒激活而不能被naphazoline和杀虫脒激活。拮抗剂中,酪胺的作用可被10μM的yohimbine,phentolamine和chlorpromazine所阻断。
     5. CsTyR2受体的药理学研究
     克隆到编码CsTyR2受体的基因全长,序列分析表明其与果蝇和家蚕体内克隆到的2型酪胺受体同源。组织分布研究发现,其主要表达于二化螟幼虫的神经节和马氏管中。将该基因表达于HEK-293细胞所做的功能试验表明,其特异性的被酪胺激活后引起胞内Ca2+的上升,EC50值约为20nM。而另3种生物胺,章鱼胺,多巴胺和5-羟色胺在10μM浓度下刺激该受体也未见有Ca2+反应,表明该类受体是特异性的酪胺受体,且偶联G。蛋白引起胞内Ca2+上升。所测定的4种激动剂,双甲脒、杀虫脒、clonidine和naphazoline在10μM浓度下均不能有效刺激该受体,表明该类受体与之前的章鱼胺和酪胺受体在药理学上差异甚大。
     6. D1-like和D2-like多巴胺受体的药理学研究
     从二化螟体内克隆得到3种多巴胺受体,分别命名为CsDOP1, CsDOP2和CsDOP3,其中CsDOP1和CsDOP3获得了全长序列。序列分析表明,CsDOP1和CsDOP2属于昆虫D1-like受体家族,偶联Gs蛋白引起胞内cAMP的上升,CsDOP3属于昆虫D2-like受体家族,偶联Gi蛋白引起胞内cAMP的降低。将CsDOP1和CsDOP3受体分别表达于HEK-293细胞后,对它们的药理学性质做了研究,多巴胺对两受体的激活都有明显的剂量效应(CsDOP1, EC50=20nM; CsDOP3, EC50=670nM)。我们测定了一系列的激动剂和拮抗剂对CsDOP1和CsDOP3受体的影响。CsDOP1中,激动剂效能大小顺序为6,7-ADTN>多巴胺>bromocriptine>pramipexole;而受测的拮抗剂中,有拮抗效果的拮抗剂,其效能大小顺序为,SCH23390>butaclamol>chlorpromazine>phentolamine>yohimbine>propranolol> ketanserin>flupenthixol>mianserin; CsDOP3不但偶联的信号通路与CsDOP1截然相反,它们之间的药理学性质也差异较大,激动剂bromocriptine(EC50=280nM)的效能大于多巴胺,而拮抗剂中epinastine=mianserin>SCH23390=chlorpromazine,其它4种拮抗剂,flupenthixol, propranolol, spiperone和butaclamol均未有显著拮抗效果。
     本研究从二化螟体内克隆得到3种章鱼胺受体,2种酪胺受体和3种多巴胺受体,系统性的研究了这些受体的药理学性质及其参与调控昆虫先天免疫及运动行为的分子机制。
The biogenic amines, octopamine, tyramine and dopamine regulate many essential processes in insects, such as egg-laying, circadian rhythm, olfactory, decision-making, phase transition, fight and flight, learning and memory. They are products of the amino acid tyrosine and tyramine is the biological precursor of octopamine. All of them are independent neurotransmitters, exert their effects by binding to specific receptor proteins that belong to the superfamily of G-protein-coupled receptors. Because these receptors have been recognized as very suitable and specific insecticide and acaricide targets, the studies of octopamine, tyramine and dopamine in insects, especially the studies about their receptors, have been paid more attentions in recent years. In this study, we chose the rice striped stem borer, Chilo suppressalis Walker (Lepidoptera: Crambidae), one of the main herbivorous pests that cause serious damage to rice production in Asia, as object. Using modern molecular biology methods, we investigated the pharmacological properties and physiological roles of octopamine receptors, tyramine receptors and dopamine receptors in the rice striped stem borer.
     1. Characterization of an a-adrenergic-like octopamine receptor from the rice stem borer(Chilo suppressalis) and its potential role involved in insect cellular immunity
     Octopamine, the insect equivalent of norepinephrine, links the nervous system and immune system in insects. This study examines the underlying molecular mechanisms (i.e. second messenger systems) mediating octopamine effects on insect immune cells. At low concentrations (<1μM), octopamine stimulated hemocyte spreading and phagocytosis in the larval Lepidopteran (caterpillar) Chilo suppressalis, whereas at high concentrations (>10μM), octopamine inhibited hemocyte spreading and phagocytosis. Similarly, octopamine concentration had differential effects on two intracellular signaling pathways, Ca2+and cAMP. Low concentrations of octopamine increased intracellular Ca2+, but only high concentrations of octopamine (>1μM) led to an increase in both Ca2+and cAMP. We identified an a-adrenergic-like octopamine receptor in this species (CsOA1) and confirmed that it is expressed in hemocytes. After heterologous expression in HEK-293cells, the CsOAl receptor produced the same octopamine concentration-dependent responses on intracellular Ca2+and cAMP as had been observed in hemocytes. These findings support earlier work showing that octopamine has both stimulatory and suppressive effects on immune responses, depending on the octopamine concentration. Our evidence suggests that these biphasic effects are mediated by an octopamine receptor signaling through intracellular Ca2+and cAMP second messenger pathways. Stress hormones/neuromodulators have complex effects on immune function in animals across phyla. This complexity may be mediated, in part, by conserved connections between adrenergic-like G-coupled-protein receptors and second messenger systems.
     2. Characterization of a P-adrenergic-like octopamine receptor from the rice stem borer (Chilo suppressalis)
     Octopamine, the invertebrate counterpart of adrenaline and noradrenaline, plays a key role in regulation of many physiological and behavioral processes in insects. It modulates these functions through binding to specific octopamine receptors, which are typical rhodopsin-like G-protein-coupled receptors. A cDNA encoding a seven-transmembrane receptor was cloned from the nerve cord of the rice stem borer, Chilo suppressalis, viz. CsOA2B2, which shares high sequence similarity to CG6989, a Drosophila β-adrenergic-like octopamine receptor (DmOctβ2R). We generated an HEK-293cell line that stably expresses CsOA2B2in order to examine the functional and pharmacological properties of this receptor. Activation of CsOA2B2by octopamine increased the production of cAMP in a dose-dependent manner (EC50=2.33×10-9M), with a maximum response at100nM. Tyramine also activated the receptor but with much less potency than octopamine. Dopamine and serotonin had marginal effects on cAMP production. Using a series of known agonists and antagonists for octopamine receptors, we observed a rather unique pharmacological profile for CsOA2B2through measurements of cAMP. The rank order of potency of the agonists was naphazoline> clonidine. The activated effect of octopamine is abolished by co-incubation with phentolamine, mianserin or chlorpromazine. Using in vivo pharmacology, CsOA2B2antagonists mianserin and phentolamine impaired the motor ability of individual rice stem borers. The results of the present study are important for a better functional understanding of this receptor as well as for practical applications in the development of environmentally sustainable pesticides.
     3. Two splicing variants of a novel family of octopamine receptors with different signaling properties
     The octopamine and tyramine, as the invertebrate counterparts of the vertebrate adrenergic transmitters, control, regulate, and modulate many physiological and behavioral processes. Both compounds mediate their effects by binding to specific receptors belonging to the superfamily of G-protein-coupled receptors. Activation of different receptor types is coupled with different second messenger pathways. Here we described the functional characterization of one octopamine receptor gene from Chilo suppressails. As a result of alternative splicing, this octopamine receptor gene (CsOA3) encodes two molecularly distinct isoforms, CsOA3S and CsOA3L. CsOA3L differs from CsOA3S by the presence of an additional30amino acids within the third intracellular loop. This region is implicated in the receptor interaction with G-proteins. When heterologously expressed, both receptors cause increases of intracellular Ca2+concentration in response to applying nanomolar concentrations of octopamine. The short form, CsOA3S, was activated by both octopamine and tyramine, resulting in decreased intracellular cAMP levels ([cAMP]i) in a dose-dependent manner (EC50~39nM, octopamine;~94nM, tyamine). Tyramine activated the receptor but much lesser potency than octopamine, whereas dopamine and serotonin are not-effective. While CsOA3L did not show this properties. Tissues distribution pattern of CsOA3genes were assessed by qRT-PCR. Overlapping but not identical expression patterns were observed for the individual transcrpts. The CsOA3is, to our knowledge, a new family of insect octopamine receptors.
     4. Molecular cloning and pharmacological characterisation of a tyramine receptor from the rice stem borer, Chilo suppressalis (Walker)
     A full-length cDNA (designated CsTyR1) from the rice stem borer, Chilo suppressalis (Walker), has been obtained through homology cloning in combination with rapid amplification of cDNA ends/polymerase chain reaction (RACE-PCR). The mRNA of CsTyR1is present in various tissues, including hemocytes, fat body, midgut, Malpighian tubules, nerve cord and epidermis, and it is found predominantly in the larval nerve cord with16-80-fold enrichment compared with other tissues. The authors generated a HEK-293cell line stably expressing CsTyRl in order to examine functional and pharmacological properties of this receptor. Both TA and OA at0.01-100μM can reduce forskolin-stimulated intracellular cAMP levels in a dose-dependent manner (TA, EC50=369nm; OA, EC50=978nm). In agonist assays, activation of CsTyR1by clonidine and amitraz but not by naphazoline and chlordimeform can also significantly inhibit forskolin-stimulated cAMP production. The inhibitory effect of TA at10μM is eliminated by coincubation with yohimbine, phentolamine or chlorpromazine (each10μM).
     5. Cloning, expression and functional analysis of a tyramine receptor type2from striped stem borer, Chilo suppressalis
     Biogenic amines such as octopamine, tyramine, dopamine and serotonin play various important physiological roles in insects by activating distinct G-protein-coupled receptors (GPCRs) that share a putative seven transmembrane domain structure. Here, we report the first cloning and pharmacological characterization of a tyramine receptor type2in the striped stem borer, Chilo suppressalis, viz., CsTyR2, which shares high sequence similarity to members of the invertebrate tyramine receptor family. The CsTyR2receptor was stably expressed in HEK-293cells, and its ligand response has been examined. Receptor activation with TA induced a dose-dependent increase in intracellular Ca2+concentration ([Ca2+]i) in cells, with an EC50value of20nM, whereas octopamine, dopamine and serotonin increased ([Ca2+]i) only at concentrations above100μM. The mRNA is present in various tissues including hemocytes, fatbody, midgut, Malpighian tubules, nerve cord and epidermis in the larva stage. The CsTyR2transcript was detected predominantly in the Malpighian tubules and nerve cord. This expression plasticity indicates that CsTyR2might be involved in excretory system and nervous system in C. suppressalis. This study marks the first comprehensive molecular, pharmacological, and functional characterization of a tyramine receptor in the rice stem borer.
     6. Molecular and pharmacological characterization of dopamine receptors in the rice stem borer, Chilo suppressalis
     We identified two full (CsDOP1and CsDOP3) and one partial (CsDOP2) sequences of putative dopamine receptors in the rice stem borer Chilo suppressalis. The genes CsDOP1and CsDOP2were predicted as orthologs of previously characterized D1-like dopamine receptors in the silkworm Bombyx mori and fruitfly Dmsophila melanogaster. CsDOP3shows high sequence homology with other D2-like dopamine receptors. Heterologous expression of CsDOP1and CsDOP3in HEK-293cells demonstrated dose-dependent responses to dopamine (EC50:CsDOP1=2.0±0.19×10-8M; CsDOP3=6.7±0.58×10-7M). Experiments with agonists and antagonists revealed that the rank order of potency for the active synthetic agonists and antagonists tested was different for each of the receptors (CsDOP1:agonists,6,7-ADTN> dopamine> bromocriptine> pramipexole; antagonists, SCH23390>butaclamol>chlorpromazine>phentolamine> yohimbine>propranolol>ketanserin>flupenthixol> mianserin; CsDOP3:agonists, bromocriptine>DA; antagonists, epinastine=mianserin> SCH23390=chlorpromazine).
     In this study, we have cloned three octopamine receptors, two tyramine receptors and three dopamine receptors from the rice stem borer, Chilo suppressalis. And we have investigated the pharmacological properties and physiological roles related to innate immunity and motor ability in insects of these receptors.
引文
Adamo, S.A.,2005. Parasitic suppression of feeding in the tobacco hornworm, Manduca sexta: Parallels with feeding depression after an immune challenge. Arch. Insect Biochem. Physiol.60, 185-197.
    Adamo, S.A.,2010. Why should an immune response activate the stress response? Insights from the insects (the cricket Gryllus texensis). Brain Behav. Immun.24,194-200.
    Adamo, S.A., Linn, C.E., Hoy, R.R.,1995. The role of neurohormonal octopamine during fight or flight' behaviour in the field cricket Gryllus bimaculatus. J. Exp. Biol.198,1691-1700.
    Adamo, S.A., Parsons, N.M.,2006. The emergency life-history stage and immunity in the cricket, Gryllus texensis. Anim. Behav.72,235-244.
    Agarwal, M., Giannoni Guzman, M., Morales-Matos, C., Del Valle Diaz, R.A., Abramson, C.I., Giray, T.,2011. Dopamine and octopamine influence avoidance learning of honey bees in a place preference assay. PLoS ONE 6, e25371.
    Akasaka, S., Sasaki, K., Harano, K.-i., Nagao, T.,2010. Dopamine enhances locomotor activity for mating in male honeybees (Apis mellifera L.). J. Insect Physiol.56,1160-1166.
    Alkema, M.J., Hunter-Ensor, M., Ringstad, N., Horvitz, H.R.,2005. Tyramine functions independently of octopamine in the Caenorhabditis elegans nervous system. Neuron 46,247-260.
    Andersen, J.P., Schwartz, A., Gramsbergen, J.B., Loeschcke, V.,2006. Dopamine levels in the mosquito Aedes aegypti during adult development, following blood feeding and in response to heat stress. J. Insect Physiol.52,1163-1170.
    Anstey, M.L., Rogers, S.M., Ott, S.R., Burrows, M., Simpson, S.J.,2009. Serotonin mediates behavioral gregarization underlying swarm formation in desert locusts. Science 323,627-630.
    Arakawa, S., Gocayne, J.D., McCombie, W.R., Urquhart, D.A., Hall, L.M., Fraser, C.M., Venter, J.C., 1990. Cloning, localization, and permanent expression of a Drosophila octopamine receptor. Neuron 4,343-354.
    Armstrong, G.A.B., Shoemaker, K.L., Money, T.G.A., Robertson, R.M.,2006. Octopamine mediates thermal preconditioning of the locust ventilatory central pattern generator via a cAMP/protein kinase A signaling pathway. J.Neurosci.26,12118-12126.
    Axelrod, J., Saavedra, J.M.,1977. Octopamine. Nature 265,501-504.
    Bacon, J.P., Thompson, K.S.J., Stern, M.,1995. Identified octopaminergic neurons provide an arousal mechanism in the locust brain. J. Neurophysiol.74,2739-2743.
    Baier, A., Wittek, B., Brembs, B.,2002. Drosophila as a new model organism for the neurobiology of aggression? J. Exp. Biol.205,1233-1240.
    Baines, D., DeSantis, T., Downer, R.G.H.,1992. Octopamine and 5-hydroxytryptamine enhance the phagocytic and nodule formation activities of cockroach(Periplaneta americana) haemocytes. J. Insect Physiol.38,905-914.
    Baines, D., Downer, R.G.H.,1994. Octopamine enhances phagocytosis in cockroach hemocytes: involvement of inositol trisphosphate. Arch. Insect Biochem. Physiol.26,249-261.
    Balfanz, S., Strunker, T., Frings, S., Baumann, A.,2005. A family of octapamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. J. Neurochem.93,440-451.
    Bang, S., Hyun, S., Hong, S.-T., Kang, J., Jeong, K., Park, J.-J., Choe, J., Chung, J.,2011. Dopamine signalling in mushroom bodies regulates temperature-preference behaviour in Drosophila. PLoS Genet.7, e1001346.
    Barron, A.B., Maleszka, R., Vander Meer, R.K., Robinson, G.E.,2007. Octopamine modulates honey bee dance behavior. Proc. Natl. Acad. Sci. U S A 104,1703-1707.
    Barron, A.B., Schulz, D.J., Robinson, G.E.,2002. Octopamine modulates responsiveness to foraging-related stimuli in honey bees(Apis mellifera). J. Comp. Physiol. A Neuroethol. Sens. Neural. Behav. Physiol.188,603-610.
    Baudoux, S., Burrows, M.,1998. Synaptic activation of efferent neuromodulatory neurones in the locust Schistocerca gregaria. J. Exp. Biol.201,3339-3354.
    Baxter, G.D., Barker, S.C.,1999. Isolation of a cDNA for an octopamine-like, G-protein coupled receptor from the cattle tick, Boophilus microplus. Insect Biochem. Mol. Biol.29,461-467.
    Bayliss, A., Roselli, G., Evans, P.D.,2013. A comparison of the signalling properties of two tyramine receptors from Drosophila. J. Neurochem.125,37-48.
    Beaulieu, J.-M., Gainetdinov, R.R.,2011. The physiology, signaling, and pharmacology of dopamine receptors. Pharmacol. Rev.63,182-217.
    Beeman, R.W., Matsumura, F.,1973. Chlordimeform:a pesticide acting upon amine regulatory mechanisms. Nature 242,273-274.
    Beeman, R.W., Matsumura, F.,1974. Studies on the action of chlordimeform in cockroaches. Pestic. Biochem. Physiol.4,325-336.
    Beggs, K.T., Glendining, K.A., Marechal, N.M., Vergoz, V., Nakamura, I., Slessor, K.N., Mercer, A.R., 2007. Queen pheromone modulates brain dopamine function in worker honey bees. Proc. Natl. Acad. Sci. U S A 104,2460-2464.
    Beggs, K.T., Hamilton, I.S., Kurshan, P.T., Mustard, J.A., Mercer, A.R.,2005. Characterization of a D2-like dopamine receptor (AmDOP3) in honey bee, Apis mellifera. Insect Biochem. Mol. Biol. 35,873-882.
    Beggs, K.T., Mercer, A.R.,2009. Dopamine receptor activation by honey bee queen pheromone. Curr. Biol.19,1206-1209.
    Beggs, K.T., Tyndall, J.D.A., Mercer, A.R.,2011. Honey bee dopamine and octopamine receptors linked to intracellular calcium signaling have a close phylogenetic and pharmacological relationship. PLoS One 6, e26809.
    Benes, F.M.,2001. Carlsson and the discovery of dopamine. Trends Pharmacol. Sci.22,46-47.
    Berry, Jacob A., Cervantes-Sandoval,1., Nicholas, Eric P., Davis, Ronald L.,2012. Dopamine is required for learning and forgetting in Drosophila. Neuron 74,530-542.
    Bicker, G., Menzel, R.,1989. Chemical codes for the control of behaviour in arthropods. Nature 337, 33-39.
    Bischof, L.J., Enan, E.E.,2004. Cloning, expression and functional analysis of an octopamine receptor from Periplaneta americana. Insect Biochem. Mol. Biol.34,511-521.
    Blenau, W., Balfanz, S., Baumann, A.,2000. Amtyrl:characterization of a gene from honeybee (Apis mellifera) brain encoding a functional tyramine receptor. J. Neurochem.74,900-908.
    Blenau, W., Baumann, A.,2001. Molecular and pharmacological properties of insect biogenic amine receptors:lessons from Drosophila melanogaster and Apis mellifera. Arch. Insect Biochem. Physiol.48,13-38.
    Blenau, W., Baumann, A.,2003. Aminergic signal transduction in invertebrates:focus on tyramine and octopamine receptors. Recent Res. Dev. Neurochem.6,225-240.
    Blenau, W., Erber, J., Baumann, A.,1998. Characterization of a dopamine D1 receptor from Apis mellifera:cloning, functional expression, pharmacology, and mRNA localization in the brain. J. Neurochem.70,15-23.
    Blenau, W., Rademacher, E., Baumann, A.,2012. Plant essential oils and formamidines as insecticides/acaricides:what are the molecular targets? Apidologie 43,334-347.
    Blumenthal, E.M.,2003. Regulation of chloride permeability by endogenously produced tyramine in the Drosophila Malpighian tubule. Am. J. Physiol. Cell Physiol.284, C718-C728.
    Blumenthal, E.M.,2005. Modulation of tyramine signaling by osmolality in an insect secretory epithelium. Am. J. Physiol Cell Physiol.289, C1261-C1267.
    Blumenthal, E.M.,2009. Isoform- and cell-specific function of tyrosine decarboxylase in the Drosophila Malpighian tubule. J. Exp. Biol.212,3802-3809.
    Borda, E.S., Tenenbaum, A., Sales, M.E., Rumi, L., Sterin-Borda, L.,1998. Role of arachidonic acid metabolites in the action of a β adrenergic agonist on human monocyte phagocytosis. Prostaglandins Leukot. Essent Fatty Acids 58,85-90.
    Borowsky, B., Adham, N., Jones, K.A., Raddatz, R., Artymyshyn, R., Ogozalek, K.L., Durkin, M.M., Lakhlani, P.P., Bonini, J.A., Pathirana, S., Boyle, N., Pu, X., Kouranova, E., Lichtblau, H., Ochoa, F.Y., Branchek, T.A., Gerald, C.,2001. Trace amines:identification of a family of mammalian G protein-coupled receptors. Proc. Natl. Acad. Sci. U S A 98,8966-8971.
    Boutet, I., Tanguy, A., Moraga, D.,2004. Molecular identification and expression of two non-P450 enzymes, monoamine oxidase A and flavin-containing monooxygenase 2, involved in phase I of xenobiotic biotransformation in the Pacific oyster, Crassostrea gigas. Biochim. Biophys. Acta. 1679,29-36.
    Braunig, P.,1991. Suboesophageal DUM neurons innervate the principal neuropiles of the locust brain. Phil. Trans. R. Soc. Lond. B 332,221-240.
    Braunig, P.,1997. The peripheral branching pattern of identified dorsal unpaired median (DUM) neurones of the locust. Cell Tissue Res.290,641-654.
    Braunig, P., Burrows, M.,2004. Projection patterns of posterior dorsal unpaired median neurons of the locust subesophageal ganglion. J. Comp. Neurol.478,164-175.
    Braunig, P., Pfliiger, H.J.,2001. The unpaired median neurons of insects. Adv. In Insect Phys.28, 185-266.IN181-IN182.
    Braun, G., Bicker, G.,1992. Habituation of an appetitive reflex in the honeybee. J. Neurophysiol.67, 588-598.
    Braunig, P., Stevenson, P.A., Evans, P.D.,1994. A locust octopamine-immunoreactive dorsal unpaired median neurone forming terminal networks on sympathetic nerves. J. Exp. Biol.192,225-238.
    Brembs, B., Christiansen, F., Pfluger, H.J., Duch, C.,2007. Flight initiation and maintenance deficits in flies with genetically altered biogenic amine levels. J. Neurosci.27,11122-11131.
    Brigaud, I., Grosmaitre, X., Francois, M.-C., Jacquin-Joly, E.,2009. Cloning and expression pattern of a putative octopamine/tyramine receptor in antennae of the noctuid moth Mamestra brassicae. Cell Tissue Res.335,455-463.
    Broeck, J.V., Vulsteke, V., Huybrechts, R., De Loof, A.,1995. Characterization of a cloned locust tyramine receptor cDNA by functional expression in permanently transformed Drosophila S2 cells. J. Neurochem.64,2387-2395.
    Busch, S., Selcho, M., Ito, K., Tanimoto, H.,2009. A map of octopaminergic neurons in the Drosophila brain. J. Comp. Neurol.513,643-667.
    Carlsson, A., Lindqvist, M., Magnusson, T.O.R.,1957.3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature 180,1200-1200.
    Cazzamali, G., Klaerke, D.A., Grimmelikhuijzen, C.J.P.,2005. A new family of insect tyramine receptors. Biochem. Biophys. Res. Commun.338,1189-1196.
    Chang, D.J., Li, X.C., Lee, Y.S., Kim, H.K., Kim, U.S., Cho, N.J., Lo, X., Weiss, K.R., Kandel, E.R., Kaang, B.K.,2000. Activation of a heterologously expressed octopamine receptor coupled only to adenylyl cyclase produces all the features of presynaptic facilitation in Aplvsia sensory neurons. Proc. Natl. Acad. Sci. U S A 97,1829-1834.
    Chang, H.Y., Grygoruk, A., Brooks, E.S., Ackerson, L.C., Maidment, N.T., Bainton, R.J., Krantz, D.E., 2005. Overexpression of the Drosophila vesicular monoamine transporter increases motor activity and courtship but decreases the behavioral response to cocaine. Mol. Psychiatry 11,99-113.
    Chen, A., Ng, F., Lebestky, T., Grygoruk, A., Djapri, C., Lawal, H.O., Zaveri, H.A., Mehanzel, F., Najibi, R., Seidman, G., Murphy, N.P., Kelly, R.L., Ackerson, L.C., Maidment, N.T., Jackson, F.R., Krantz, D.E.,2013. Dispensable, Redundant, Complementary, and Cooperative Roles of Dopamine, Octopamine, and Serotonin in Drosophila melanogaster. Genetics 193,159-176.
    Chen, A.C., He, H., Davey, R.B.,2007. Mutations in a putative octopamine receptor gene in amitraz-resistant cattle ticks. Vet. Parasitol.148,379-383.
    Chen, R., Wu, X., Wei, H., Han, D.D., Gu, H.H.,2006. Molecular cloning and functional characterization of the dopamine transporter from Eloria noyesi, a caterpillar pest of cocaine-rich coca plants. Gene 366,152-160.
    Chen, X., Ohta, H., Ozoe, F., Miyazawa, K., Huang, J., Ozoe, Y.,2010. Functional and pharmacological characterization of a β-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Insect Biochem. Mol. Biol.40,476-486.
    Clark, M.C., Khan, R., Baro, D.J.,2008. Crustacean dopamine receptors:localization and G protein coupling in the stomatogastric ganglion. J. Neurochem.104,1006-1019.
    Cole, S.H., Carney, G.E., McClung, C.A., Willard, S.S., Taylor, B.J., Hirsh, J.,2005. Two functional but noncomplementing Drosophila tyrosine decarboxylase genes:distinct roles for neural tyramine and octopamine in female fertility. J. Biol. Chem.280,14948-14955.
    Consortium, T.G.S.,2008. The genome of the model beetle and pest Tribolium castaneum. Nature 452, 949-955.
    Corey, J.L., Quick, M.W., Davidson, N., Lester, H.A., Guastella, J.,1994. A cocaine-sensitive Drosophila serotonin transporter:cloning, expression, and electrophysiological characterization. Proc. Natl. Acad. Sci. U S A 91,1188-1192.
    Crocker, A., Sehgal, A.,2008. Octopamine regulates sleep in Drosophila through protein kinase A-dependent mechanisms, J. Neurosci., pp.9377-9385.
    Crocker, A., Shahidullah, M., Levitan, I.B., Sehgal, A.,2010. Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron 65,670-681.
    Cuttell, L., Vaughan, A., Silva, E., Escaron, C.J., Lavine, M., Van Goethem, E., Eid, J.-P., Quirin, M., Franc, N.C.,2008. Undertaker, a Drosophila junctophilin, links draper-mediated phagocytosis and calcium homeostasis. Cell 135,524-534.
    da Silva, R., Lange, A.B.,2008. Tyramine as a possible neurotransmitter/neuromodulator at the spermatheca of the African migratory locust, Locusta migratoria. J. Insect Physiol.54,1306-1313.
    Dacks, A.M., Dacks, J.B., Christensen, T.A., Nighorn, A.J.,2006. The cloning of one putative octopamine receptor and two putative serotonin receptors from the tobacco hawkmoth, Manduca sexta. Insect Biochem. Mol. Biol.36,741-747.
    Dacks, A.M., Riffell, J.A., Martin, J.P., Gage, S.L., Nighorn, A.J.,2012. Olfactory modulation by dopamine in the context of aversive learning. J. Neurophysiol.
    De Luca, M., Roshina, N.V., Geiger-Thornsberry, G.L., Lyman, R.F., Pasyukova, E.G., Mackay, T.F.C., 2003. Dopa decarboxylase (Ddc) affects variation in Drosophila longevity. Nat. Genet.34, 429-433.
    DeHaven, W.I., Smyth, J.T., Boyles, R.R., Putney, J.W.,2007. Calcium inhibition and calcium potentiation of Orai1, Orai2, and Orai3 calcium release-activated calcium channels. J. Biol. Chem. 282,17548-17556.
    Donini, A., Lange, A.B.,2004. Evidence for a possible neurotransmitter/neuromodulator role of tyramine on the locust oviducts. J. Insect Physiol.50,351-361.
    Donly, B.C., Caveney, S.,2005. A transporter for phenolamine uptake in the arthropod CNS. Arch. Insect Biochem. Physiol.59,172-183.
    Donly, C., Verellen, L., Cladman, W., Caveney, S.,2007. Functional comparison of full-length and N-terminal-truncated octopamine transporters from Lepidoptera. Insect Biochem. Mol. Biol.37, 933-940.
    Downer, R.G.H., Gole, J.W.D., Orr, G.L.,1985. Interaction of formamidines with octopamine-, dopamine-and 5-hydroxytryptamine-sensitive adenylate cyclase in the nerve cord of Periplaneta americana. Pesticide Science 16,472-478.
    Downer, R.G.H., Hiripi, L., Juhos, S.,1993. Characterization of the tyraminergic system in the central nervous system of the locust,Locusta migratoria migratoides. Neurochem. Res.18,1245-1248.
    Draper, I., Kurshan, P.T., McBride, E., Jackson, F.R., Kopin, A.S.,2007. Locomotor activity is regulated by D2-like receptors in Drosophila:an anatomic and functional analysis. Dev. Neurobiol. 67,378-393.
    Dudai, Y., Buxbaum, J., Corfas, G., Ofarim, M.,1987. Formamidines interact with Drosophila octopamine receptors, alter the flies' behavior and reduce their learning ability. J Comp Physiol A 161,739-746.
    Duportets, L., Barrozo, R.B., Bozzolan, F., Gaertner, C., Anton, S., Gadenne, C., Debernard, S.,2010. Cloning of an octopamine/tyramine receptor and plasticity of its expression as a function of adult sexual maturation in the male moth Agrotis ipsilon. Insect Mol. Biol.19,489-499.
    Ebert, P.R., Rowland, J.E., Toma, D.P.,1998. Isolation of seven unique biogenic amine receptor clones from the honey bee by library scanning. Insect Mol. Biol.7,151-162.
    Edmondson, D.E., DeColibus, L., Binda, C, Li, M., Mattevi, A.,2007. New insights into the structures and functions of human monoamine oxidases A and B. J. Neural Transm.114,703-705.
    Eilers, M., Hornak, V., Smith, S.O., Konopka, J.B.,2005. Comparison of class A and D G protein-coupled receptors:common features in structure and activation. Biochemistry 44, 8959-8975.
    Ejendal, K.F.K., Meyer, J.M., Brust, T.F., Avramova, L.V., Hill, C.A., Watts, V.J.,2012. Discovery of antagonists of tick dopamine receptors via chemical library screening and comparative pharmacological analyses. Insect Biochem. Mol. Biol.42,846-853.
    Enan, E.E.,2005. Molecular and pharmacological analysis of an octopamine receptor from American cockroach and fruit fly in response to plant essential oils. Arch. Insect Biochem. Physiol.59, 161-171.
    Erspamer, V., Boretti, G.,1951. Identification and characterization, by paper chromatography, of enteramine, octopamine, tyramine, histamine and allied substances in extracts of posterior salivary glands of octopoda and in other tissue extracts of vertebrates and invertebrates. Arch. Int. Pharmacodyn. Ther. 88,296.
    Essam E, E.,2005. Molecular response of Drosophila melanogaster tyramine receptor cascade to plant essential oils. Insect Biochem. Mol. Biol.35,309-321.
    Evans, P., Maqueira, B.,2005. Insect octopamine receptors:a new classification scheme based on studies of cloned Drosophila G-protein coupled receptors. Invert. Neurosci.5,111-118.
    Evans, P.D.,1981. Multiple receptor types for octopamine in the locust. J. Physiol.318,99-122.
    Evans, P.D.,1984. The role of cyclic nucleotides and calcium in the mediation of the modulatory effects of octopamine on locust skeletal muscle. J. Physiol.348,325-340.
    Evans, P.D.,1987. Phenyliminoimidazolidine derivatives activate both octopamine1 and octopamine2 receptor subtypes in locust skeletal muscle. J. Exp. Biol.129,239-250.
    Evans, P.D., Gee, J.D.,1980. Action of formamidine pesticides on octopamine receptors. Nature 287, 60-62.
    Evans, P.D., Robb, S.,1993. Octopamine receptor subtypes and their modes of action. Neurochem. Res. 18,869-874.
    Fahn, S.,2006. The history of levodopa as it pertains to Parkinson's disease, Movement disorder society's 10th international congress of parkinson's disease and movement disorders. Mov. Disord., Kyoto, Japan.
    Farooqui, T.,2012. Review of octopamine in insect nervous systems. Open Access Insect Physiol.4, 1-17.
    Farooqui, T., Robinson, K., Vaessin, H., Smith, B.H.,2003. Modulation of early olfactory processing by an octopaminergic reinforcement pathway in the honeybee. J. Neurosci.23,5370-5380.
    Farooqui, T., Vaessin, H., Smith, B.H.,2004. Octopamine receptors in the honeybee(Apis mellifera) brain and their disruption by RNA-mediated interference. J. Insect Physiol.50,701-713.
    Feany, M.B., Bender, W.W.,2000. A Drosophila model of Parkinson's disease. Nature 404,394-398.
    Feng, G., Hannan, F., Reale, V., Hon, Y.Y., Kousky, C.T., Evans, P.D., Hall, L.M.,1996. Cloning and functional characterization of a novel dopamine receptor from Drosophila melanogaster. J. Neurosci.16,3925-3933.
    Ferguson, S.S.G.,2001. Evolving concepts in G protein-coupled receptor endocytosis:the role in receptor desensitization and signaling. Pharmacol. Rev.53,1-24.
    Flecke, C., Stengl, M.,2009. Octopamine and tyramine modulate pheromone-sensitive olfactory sensilla of the hawkmoth Manduca sexta in a time-dependent manner. J Comp Physiol A 195, 529-545.
    Fox, L.E., Soll, D.R., Wu, C.-F.,2006. Coordination and modulation of locomotion pattern generators in Drosophila larvae:effects of altered biogenic amine levels by the tyramine β hydroxlyase mutation. J. Neurosci.26,1486-1498.
    Friggi-Grelin, F., Coulom, H., Meller, M., Gomez, D., Hirsh, J., Birman, S.,2003. Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. J. Neurobiol.54,618-627.
    Fussnecker, B.L., Smith, B.H., Mustard, J.A.,2006. Octopamine and tyramine influence the behavioral profile of locomotor activity in the honey bee (Apis mellifera). J. Insect Physiol.52,1083-1092.
    Gallant, P., Malutan, T., McLean, H., Verellen, L., Caveney, S., Donly, C.,2003. Functionally distinct dopamine and octopamine transporters in the CNS of the cabbage looper moth. Eur. J. Biochem. 270,664-674.
    Giros, B., el Mestikawy, S., Godinot, N., Zheng, K., Han, H., Yang-Feng, T., Caron, M.G.,1992. Cloning, pharmacological characterization, and chromosome assignment of the human dopamine transporter. Mol. Pharmacol.42,383-390.
    Gole, J.W.D., Orr, G.L., Downer, R.G.H.,1983. Interaction of formamidines with octopamine-sensitive adenylate cyclase receptor in the nerve cord of Periplaneta americana L. Life Sci.32,2939-2947.
    Gorman, M.J., An, C., Kanost, M.R.,2007. Characterization of tyrosine hydroxylase from Manduca sexta. Insect Biochem. Mol. Biol.37,1327-1337.
    Gorman, M.J., Arakane, Y.,2010. Tyrosine hydroxylase is required for cuticle sclerotization and pigmentation in Tribolium castaneum. Insect Biochem. Mol. Biol.40,267-273.
    Gotzes, F., Balfanz, S., Baumann, A.,1994. Primary structure and functional characterization of a Drosophila dopamine receptor with high homology to human D1/5 receptors. Receptors Channels 2,131-141.
    Gotzes, F., Baumann, A.,1996. Functional properties of Drosophila dopamine D1-receptors are not altered by the size of the N-terminus. Biochem. Biophys. Res. Commun.222,121-126.
    Grandy, D.K., Marchionni, M.A., Makam, H., Stofko, R.E., Alfano, M., Frothingham, L., Fischer, J.B., Burke-Howie, K.J., Bunzow, J.R., Server, A.C.,1989. Cloning of the cDNA and gene for a human D2 dopamine receptor. Proc. Natl. Acad. Sci. U S A.86,9762-9766.
    Greer, C.L., Grygoruk, A., Patton, D.E., Ley, B., Romero-Calderon, R., Chang, H.-Y., Houshyar, R., Bainton, R.J., DiAntonio, A., Krantz, D.E.,2005. A splice variant of the Drosophila vesicular monoamine transporter contains a conserved trafficking domain and functions in the storage of dopamine, serotonin, and octopamine. J. Neurobiol.64,239-258.
    Grohmann, L., Blenau, W., Erber, J., Ebert, P.R., Strunker, T., Baumann, A.,2003. Molecular and functional characterization of an octopamine receptor from honeybee (Apis mellifera) brain. J. Neurochem.86,725-735.
    Gudermann, T., Schoneberg, T., Schultz, G.,1997. Functional and structural complexity of signal transduction via G-protein-coupled receptors. Annu. Rev. Neurosci.20,399-427.
    Hamada, A., Miyawaki, K., Honda-Sumi, E., Tomioka, K., Mito, T., Ohuchi, H., Noji, S.,2009. Loss-of-function analyses of the fragile X-related and dopamine receptor genes by RNA interference in the cricket Gryllus bimaculatus. Dev. Dyn.238,2025-2033.
    Hamasaka, Y., Nassel, D.R.,2006. Mapping of serotonin, dopamine, and histamine in relation to different clock neurons in the brain of Drosophila. J. Comp. Neurol.494,314-330.
    Hammer, M., Menzel, R.,1995. Learning and memory in the honeybee. J. Neurosci.15,1617-1630.
    Hammer, M., Menzel, R.,1998. Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. Learn. Mem.5,146-156.
    Han, K.-A., Millar, N.S., Grotewiel, M.S., Davis, R.L.,1996. DAMB, a novel dopamine receptor expressed specifically in Drosophila mushroom bodies. Neuron 16,1127-1135.
    Han, K.A., Millar, N.S., Davis, R.L.,1998. A novel octopamine receptor with preferential expression in Drosophila mushroom bodies. J. Neurosci.18,3650-3658.
    Han, L., Li, S., Liu, P., Peng, Y., Hou, M.,2012. New artificial diet for continuous rearing of Chilo suppressalis (Lepidoptera:Crambidae). Ann Entomol Soc Am 105,253-258.
    Harano, K.-i., Sasaki, K., Nagao, T., Sasaki, M.,2008. Influence of age and juvenile hormone on brain dopamine level in male honeybee (Apis mellifera):Association with reproductive maturation. J. Insect Physiol.54,848-853.
    Hardie, S.L., Zhang, J.X., Hirsh, J.,2007. Trace amines differentially regulate adult locomotor activity, cocaine sensitivity, and female fertility in Drosophila melanogaster. Dev. Neurobiol.67, 1396-1405.
    Hauser, F., Cazzamali, G, Williamson, M., Blenau, W., Grimmelikhuijzen, C.J.P.,2006. A review of neurohormone GPCRs present in the fruitfly Drosophila melanogaster and the honey bee Apis mellifera. Prog. Neurobiol.80,1-19.
    Hauser, F., Cazzamali, G., Williamson, M., Park, Y., Li, B., Tanaka, Y., Predel, R., Neupert, S., Schachtner, J., Verleyen, P., Grimmelikhuijzen, C.J.P.,2008. A genome-wide inventory of neurohormone GPCRs in the red flour beetle Tribolium castaneum. Front. Neuroendocrinol.29, 142-165.
    Hearn, M.G., Ren, Y., McBride, E.W., Reveillaud, I., Beinborn, M., Kopin, A.S.,2002. A Drosophila dopamine 2-like receptor:Molecular characterization and identification of multiple alternatively spliced variants. Proc. Natl. Acad. Sci. U S A 99,14554-14559.
    Hill, C.A., Fox, A.N., Pitts, R.J., Kent, L.B., Tan, P.L., Chrystal, M.A., Cravchik, A., Collins, F.H., Robertson, H.M., Zwiebel, L.J.,2002. G Protein-Coupled Receptors in Anopheles gambiae. Science 298,176-178.
    Hirashima, A., Yamaji, H., Yoshizawa, T., Kuwano, E., Eto, M.,2007. Effect of tyramine and stress on sex-pheromone production in the pre- and post-mating silkworm moth, Bombyx mori. J. Insect Physiol.53,1242-1249.
    Hiripi, L.s., Juhos, S., Downer, R.G.H.,1994. Characterization of tyramine and octopamine receptors in the insect (Locusta migratoria migratorioides) brain. Brain Res.633,119-126.
    Hodgetts, R.B., O'Keefe, S.L.,2006. Dopa decarboxylase:A model gene-enzyme system for studying development, behavior, and systematics. Annu. Rev. Entomol,51,259-284.
    Horn, A.S.,1990. Dopamine uptake:a review of progress in the last decade. Prog. Neurobiol.34, 387-400.
    Horvitz, H., Chalfie, M., Trent, C., Sulston, J., Evans, P.,1982. Serotonin and octopamine in the nematode Caenorhabditis elegans. Science 216,1012-1014.
    Houk, E.J., Beck, S.D.,1978. Monoamine oxidase in the brain of European corn borer larvae, Ostrinia nubilalis (Hiibner). Insect Biochem. Mol. Biol.8,231-236.
    Hoyer, S.C., Eckart, A., Herrel, A., Zars, T., Fischer, S.A., Hardie, S.L., Heisenberg, M.,2008. Octopamine in male aggression of Drosophila. Curr. Biol.18,159-167.
    Huang, C.Y., Chou, S.Y., Bartholomay, L.C., Christensen, B.M., Chen, C.C.,2005. The use of gene silencing to study the role of dopa decarboxylase in mosquito melanization reactions. Insect Mol. Biol.14,237-244.
    Huang, J., Hamasaki, T., Ozoe, F., Ohta, H., Enomoto, K.-i., Kataoka, H., Sawa, Y., Hirota, A., Ozoe, Y., 2007. Identification of critical structural determinants responsible for octopamine binding to the a-adrenergic-like Bombyx mori octopamine receptor. Biochemistry 46,5896-5903.
    Huang, J., Hamasaki, T., Ozoe, F., Ozoe, Y.,2008. Single amino acid of an octopamine receptor as a molecular switch for distinct G protein couplings. Biochem. Biophys. Res. Commun.371, 610-614.
    Huang, J., Hamasaki, T., Ozoe, Y.,2010. Pharmacological characterization of a Bombyx mori a-adrenergic-like octopamine receptor stably expressed in a mammalian cell line. Arch. Insect Biochem. Physiol.73,74-86.
    Huang, J., Ohta, H., Inoue, N., Takao, H., Kita, T., Ozoe, F., Ozoe, Y.,2009. Molecular cloning and pharmacological characterization of a Bombyx mori tyramine receptor selectively coupled to intracellular calcium mobilization. Insect Biochem. Mol. Biol.39,842-849.
    Huang, J., Wu, S.F., Li, X.H., Adamo, S.A., Ye, GY.,2012. The characterization of a concentration-sensitive a-adrenergic-like octopamine receptor found on insect immune cells and its possible role in mediating stress hormone effects on immune function. Brain Behav. Immun.26, 942-950.
    Hui, X.M., Yang, L.W., He, G.L., Yang, Q.P., Han, Z.J., Li, F.,2011. RNA interference of acel and ace2 in Chilo suppressalis reveals their different contributions to motor ability and larval growth. Insect Mol. Biol.20,507-518.
    Humphries, M.A., Mustard, J.A., Hunter, S.J., Mercer, A., Ward, V., Ebert, P.R.,2003. Invertebrate D2 type dopamine receptor exhibits age-based plasticity of expression in the mushroom bodies of the honeybee brain. J. Neurobiol.55,315-330.
    Jayanthi, L.D., Apparsundaram, S., Malone, M.D., Ward, E., Miller, D.M., Eppler, M., Blakely, R.D., 1998. The Caenorhabditis elegans geneT23G5.5 encodes an antidepressant- and cocaine-sensitive dopamine transporter. Mol. Pharmacol.54,601-609.
    Jiang, X., Qu, M., Denholm, I., Fang, J., Jiang, W., Han, Z.,2009. Mutation in acetylcholinesterasel associated with triazophos resistance in rice stem borer, Chilo suppressalis (Lepidoptera: Pyralidae). Biochem Biophys Res Commun 378,269-272.
    Jonsson, N.N., Hope, M.,2007. Progress in the epidemiology and diagnosis of amitraz resistance in the cattle tick Boophilus microplus. Vet. Parasitol.146,193-198.
    Kahsai, L., Carlsson, M.A., Winther, A.M.E., Nassel, D.R.,2012. Distribution of metabotropic receptors of serotonin, dopamine, GABA, glutamate, and short neuropeptide F in the central complex of Drosophila. Neuroscience 208,11-26.
    Khan, M.A.A., Nakane, T., Ohta, H., Ozoe, Y.,2003. Positive and negative modulation of Bombyx mori adenylate cyclase by 5-phenyloxazoles:Identification of octopamine and tyramine receptor agonists. Arch. Insect Biochem. Physiol.52,7-16.
    Kim, G.S., Kim, Y.,2010. Up-regulation of circulating hemocyte population in response to bacterial challenge is mediated by octopamine and 5-hydroxytryptamine via Racl signal in Spodoptera exigua. J Insect Physiol 56,559-566.
    Kim, G.S., Nalini, M., Kim, Y., Lee, D.W.,2009. Octopamine and 5-hydroxytryptamine mediate hemocytic phagocytosis and nodule formation via eicosanoids in the beet armyworm, Spodoptera exigua. Arch. Insect Biochem. Physiol.70,162-176.
    Kim, Y.-C, Lee, H.-G., Han, K.-A.,2007. D1 dopamine receptor dDA1 is required in the mushroom body neurons for aversive and appetitive learning in Drosophila. J. Neurosci.27,7640-7647.
    Kim, Y.C., Lee, H.G, Lim, J., Han, K.A.,2013. Appetitive learning requires the alphal-Like octopamine receptor OAMB in the Drosophila mushroom body neurons. J. Neurosci.33, 1672-1677.
    Kim, Y.C., Lee, H.G., Seong, C.S., Han, K.A.,2003. Expression of a D1 dopamine receptor dDA1/DmDOPl in the central nervous system of Drosophila melanogaster. Gene Expr. Patterns. 3,237-245.
    Kononenko, N.L., Wolfenberg, H., Pfliiger, H.J.,2009. Tyramine as an independent transmitter and a precursor of octopamine in the locust central nervous system:An immunocytochemical study. J. Comp. Neurol.512,433-452.
    Koon, A.C., Ashley, J., Barria, R., DasGupta, S., Brain, R., Waddell, S., Alkema, M.J., Budnik, V.,2011. Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling. Nat.Neurosci.14,190-199.
    Kostyukovsky, M., Rafaeli, A., Gileadi, C., Demchenko, N., Shaaya, E.,2002. Activation of octopaminergic receptors by essential oil constituents isolated from aromatic plants:Possible mode of action against insect pests. Pest Manag. Sci.58,1101-1106.
    Kozak, M.,1984. Compilation and analysis of sequences upstream from the translational start site in eukaryotic mRNAs. Nucleic Acids Res.12,857-872.
    Kumar, S., Chen, D., Sehgal, A.,2012. Dopamine acts through Cryptochrome to promote acute arousal in Drosophila. Genes Dev.26,1224-1234.
    Kutsukake, M., Komatsu, A., Yamamoto, D., Ishiwa-Chigusa, S.,2000. A tyramine receptor gene mutation causes a defective olfactory behavior in Drosophila melanogaster. Gene 245,31-42.
    Lange, A.B.,2009. Tyramine:from octopamine precursor to neuroactive chemical in insects. Gen. Comp. Endocrinol.162,18-26.
    Lange, A.B., Chan, K.,2008. Dopaminergic control of foregut contractions in Locusta migratoria. J. Insect Physiol.54,222-230.
    Lange, A.B., da Silva, R.,2007. Neural and hormonal control of muscular activity of the spermatheca in the locust, Locusta migratoria. Peptides 28,174-184.
    Lavine, M.D., Strand, M.R.,2002. Insect hemocytes and their role in immunity. Insect Biochem. Mol. Biol.32,1295-1309.
    Lavine, M.D., Strand, M.R.,2003. Haemocytes from Pseudoplusia includens express multiple α and β integrin subunits. Insect Mol Biol 12,441-452.
    Lehman, H.K., Murgiuc, C.M., Hildebrand, J.G.,2000. Characterization and developmental regulation of tyramine-β-hydroxylase in the CNS of the moth, Manduca sexta. Insect Biochem. Mol. Biol.30, 377-386.
    Lehman, H.K., Schulz, D.J., Barron, A.B., Wraight, L., Hardison, C., Whitney, S., Takeuchi, H., Paul, R.K., Robinson, G.E.,2006. Division of labor in the honey bee (Apis mellifera):the role of tyramine β-hydroxylase. J. Exp. Biol.209,2774-2784.
    Lind, U., Alm Rosenblad, M., Hasselberg Frank, L., Falkbring, S., Brive, L., Laurila, J.M., Pohjanoksa, K., Vuorenpaa, A., Kukkonen, J.P., Gunnarsson, L., Scheinin, M., Martensson Lindblad, L.G.E., Blomberg, A.,2010. Octopamine receptors from the barnacle Balanus improvisus are activated by the α2-adrenoceptor agonist medetomidine. Mol. Pharmacol.78,237-248.
    Liu, C., Placais, P.Y., Yamagata, N., Pfeiffer, B.D., Aso, Y., Friedrich, A.B., Siwanowicz, I., Rubin, G.M., Preat, T., Tanimoto, H.,2012a. A subset of dopamine neurons signals reward for odour memory in Drosophila. Nature 488,512-516.
    Liu, Q., Liu, S., Kodama, L., Driscoll, Maria R., Wu, Mark N.,2012b. Two dopaminergic neurons signal to the dorsal fan-shaped body to promote wakefulness in Drosophila. Curr. Biol.22, 2114-2123.
    Liu, T., Dartevelle, L., Yuan, C., Wei, H., Wang, Y., Ferveur, J.-F., Guo, A.,2008. Increased dopamine level enhances male-male courtship in Drosophila. J. Neurosci.28,5539-5546.
    Liu, T., Dartevelle, L., Yuan, C., Wei, H., Wang, Y., Ferveur, J.-F., Guo, A.,2009. Reduction of dopamine level enhances the attractiveness of male Drosophila to other males. PloS one 4, e4574.
    Livak, K.J., Schmittgen, T.D.,2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25,402-408.
    Ma, Z., Guo, W., Guo, X., Wang, X., Kang, L.,2011. Modulation of behavioral phase changes of the migratory locust by the catecholamine metabolic pathway. Proc. Natl. Acad. Sci. U S A 108, 3882-3887.
    Malutan, T., McLean, H., Caveney, S., Donly, C.,2002. A high-affinity octopamine transporter cloned from the central nervous system of cabbage looper Trichoplusia ni. Insect Biochem. Mol. Biol.32, 343-357.
    Mao, W., Schuler, M.A., Berenbaum, M.R.,2013. Honey constituents up-regulate detoxification and immunity genes in the western honey bee Apis mellifera. Proc. Natl. Acad. Sci. U S A.110, 8842-8846
    Maqueira, B., Chatwin, H., Evans, P.D.,2005. Identification and characterization of a novel family of Drosophila β-adrenergic-like octopamine G-protein coupled receptors. J. Neurochem.94, 547-560.
    Meyer, J.M., Ejendal, K.F.K., Avramova, L.V., Garland-Kuntz, E.E., Giraldo-Calderon, G.I., Brust, T.F., Watts, V.J., Hill, C.A.,2012. A "genome-to-lead" approach for insecticide discovery: pharmacological characterization and screening of Aedes aegypti D(1)-like dopamine receptors. PLoS Negl. Trop. Dis.6, e1478.
    Meyer, J.M., Ejendal, K.F.K., Watts, V.J., Hill, C.A.,2011. Molecular and pharmacological characterization of two D1-like dopamine receptors in the Lyme disease vector, Ixodes scapularis. Insect Biochem. Mol. Biol.41,563-571.
    Min, V.A., Condron, B.G.,2005. An assay of behavioral plasticity in Drosophila larvae. J. Neurosci. Methods 145,63-72.
    Mingjing, Q., Zhaojun, H., Xinjun, X., lina, Y.,2003. Triazophos resistance mechanisms in the rice stem borer (Chilo suppressalis Walker). Pestic. Biochem. Physiol.77,99-105.
    Missale, C., Nash, S.R., Robinson, S.W., Jaber, M., Caron, M.G.,1998. Dopamine receptors:From structure to function. Physiol. Rev.78,189-225.
    Mitsumasu, K., Ohta, H., Tsuchihara, K., Asaoka, K., Ozoe, Y., Niimi, T., Yamashita, O., Yaginuma, T., 2008. Molecular cloning and characterization of cDNAs encoding dopamine receptor-1 and -2 from brain-suboesophageal ganglion of the silkworm, Bombyx mori. Insect Mol. Biol.17, 185-195.
    Mizunami, M., Unoki, S., Mori, Y., Hirashima, D., Hatano, A., Matsumoto, Y.,2009. Roles of octopaminergic and dopaminergic neurons in appetitive and aversive memory recall in an insect. BMC Biol.7,46.
    Monastirioti, M.,2003. Distinct octopamine cell population residing in the CNS abdominal ganglion controls ovulation in Drosophila melanogaster. Dev. Biol.264,38-49.
    Monastirioti, M., Linn, J., Charles E., White, K.,1996. Characterization of Drosophila tyramine β-hydroxylase gene and isolation of mutant flies lacking octopamine. J. Neurosci.16,3900-3911.
    Mustard, J.A., Beggs, K.T., Mercer, A.R.,2005a. Molecular biology of the invertebrate dopamine receptors. Arch. Insect Biochem. Physiol.59,103-117.
    Mustard, J.A., Blenau, W., Hamilton, I.S., Ward, V.K., Ebert, P.R., Mercer, A.R.,2003. Analysis of two D1-like dopamine receptors from the honey bee Apis mellifera reveals agonist-independent activity. Brain Res. Mol. Brain Res.113,67-77.
    Mustard, J.A., Kurshan, P.T., Hamilton, I.S., Blenau, W., Mercer, A.R.,2005b. Developmental expression of a tyramine receptor gene in the brain of the honey bee, Apis mellifera. J. Comp. Neurol.483,66-75.
    Mustard, J.A., Pham, P.M., Smith, B.H.,2010. Modulation of motor behavior by dopamine and the D1-like dopamine receptor AmDOP2 in the honey bee. J. Insect Physiol.56,422-430.
    Nagaya, Y., Kutsukake, M., Chigusa, S.I., Komatsu, A.,2002. A trace amine, tyramine, functions as a neuromodulator in Drosophila melanogaster. Neurosci. Lett.329,324-328.
    Nathanson, J.A.,1979. Octopamine receptors, adenosine 3',5'-monophosphate, and neural control of firefly flashing. Science 203,65-68.
    Nathanson, J.A., Greengard, P.,1973. Octopamine-sensitive adenylate cyclse:evidence for a biological role of octopamine in nervous tissue. Science 180,308-310.
    Neckameyer, W.S.,1998a. Dopamine and mushroom bodies in Drosophila:experience-dependent and-independent aspects of sexual behavior. Learn. Mem.5,157-165.
    Neckameyer, W.S.,1998b. Dopamine modulates female sexual receptivity in Drosophila melanogaster. J. Neurogenet.12,101-114.
    Neckameyer, W.S., Quinn, W.G.,1989. Isolation and characterization of the gene for drosophila tyrosine hydroxylase. Neuron 2,1167-1175.
    Ohta, H., Tsuchihara, K., Mitsumasu, K., Yaginuma, T., Ozoe, Y., Asaoka, K.,2009. Comparative pharmacology of two D1-like dopamine receptors cloned from the silkworm Bombyx mori. Insect Biochem. Mol. Biol.39,342-347.
    Ohta, H., Utsumi, T., Ozoe, Y.,2003. B96Bom encodes a Bombyx mori tyramine receptor negatively coupled to adenylate cyclase. Insect Mol. Biol.12,217-223.
    Ohta, H., Utsumi, T., Ozoe, Y.,2004. Amino acid residues involved in interaction with tyramine in the Bombyx mori tyramine receptor. Insect Mol. Biol.13,531-538.
    Ohtani, A., Arai, Y., Ozoe, F., Ohta, H., Narusuye, K., Huang, J., Enomoto, K., Kataoka, H., Hirota, A., Ozoe, Y.,2006. Molecular cloning and heterologous expression of an a-adrenergic-like octopamine receptor from the silkworm Bombyx mori. Insect. Mol. Biol.15,763-772.
    Ono, H., Yoshikawa, H.,2004. Identification of amine receptors from a swallowtail butterfly, Papilio xuthus L.:cloning and mRNA localization in foreleg chemosensory organ for recognition of host plants. Insect Biochem. Mol. Biol.34,1247-1256.
    Ozoe, Y., Huang, J.,2008. Bombyx mori phenolamine receptors:a comparative molecular biological study. J. Pestic. Sci.33,24-27.
    Porzgen, P., Park, S.K., Hirsh, J., Sonders, M.S., Amara, S.G.,2001. The antidepressant-sensitive dopamine transporter in Drosophila melanogaster:A primordial carrier for catecholamines. Mol. Pharmacol.59,83-95.
    Pinto, S.B., Lombardo, F., Koutsos, A.C., Waterhouse, R.M., McKay, K., An, C., Ramakrishnan, C. Kafatos, F.C., Michel, K.,2009. Discovery of Plasmodium modulators by genome-wide analysis of circulating hemocytes in Anopheles gambiae. Proc. Natl. Acad. Sci. U S A 106,21270-21275.
    Pirri, J.K., McPherson, A.D., Donnelly, J.L., Francis, M.M., Alkema, M.J.,2009. A tyramine-gated chloride channel coordinates distinct motor programs of a Caenorhabditis elegans escape response. Neuron 62,526-538.
    Poels, J., Suner, M.M., Needham, M., Torfs, H., De Rijck, J., De Loof, A., Dunbar, S.J., Vanden Broeck. J.,2001. Functional expression of a locust tyramine receptor in murine erythroleukaemia cells. Insect Mol. Biol.10,541-548.
    Qanbar, R., Bouvier, M.,2003. Role of palmitoylation/depalmitoylation reactions in G-protein-coupled receptor function. Pharmacol. Ther. 97,1-33.
    Rader, A.J., Anderson, G., Isin, B., Khorana, H.G., Bahar, I., Klein-Seetharaman, J.,2004. Identification of core amino acids stabilizing rhodopsin. Proc. Natl. Acad. Sci. USA 101,7246-7251.
    Rauschenbach, I.Y., Chentsova, N.A., Alekseev, A.A., Gruntenko, N.E., Adonyeva, N.V., Karpova, E.K., Komarova, T.N., Vasiliev, V.G., Bownes, M.,2007.Dopamine and octopamine regulate 20-hydroxyecdysone level in vivo in Drosophila. Arch. Insect Biochem. Physiol.65,95-102.
    Reale, V., Hannan, F., Hall, L.M., Evans, P.D.,1997a. Agonist-specific coupling of a cloned Drosophila melanogaster D1-like dopamine receptor to multiple second messenger pathways by synthetic agonists. J. Neurosci.17,6545-6553.
    Reale, V., Hannan, F., Midgley, J.M., Evans, P.D.,1997b. The expression of a cloned Drosophila octopamine/tyramine receptor in Xenopus oocytes. Brain Res.769,309-320.
    Restifo, L.L., White, K.,1990. Molecular and genetic approaches to neurotransmitter and neuromodulator systems in Drosophila, in:Evans, P.D., Wigglesworth, V.B. (Eds.), Adv. In Insect Phys. Academic Press, pp.115-219.
    Riemensperger, T., Voller, T., Stock, P., Buchner, E., Fiala, A.,2005. Punishment prediction by dopaminergic neurons in Drosophila. Curr. Biol.15,1953-1960.
    Riffell, J.A., Lei, H., Abrell, L., Hildebrand, J.G.,2013. Neural basis of a pollinator's buffet:olfactory specialization and learning in Manduca sexta. Science 339,200-204.
    Robb, S., Cheek, T., Hannan, F., Hall, L., Midgley, J., Evans, P.,1994. Agonist-specific coupling of a cloned Drosophila octopamine/tyramine receptor to multiple second messenger systems. EMBO J. 13,1325.
    Robertson, H., Juorio, A.,1976. Octopamine and some related noncatecholic amines in invertebrate nervous systems. Int. Rev. Neurobiol.19,173-224.
    Roeder, T.,1995. Pharmacology of the octopamine receptor from locust central nervous tissue (OAR3). Br. J. Pharmacol.114,210-216.
    Roeder, T.,1999. Octopamine in invertebrates. Prog. Neurobiol.59,533-561.
    Roeder, T.,2005. Tyramine and octopamine:ruling behavior and metabolism. Annu. Rev. Entomol.50, 447-477.
    Roeder, T., Degen, J., Gewecke, M.,1998. Epinastine, a highly specific antagonist of insect neuronal octopamine receptors. Eur. J. Pharmacol.349,171-177.
    Roeder, T., Nathanson, J.A.,1993. Characterization of insect neuronal octopamine receptors (OA3 receptors). Neurochem. Res.18,921-925.
    Roeder, T., Seifert, M., Kahler, C., Gewecke, M.,2003. Tyramine and octopamine:antagonistic modulators of behavior and metabolism. Arch. Insect Biochem. Physiol.54,1-13.
    Rogers, S.M., Matheson, T., Sasaki, K., Kendrick, K., Simpson, S.J., Burrows, M.,2004. Substantial changes in central nervous system neurotransmitters and neuromodulators accompany phase change in the locust. J. Exp. Biol.207,3603-3617.
    Rosenbaum, D.M., Rasmussen, S.G.F., Kobilka, B.K.,2009. The structure and function of G-protein-coupled receptors. Nature 459,356-363.
    Rotte, C., Krach, C., Balfanz, S., Baumann, A., Walz, B., Blenau, W.,2009. Molecular characterization and localization of the first tyramine receptor of the American cockroach(Periplaneta americana). Neuroscience 162,1120-1133.
    Rovati, G.E., Capra, V., Neubig, R.R.,2007. The highly conserved DRY motif of class a G protein-coupled receptors:beyond the ground state. Mol. Pharmacol.71,959-964.
    Rubartelli, A., Poggi, A., Zocchi, M.R.,1997. The selective engulfment of apoptotic bodies by dendritic cells is mediated by the αvβ3 integrin and requires intracellular and extracellular calcium. Eur. J. Immunol.27,1893-1900.
    Rybczynski, R., Bell, S.C., Gilbert, L.I.,2001. Activation of an extracellular signal-regulated kinase (ERK) by the insect prothoracicotropic hormone. Mol. Cell. Endocrinol.184,1-11.
    Saavedra, J.M., Brownstein, M.J., Carpenter, D.O., Axelrod, J.,1974. Octopamine:presence in single neurons of Aplysia suggests neurotransmitter function. Science 185,364-365.
    Sanyal, S., Wintle, R.F., Kindt, K.S., Nuttley, W.M., Arvan, R., Fitzmaurice, P., Bigras, E., Merz, D.C., Hebert, T.E., van der Kooy, D., Schafer, W.R., Culotti, J.G., Van Tol, H.H.M.,2004. Dopamine modulates the plasticity of mechanosensory responses in Caenorhabditis elegans. EMBO J.23, 473-482.
    Saraswati, S., Fox, L.E., Soli, D.R., Wu, C.-F.,2004. Tyramine and octopamine have opposite effects on the locomotion of Drosophila larvae. J. Neurobiol.58,425-441.
    Sasaki, K., Matsuyama, S., Harano, K.I., Nagao, T.,2012. Caste differences in dopamine-related substances and dopamine supply in the brains of honeybees (Apis mellifera L.). Gen. Comp. Endocrinol.178,46-53.
    Sasaki, K., Nagao, T.,2001. Distribution and levels of dopamine and its metabolites in brains of reproductive workers in honeybees. J. Insect Physiol.47,1205-1216.
    Sasaki, K.E.N., Harano, K.-I.,2007. Potential effects of tyramine on the transition to reproductive workers in honeybees (Apis mellifera L.). Physiol. Entomol.32,194-198.
    Saudou, F., Amlaiky, N., Plassat, J.L., Borrelli, E., Hen, R.,1990. Cloning and characterization of a Drosophila tyramine receptor. EMBO J.9,3611-3617.
    Scheiner, R., Baumann, A., Blenau, W.,2006. Aminergic control and modulation of honeybee behaviour. Curr. Neuropharmacol.4,259-276.
    Schultz, W.,2005. Behavioral theories and the neurophysiology of reward. Annu. Rev. Psychol.57, 87-115.
    Schwaerzel, M., Monastirioti, M., Scholz, H., Friggi-Grelin, F., Birman, S., Heisenberg, M.,2003. Dopamine and octopamine differentiate between aversive and appetitive olfactory memories in Drosophila. J. Neurosci.23,10495-10502.
    Shafqat, S., Velaz Faircloth, M., Guadano Ferraz, A., Fremeau, R.,1993. Molecular characterization of neurotransmitter transporters. Mol. Endocrinol.7,1517-1529.
    Shih, J.C., Chen, K., Ridd, M.J.,1999. Monoamine oxidase:from genes to behavior. Annu. Rev. Neurosci.22,197-217.
    Sillitoe, R.V., Vogel, M.W.,2008. Desire, disease, and the origins of the dopaminergic system. Schizophr. Bull.34,212-219.
    Simon, A.F., Daniels, R., Romero-Calderon, R., Grygoruk, A., Chang, H.-Y., Najibi, R., Shamouelian, D., Salazar, E., Solomon, M., Ackerson, L.C., Maidment, N.T., DiAntonio, A., Krantz, D.E.,2009. Drosophila vesicular monoamine transporter mutants can adapt to reduced or eliminated vesicular stores of dopamine and serotonin. Genetics 181,525-541.
    Sloley, B.D.,2004. Metabolism of monoamines in invertebrates:the relative importance of monoamine oxidase in different phyla. Neurotoxicology 25,175-183.
    Sokoloff, P., Giros, B., Martres, M.P., Bouthenet, M.L., Schwartz, J.C.,1990. Molecular cloning and characterization of a novel dopamine receptor (D3) as a target for neuroleptics. Nature 347, 146-151.
    Son, S.Y., Ma, J., Kondou, Y., Yoshimura, M., Yamashita, E., Tsukihara, T.,2008. Structure of human monoamine oxidase A at 2.2-A resolution:the control of opening the entry for substrates/inhibitors. Proc. Natl. Acad. Sci. USA.105,5739-5744.
    Srivastava, D.P., Yu, E.J., Kennedy, K., Chatwin, H., Reale, V., Hamon, M., Smith, T., Evans, P.D., 2005. Rapid, nongenomic responses to ecdysteroids and catecholamines mediated by a novel Drosophila G-protein-coupled receptor. J. Neurosci.25,6145-6155.
    Stern, M.,1999. Octopamine in the locust brain:cellular distribution and functional significance in an arousal mechanism. Microsc. Res. Tech.45,135-141.
    Sugamori, K.S., Demchyshyn, L.L., McConkey, F., Forte, M.A., Niznik, H.B.,1995. A primordial dopamine D1-like adenylyl cyclase-linked receptor from Drosophila melanogaster displaying poor affinity for benzazepines. FEBS Lett.362,131-138.
    Sunahara, R.K., Guan, H.-C, O'Dowd, B.F., Seeman, P., Laurier, L.G., Ng, G., George, S.R., Torchia, J., Van Tol, H.H.M., Niznik, H.B.,1991. Cloning of the gene for a human dopamine D5 receptor with higher affinity for dopamine than D1. Nature 350,614-619.
    Sunahara, R.K., Niznik, H.B., Weiner, D.M., Stormann, T.M., Brann, M.R., Kennedy, J.L., Gelernter, J.E., Rozmahel, R., Yang, Y., Israel, Y., Seeman, P., O'Dowd, B.F.,1990. Human dopamine D1 receptor encoded by an intronless gene on chromosome 5. Nature 347,80-83.
    Suo, S., Kimura, Y., Van Tol, H.H.M.,2006. Starvation induces cAMP response element-binding protein-dependent gene expression through octopamine-Gq signaling in Caenorhabditis elegans. J. Neurosci.26,10082-10090.
    Suo, S., Sasagawa, N., Ishiura, S.,2002. Identification of a dopamine receptor from Caenorhabditis elegans. Neurosci. Lett.319,13-16.
    Suo, S., Sasagawa, N., Ishiura, S.,2003. Cloning and characterization of a Caenorhabditis elegans D2-like dopamine receptor. J. Neurochem.86,869-878.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.,2011. MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol.28,2731-2739.
    Tang, Q.Y., Zhang, C.X.,2012. Data Processing System (DPS) software with experimental design, statistical analysis and data mining developed for use in entomological research. Insect Sci.20, 254-260.
    Ueno, T., Tomita, J., Kume, S., Kume, K.,2012a. Dopamine modulates metabolic rate and temperature sensitivity in Drosophila melanogaster. PLoS One 7, e31513.
    Ueno, T., Tomita, J., Tanimoto, H., Endo, K., Ito, K., Kume, S., Kume, K.,2012b. Identification of a dopamine pathway that regulates sleep and arousal in Drosophila. Nat. Neurosci.15,1516-1523.
    Usiello, A., Baik, J.H., Rouge Pont, F., Picetti, R., Dierich, A., LeMeur, M., Piazza, P.V., Borrelli, E., 2000. Distinct functions of the two isoforms of dopamine D2 receptors. Nature 408,199-203.
    Van Tol, H.H.M., Bunzow, J.R., Guan, H.-C., Sunahara, R.K., Seeman, P., Niznik, H.B., Civelli, O., 1991. Cloning of the gene for a human dopamine D4 receptor with high affinity for the antipsychotic clozapine. Nature 350,610-614.
    Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Pfluger, H.-J., Blenau, W., Broeck. J.V.,2010a. The role of octopamine in locusts and other arthropods. J. Insect Physiol.56,854-867.
    Verlinden, H., Vleugels, R., Marchal, E., Badisco, L., Tobback, J., Pfluger, H.J., Blenau, W., Vanden Broeck, J.,2010b. The cloning, phylogenetic relationship and distribution pattern of two new putative GPCR-type octopamine receptors in the desert locust (Schistocerca gregaria). J. Insect Physiol.56,868-875.
    Vieillemaringe, J., Duris. P., Geffard, M., Moal, M., Delaage, M., Bensch, C., Girardie, J.,1984. Immunohistochemical localization of dopamine in the brain of the insect Locusta migratoria migratorioides in comparison with the catecholamine distribution determined by the histofluorescence technique. Cell Tissue Res.237,391-394.
    Volkow, N.D., Tomasi, D., Wang, G.J., Telang, F., Fowler, J.S., Logan, J., Maynard, L.J., Wong, C.T., 2013. Predominance of D2 receptors in mediating dopamine's effects in brain metabolism:effects of alcoholism. J. Neurosci.33,4527-4535.
    Von Nickisch-Rosenegk, E., Krieger, J., Kubick, S., Laage, R., Strobel, J., Strotmann, J., Breer, H., 1996. Cloning of biogenic amine receptors from moths(Bombyx mori and Heliothis virescens). Insect Biochem. Mol. Biol.26,817-827.
    Watanabe, T., Sadamoto, H., Aonuma, H.,2011. Identification and expression analysis of the genes involved in serotonin biosynthesis and transduction in the field cricket Giyllus bimaculatus. Insect Mol. Biol.20,619-635.
    Watanabe, T., Sadamoto, H., Aonuma, H.,2013. Molecular basis of the dopaminergic system in the cricket Gryllus bimaculatus. Invert. Neurosci.,1-17.
    Wittkopp, P.J., Carroll, S.B., Kopp, A.,2003. Evolution in black and white:genetic control of pigment patterns in Drosophila. Trends Genet.19,495-504.
    Wittkopp, P.J., True, J.R., Carroll, S.B.,2002. Reciprocal functions of the Drosophila Yellow and Ebony proteins in the development and evolution of pigment patterns. Development 129, 1849-1858.
    Wu, S. F. Wang, F., Huang, J., Fang, Q., Shen, Z.C., Ye, G.Y.,2013a. Molecular and cellular analyses of a ryanodine receptor from hemocytes of Pieres rapae. Dev Comp Immunol.41,1-10.
    Wu, S.F., Huang, J., Ye, G.Y.,2013b. Molecular cloning and pharmacological characterisation of a tyramine receptor from the rice stem borer, Chilo suppressalis (Walker). Pest Manag. Sci.69, 126-134.
    Wu, S.F., Yao, Y., Huang, J., Ye, G.Y.,2012. Characterization of a β-adrenergic-like octopamine receptor from the rice stem borer(Chilo suppressalis). J. Exp. Biol.215,2646-2652.
    Young, S.C., Yeh, W.L., Gu, S.H.,2012. Transcriptional regulation of the PTTH receptor in prothoracic glands of the silkworm, Bombyx mori. J. Insect Physiol.58,102-109.
    Zhang, K., Guo, J.Z., Peng, Y., Xi, W., Guo, A.,2007. Dopamine-mushroom body circuit regulates saliency-based decision-making in Drosophila. Science 316,1901-1904.
    Zhang, Q., Yang, R., Tang, J., Yang, H., Hu, S., Chen, X.,2010. Positive Feedback between Mycorrhizal Fungi and Plants Influences Plant Invasion Success and Resistance to Invasion. PLoS One 5, e12380.
    Zhou, C., Rao, Y., Rao, Y.,2008. A subset of octopaminergic neurons are important for Drosophila aggression. Nat. Neurosci. Ⅱ,1059-1067.
    Zhou, Z., Wang, L., Gao, Y., Wang, M., Zhang, H., Wang, L., Qiu, L., Song, L.,2011. A monoamine oxidase from scallop Chlamys farreri serving as an immunomodulator in response against bacterial challenge. Dev. Comp. Immunol.35,799-807.
    韩招久,韩召军,陈长琨,工荫长,胡仕孟,2002.二化螟对杀虫单和甲胺磷抗性监测及田间抗性动态.植物保护学报29,93-94.
    罗远.倪逸声,张宗炳,1985.昆虫神经毒素的研究-DDT对美洲蜚蠊L-酪氨酸脱羧酶的诱导作用.昆虫学报28,241-248.
    马燕,张宗炳,1989.神经毒性杀虫药剂对家蝇头部环腺苷酸含最的影响.昆虫学报32.393-398.
    潘灿平.陈馥衡,1999.章鱼胺的作用机理及其受体的研究进展.农药学学报1,1-7.
    潘灿平,陈馥衡,王道全,谷口荣二,桑野荣一,1998.昆虫神经活性物质章鱼胺受体激动剂的设计、合成及其构效关系研究.中国农业大学学报1,71-75.
    潘灿平,李维喜,张卢军,王金芳,2005.昆虫体内章鱼胺的分布,功能及其研究进展.昆虫知识42,369-374.
    冉春,江高飞,刘斌,刘浩强,李鸿筠,王进军,2012.橘全爪螨对双甲脒的抗性选育及其P450基因的表达差异分析.昆虫学报6,014.
    盛承发,王红托,盛世余,高留德,宣维健,2003.我国稻螟灾害的现状及损失估计.昆虫知识40,289-294.
    唐小丽,倪逸声,张宗炳,1987.单胺氧化酶的抑制作为杀虫脒对澳氰菊酯的增效作用.昆虫学报30,232-232.
    王世贵,叶恭银,胡萃,2006.转crylAb基因水稻对二化螟幼虫血细胞的影响.昆虫学报49,200-205.
    吴顺凡,郭建洋,黄佳,叶恭银,2010.昆虫体内章鱼胺和酪胺的研究进展.昆虫学报53,1157-1166.
    张宗炳,吴士雄,程念胜,姚逸红,1984a.昆虫神经毒素的研究:各种神经毒剂引起毒素的产生.昆虫学报27,165-172.
    张宗炳,吴士雄,金恒亮,1984b.昆虫神经毒素的研究-酪胺为DDT麻痹的蜚蠊血淋巴毒素.昆虫学报27,15-22.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700