面向肿瘤治疗的基因调控网络与其动力学模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
生命体是一个复杂系统。系统控制论等信息科学学者正把生命体看作又一类新的复杂系统与智能系统的研究目标。存储生命信息的各基因并不是孤立地发挥作用,而是通过形成“基因调控网络”这样一个复杂的系统来推动生命演化。基因调控网络期望从系统角度全面揭示基因组的功能和行为,有助于从基因组层次对生命过程进行详细的解释,并与分子层次的解释紧密联系,从而达到能系统地理解细胞功能、生命活动、解释疾病与治疗的机理等目标。
     作为复杂的生物系统之一,肿瘤可看作与其密切相关的P53与MDM2等基因及其信号通路所组成的复杂网络系统与运动。本文依托于生物医学相关研究,以P53等基因及其信号通路为主线,主要对肿瘤相关的基因调控网络模型及其动力学等问题进行了研究,并取得了以下方面的创新成果:
     完善了P53基因调控网络概念模型
     在已有研究工作基础上,进一步完善了P53基因调控网络概念模型。根据生物学研究,提出了删减P53-MDM2反馈调控网络等已有模型中的冗余基因节点及其调控通路,并将与肿瘤密切相关的因素添加到模型中。
     提出了DNA损伤下的P53基因调控网络模型
     基于改进的概念模型,提出了DNA损伤下的P53基因调控网络模型,给出了单细胞内部的P53等基因及其信号通路响应DNA损伤传导而产生的复杂作用关系以及动态调控过程。
     提出了持续离子辐射下的P53基因调控网络模型
     依据最新生物学研究,首次提出持续离子辐射下的P53基因调控网络模型。在持续强离子条件下,实现了单细胞内部DNA损伤生成与修复、ATM激活以及P53-MDM2反馈调控等模块。展现了细胞响应外部强刺激以及基因组损伤信号传导而启动自身抵御机制的动力学过程。
     给出了不同强度辐射下单细胞响应DNA损伤的动力学分析
     根据已有模型以及生物学相关研究,将细胞中参与动扰响应与网络调控的更多关键因素融入到模型中,进一步完善了持续离子辐射下的P53基因调控网络模型。在多剂量离子辐射下实现了更为复杂的细胞响应DNA损伤动力学过程。同时,通过仿真对不同干扰条件下细胞响应DNA损伤的能力进行了分析与动态预测,进一步阐述了复杂环境下细胞响应外部动扰的自抵御机制。
     提出基于肿瘤放疗的P53损伤响应网络模型
     基于生物医学最新研究,提出了基于肿瘤放疗的P53损伤响应网络模型,将有关肿瘤治疗的Oncogenes、ARF、Toxins等关键因素加入到模型中。模拟了在持续的强离子辐射下单细胞内部的基因组损伤随机生成、修复与传导,ATM与ARF活化,P53-MDM2反馈调控环的动态调控机制激活,以及细胞毒素凋亡等动力学过程。
     给出细胞响应不同强度放疗过程的动力学分析与预测
     完善了基于放疗的P53损伤响应网络模型,其中包括ATM与ARF协同活化模块以及基于P53-MDM2反馈调控环等部分。同时,我们通过仿真平台对肿瘤治疗的整个动力学过程进行模拟,在不同强度离子辐射以及治疗时间等条件下对细胞响应放疗作用的能力以及放疗效果进行了初步分析与动态预测。
     本文研究的面向肿瘤治疗的基因调控网络与动力学模型旨在揭示与肿瘤密切相关基因及其信号通路间复杂的调控关系,在基因层次上建立单细胞响应肿瘤治疗的动力学模型,为肿瘤治疗研究提供一种理论框架与系统仿真平台。我们开展了基于肿瘤治疗的基因调控网络模型研究,不但能对肿瘤相关的P53等基因组间复杂的调控信息以及肿瘤治疗过程进行解析,而且能对不同放疗强度与治疗时间下的细胞响应DNA损伤能力进行分析与预测。通过多角度展现肿瘤放疗的动态效果,在理论上对细胞响应肿瘤放疗的复杂过程进行一种抽象与简化,为肿瘤治疗相关的建模与仿真等理论研究提供一种新视角和新思路。
Life is one of the most complicated system.Researchers in the fields of information and control are trying to study these organisms as a new kind of the complex system and intelligent system.All kinds of genes storing life information prompt the evolement of life through a complex network system,a gene regulatory network.The researches of the gene regulatory network are expetcted to discover the funtions and behavior of genome through systematic point of view,explain the complicated life processes at gene level in detail,and combine tightly together with the interprets at molecule level,and subsequently approach the targets for systematically explaining the cellular functions,life behaviours,and the mechanisms of illness and their therapy.
     As one of the complex biological system,tumor might be considered as one of the complicated network system.In this study,according to the recent biology studies related with tumor,we have made the scientific researches mainly on the modeling of gene regulatory network and their kinetics based on P53 and MDM2 genes and their signal pathways etc.The innovatitive research contributions mainly include the following contents:
     Improving the notional mode of P53 gene regluatory network
     Based on the existing researches,we improved the notional model of P53 gene regulatory network.We cut out the redundant nodes and their regulatory pathways, and add more vital elements related tightly with tumor into our model according to the latest biology studies.
     Proposing a model of P53 gene regulatory network under DNA damage
     Based on the improved notional model,we propsed a model of P53 gene regulatory network under DNA damage,and investigated the complicated interactions and regulating kinetics among P53 genes and their signal pathways in cellular responding DNA damage.We simulated the dynamic processes of cellular self-defense mechanisms in response to the acute stimulations and genome stresses.
     Proposing a model of P53 gene regulatory network under continuous Ion Radiation(IR)
     According to the latest biology researches,we firstly proposed a model of P53 gene regulatory network under continuous IR.Under continous acute radiation,we implemented the modules of DNA damage generating and their repair,ATM activating,and P53-MDM2 feedback looper.
     Investigaing the abilities of cellular responding DNA damage under different IR
     We improved the model of model of P53 gene regulatory network under continuous IR by adding much more elements related cellular response and network regulation.Under different IR dose domains,we realized the complicated kinentcis of cellular response DNA damage.Meanwhile,we analyzed the capabilities of cellular respons in fighting against different IR dose domains,and further investigate the self-defense mechanisms under complex circumstances.
     Proposing a model of P53 stress response network under radiotherapy Based on the latest biomedical researches,we proposed a model of P53 stress response network under radiotherapy,adding Oncogenes,ARE,Toxins into this model.Under continous radiation,we simulated the processes of genome damage generating,repairing and transducting,ATM and ARF activating,P53-MDM2 feedback regulating,as well as the toxins eliminating.
     Investigating the analyse and prediction of the cellular responding radiotherapy under different IR dose domains
     We improved the model of P53 stress response network under radiotherapy, including the cooperated activation of ATM and ARF,and the feedback looper formed by P53 and MDM2.Meanwhile,we simulated the whole process of tumor therapy under continuous IR,and further analyed the capabilities of cellular responding under different radiation time and different IR dose domains,further predicted the outcomes of tumor radiotherapy as well.
     In this research,we aimed to investigate the complicated regulating relationships among genes and their signal pathways related tightly with tumor therapy based on the modelling of gene regulatory network and their kinetics,build the dynamic model of cellular responding tumor therapy at sigle cell level,and to provide a theoretic framwork and simulating platform for the studies of tumor therapy further.Our researches can not only try to explain the complicated regulations among genes and their signal pathways,but also analy and predict the capabilities of cellular responding DNA damage under different circumstances.By multi-point of view,we can make a simplification for the complex process of tumor radiotherapy,and provide a novel way for theoretical research on modeling and simulating the tumor therapy.
引文
【1】Teresa KA,The babel of bioinfonnatics.Science,2000,290(5491):471.
    【2】Francois R,From data to knowledge.Bioinformatics,2000,16(5):411
    【3】Chua LO,Yang L,Cellular neural networks:theory.IEEE Trans Circuits Syst,1988,35:1257-1272.
    【4】郝柏林,张淑誉,漫谈物理学和计算机,北京:科学出版社,1988.
    【5】谢惠民,非线性科学丛书:复杂性与动力系统,上海科技教育出版社,1994.
    【6】易东,李辉智等,基因调控网络研究与数学模型的建立,中国现代医学杂志,2003,13(24):0074-0078.
    【7】雷耀山,王翼飞,用FCM聚类和非参数回归方法推断基因调控网络,上海大学学报(自然科学版),2005,11(1):84-90.
    【8】A.M.Campell著,孙之荣译.探索生物基因组学、蛋白质组学和生物信息学.北京:科学出版社,2004.
    【9】李梢,张学工,季梁,李衍达,复杂性疾病生物信息学研究的策略与方法,世界华人消化杂志,2003,11(10):1465-1469.
    【10】李晓薇,刘文凯,李军会,人工神经网络在恶性肿瘤诊断中的应用,中国农业大学学报,2001,6(3):6-10.
    【11】朱维良,龚珍,蒋华良,陈凯先,基于基因功能的创新药物研究,生命科学,2005,(17)4:288-294.
    【12】Bonhoeffer S,May RM,Shaw GM,Nowak MA,Virus dynamics and drug therapy.Proc.Natl.Acad.Sci.1997,94:6971-6976.
    【13】H.Kitano,System biology:A brief overview.Science,2002,295:1662-1664,
    【14】H.V.Westerhoff,B.O.Palsson,The evolution of molecular biology into systems biology.Nature biotechnology,2004,22(10):1249-1252
    【15】E.C.Butcher,E.L.Berg,E.J.Kunkel,System biology in drug discovery.Nature biotechnology,2004,22(10):1253-1259
    【16】 Ideker T.et al.A new approach to decoding life:Systems Biology.Annu.Rev.Genomics Hum.Genet.,2001,2:343-372
    【17】L.Hood,et al.Systems Biology and New Technologies Enable Predictive and Preventative Medicine.Science,2004,306:640-643
    【18】L.Hood,et al.Integrated genomic and proteomic analyses of a systematically perturbed metabolic network.Science,2001,292:929-934
    【19】McAdams,H.H.,Shapiro,S..Circuit simulation of genetic networks.Science,1995,269:650-656.
    【20】Somogyi,R.,Sniegoski,C.Modeling the complexity of genetic networks.Complexity 1996,6:45-63.
    【21】J.M.Bower et.al.computational modeling of genetic and biochemical networks.MIT press,Cambridge,MA,2001
    【22】M.L.Simpson,et.al.Whole-cell biocompting.Trends in biotechnology,2001,19(8):317-323
    【23】Alston M,Johnson CG,Robinson G,Colour merging for the visualization of biomolecular sequence data,Severth international conference on information visualization(IV'03),July 16-18,2003,Pages 169-175.
    【24】Sawicki SG,Sawicki DL,A new model for coronavirus transcription.Adv Exp Med Biol.1998,440:215-219.
    【25】Gusev VD,Nemytikova LA,Chuzhanova NA,On the complexity measures of genetic sequences.Bioinformatics.1999,15:994-999.
    【26】Buckwold VE,Xu Z,Yen TS,Ou JH,Effects of a frequent double-nucleotide basal core promoter mutation and its putative single-nucleotide precursor mutations on hepatitis B virus gene expression and replication.Journal of General Virology.1997,78:2055-2065.
    【27】Funk GA,Jansen VAA,Bonhoeffer S,Kilingback T,Spatial models of virus-immune dynamics.Journal of Theoretical Biology,2005,233:221-236.
    【28】Nowak MA,Lloyd AL,Vasquez GM,et al.,Viral dynamics of primary viremia and antiretroviral therapy in simian immunodeficiency virus infection.J.Virol.1997,71:7518-7524.
    【29】张爱菊,齐云飞.P53基因与人类肿瘤基因治疗研究进展[J].医学综述,2002,8(11):630-631.
    【30】祝峙,朱明华等,p53基因调控网络进展,癌症,2003,22(5):547-551.
    【31】A.Becskei and L.Serrano.Engineering stability in gene networks by autoregulation.Nature,2000,405(6786):590-591.
    【32】Dassow G,Meir E,Munro E M,et al.The segment polaritynetwork is a robust development module.Nature,2000,406(13):188-192
    【33】Davidson E H.A view from the genome:Spatial control of transcription in sea urchin development.Curr Opin Genet Dev,1999,9(5):530-541
    【34】Eri H.Davidson et al.A Genomic Regulatory Network for Development,Science,2002,295(5560):1669-1678.
    【35】S.Istrail and E.H.Davidson,Gene Regulatory Networks Special Feature:Logic functions of the genomic cis-regulatory code,PNAS,2005,102(14):4954-4959.
    【36】Arnone,M.I.,and Davidson,E.The hardwiring of development:organization and function of genomic regulatory systems.Development,(1997)124:1851-1864.
    【37】Mendoza L,Thieffry D et al.,Genetic control off lower morphogenesis in A rabidopsis thaliana:A logical analysis.Bioinformatics2 Oxford,1999,15(7-8):593-606
    【38】Kauffman,S.A.The ensemble approach to understand genetic regulatory networks.PhysicaA,2004,340:733-740
    【39】Kauffman,S.A.The Origins of Order,Self-Organization and Selection in Evolution.1993,Oxford University Press,New York.
    【40】Kauffman,S.A.Antichaos and adaptation.Sci.Am.1991,265:78-84.
    【41】N.Friedman,et.al.Using Bayesian networks to analyze expression data.J.Comput.Biol.2000,7:601-620.
    【42】N.Friedman,et.al.Learning Bayesian network structure from massive datasets:The "sparse candidate" algorithm,in Proc.Fifteenth Conference on Uncertainty in Artificial Intelligence(UAI'99):196-205.
    【43】N.Friedman,et.al.On the sample complexity of learning Bayesian networks,in Proc.Twelfth Conference on Uncertainty in Artificial Intelligence(UAI '96)':274-282.
    【44】Landahl,H.D.Some conditions for sustained oscillations in biochemical chaines.B.Math.Biophys.1969,31:775-787
    【45】Mestl,T.,Plahte,E.,and Omholt,S.W.A mathematical framework for describing and analysing gene regulatory networks.J.Theor.Biol.1995,176:291-300
    【46】Mestl,T.,Plahte,E.,and Omholt,S.W.1995b.Periodic solutions in systems of piecewise-linear differential equations Dynam.Stabil.Syst.1995,10(2):179-193
    【47】Plahte,E.,Mestl,T.,and Omholt,S.W.A methodological basis for description and analysis of systems with complex switch-like interactions.J.Math.Biol.1998,36:321-348.
    【48】T.Mestl,E.Plahte,and S.W.Omholt.Periodic solutions in systems of piecewise-linear differential equations.Dyn.Stabil.Syst.,1995,10(2):179-193.
    【49】E.Plahte,T.Mestl,and S.W.Omholt.Global analysis of steady points for systems of differential equations with sigmoid interactions.Dyn.Stabil.Syst,1994,9(4):275-291.
    【50】Arkin,A.,and Ross,J.Statistical construction of chemical reaction mechanisms from measured time-series.J.Phys.Chem.1995,99:970-979.
    【51】Arkin,A.,Ross,J.,and McAdams,H.A.Stochastic kinetic analysis of developmental pathway bifurcation in phage,lamda-infected Escherichia coli cells.Genetics 1998,149,1633-1648.
    【52】McAdams,H.M.,and Arkin,A.Stochastic mechanisms in gene expression.Proc.Natl.Acad.Sci.USA,1997:814-819.
    【53】McAdams,H.H.,and Arkin,A.Simulation of prokaryotic genetic circuits.Ann.Rev. Biophys.Biomol.Struct.1998,27:199-224.
    【54】McAdams,H.H.,and Arkin,A.It's a noisy business! Genetic regulation at the nanomolar scale.Trends Genet.1999,15(2):65-69.
    【55】M.Oren,"Decision making by P53:life,death and cancer",Cell Death and Differentiation,2003,10:431-442.
    【56】B.Vogelstein,D.Lane,and A.J.Levine,"Surfing the P53 network",Nature,2000,8(6810):307-310.
    【57】Kurt W.Kohn,Yves.Pommier,"Molecular interaction map of the P53 and Mdm2 logic elements,which control the Off-On switch of P53 in response to DNA damage",Biochemical and Biophysical Research Communications,2005,331:816-827,.
    【58】David,Dingli.,Matthew,D.,Cascino et al.Mathematical modeling of cancer radiovirotherapy.Mathematical Biosciences,2006,199:80-103.
    【59】R Lev.Bar-Or,R Maya et al,"Generation of oscillations by the P53-Mdm2 feedback loop",Proc Natl Acad Sci USA,2000,97(21):11250-11255.
    【60】Lan.Ma,John.Wagner et al,"A plausible model for the digital response of P53 to DNA damage",PNAS,2005,2(40):14266-14271.
    【61】徐红林,王士同,用于基因调节网络建模的概率布尔型基因调控网络结构分析,江南大学学报,2004,Vol.3,No.5.
    【62】王志伟,侯中怀,辛厚文,合成基因调控网络中的内信号随机共振,中国科学B辑化学2005.35(3):189-193.
    【63】彭司华,周洪亮,彭小宁,杜维,系统生物学的分析与建模,信息与控制,2004,Vol.33.No.4.
    【64】齐金鹏,邵世煌,谢锦丽,朱莹,DNA损伤下的P53基因调控网络建模与仿真,系统仿真学报,2007,19(14):3321-3323。
    【65】Voit,E.O.Computational Analysis of Biochemical Systems:A Practical Guide for Biochemists and Molecular Biologists,2000,Cambridge University Press,Cambridge,
    【66】J.-L.Gouze,Positive and negative circuits in dynamic systems,J.Biol.Syst,1998,6:11-15.
    【67】Pearl,J.Probabilistic Reasoning in Intelligent Systems,1998,Morgan Kaufmann,San Francisco,CA,
    【68】Y.Maki,D.Tominama,M.Okamoto,S.Watanabe,Y.Eguchi,Development of A System for the Inference of Large Scale Genetic Networks,Pacific Symposium on Biocomputing,2001,6:446-458.
    【69】Goodwin,B.C.,and Kauffman,S.A.Spatial harmonics and pattern speciation in early Drosophila development:Part I.Bifurcation sequences and gene expression.J.Theor.Biol.1990,144:303-319.
    【70】Prokudina,E.I.,Valeev,R.Y.,and Tchuraev,R.N.A new method for the analysis of the dynamics of the molecular genetic control systems.II.Application of the method of generalized threshold models in the investigation of concrete genetic systems.J.Theor.Biol.1991,151:89-110.
    【71】Gibson,M.A.,and Brack,J.2000.Efficient exact stochastic simulation of chemical systems with many species and many channels.J.Phys.Chem.A 2000,104:1876-1889.
    【72】Tchuraev,R.N.A new method for the analysis of the dynamics of the molecular genetic control systems:I.Description of the method of generalized threshold models.J.Theor.Biol.1991,151:71-87.
    【73】Prokudina,E.I.,Valeev,R.Y.,and Tchuraev,R.N.A new method for the analysis of the dynamics of the molecular genetic control systems.II.Application of the method of generalizedthreshold models in the investigation of concrete genetic systems.J.Theor.Biol.1991,151:89-110
    【74】van Kampen,N.G.Stochastic Processes in Physics and Chemistry,rev.ed.,,1997,Elsevier,Amsterdam
    【75】Morton-Firth,C.J.,Shimizu,T.S.,and Bray,D.A free-energy-based stochastic simulation of the Tar receptor complex.J.Mol.Biol.1990,286:1059-1074.
    【76】 Morton-Firth,C.J.,and Bray,D.Predicting temporal fluctuations in an intracellular signalling pathway. J. Theor.Biol. 1998,192:117-128.
    [77] Lipschutz, R.J., Fodor, S.P.A., Gingeras, T.R., and Lockhart, D.J.. High density synthetic oligonucleotide arrays.Nat. Genet. 1999,21(suppl.): 20-24.
    [78] Lockhart, D.J., and Winzeler, E.A.. Genomics, gene expression and DNA arrays. Nature,2000,405: 827-836.
    [79] Pandey, A., and Mann, M. Proteomics to study genes and genomes. Nature, 2000,405: 837-846.
    [80] Liang, S. Fuhrman, S., and Somogyi, R... REVEAL, a general reverse engineeringalgorithm for inference of genetic network architectures. In Paciac Symposium on Biocomputing, 1998,3:18-29.
    [81] Somogyi, R., and Sniegoski, CA. Modeling the complexity of genetic networks: Understanding multigenic and pleiotropic regulation. Complexity 1996,l(6):45-63.
    [82] Wuensche, A. Genomic regulation modeled as a network with basins of attraction. In R.B. Airman, A.K. Dunker,L. Hunter, and T.E. Klein, eds. Proc. Pac. Symp. Biocomput. (PSB'98),1998,3:89-102.
    [83] R. Albert. Boolean modeling of genetic regulatory networks. Lect. Notes Phys. 2004,650:459-481
    [84] L. Glass, C. Hill. Ordered and disordered dynamics in random networks. Europhys. Lett. 1998,41(6):599-604
    [85] P. D'Haeseleer, S. Liang, and R. Somogyi, Genetic network inference: from co-expression clustering to reverse engineering. Bioinformatics, 2000,16(8):707-726.
    [86] Joel S Baderl, Amitabha Chaudhuri2, Jonathan M Rothberg and John Chant,Gaining confidence in high-throughput protein interaction networks, Nature Biotechnology,2003,22:78 - 85.
    [87] K.W. Kohn. Molecular interaction maps as information organizers and simulation guides. Chaos, 2001,11(1):1-14.
    [88] B. Kuipers. Qualitative Reasoning: Modeling and Simulation with Incomplete Knowledge. 1994, MIT Press.
    [89] J.E. Lewis and L. Glass. Steady states, limit cycles, and chaos in models of complex biological networks. Int. J. Bifurcat. Chaos, 1991,1(2):477-483.
    [90] J.E. Lewis and L. Glass. Nonlinear dynamics and symbolic dynamics of neural networks. Neural Comput., 19924:621-642.
    [91] T S Gardner, et. al. Construction of a genetic toggle switch in E. coil. Nature, 2000,403:339-342
    [92] M. B. Elowitz, et. al. a synthetic oscillatory network of transcriptional regulators. 2000,403:335-338
    [93] D. A. Baxrer, et.al. Modeling transcriptional control in gene networks-methods, recent results, and future. Bullentin of Mathmatical Biology,2000,62:247-292.
    [94] B. Samuelsson, C. Troein. Random maps and attractors in random Boolean networks. Physical Review,2005,72:046112
    [95] P. Ramo, et. al. Stability of functions in Boolean models of gene regulatory networks. Chaos,2005,15:034101
    [96] L. Raeymaekers. Dynamics of Boolean networks controlled by biologically meaningful functions. J. theor. Biol, 2002,218:331-341
    [97] I. Shmulevich, E. R. Dougherty, and W. Zhang. From Boolean to probabilistic Boolean networks as models of genetic regulatory networks. Proceedings of the IEEE, Vol. 2002,90(11):1778-1791
    [98] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Probabilistic Boolean networks: a rule-based uncertainty model for gene regulatory networks. Bioinformatics, 2002,18(2) :261-274
    [99] I. Shmulevich, E. R. Dougherty, S. Kim, and W. Zhang. Gene perturbation and intervention in probabilistic Boolean networks. Bioinformatics, 2002,18(10): 1319-1331
    [100] I. Ivanov, E. R. Dougherty. Reduction mappings between probabilistic Boolean networks. Eurasip journal on applied signal processing, 2004,1:125-131
    [101] H. Lahdesmaki, et. al. On learing gene regulatory networks under the Boolean network model.Machine learning,2003,52:147-167
    【102】J.Kan et.al.The influence of variables on Boolean functions.29th annual symposium on foundations of computer science.USA.1988:68-80
    【103】张国伟,邵世煌等,布尔基因调控网络及其研究,东华大学学报,2006,32(2):127-129.
    【104】E.Remy,P.Ruet,D.Thieffry,Graphic requirements for multistability and attractive cycles in a boolean dynamical framework,2005,Preprint.
    【105】Weaver D.,Workman C.Stormo G.Modeling regulatory networks with weight matrices.Pac.Symp.Biocomputing,1999,4:112-123
    【106】Shannon,C.E.,and Weaver,W..The Mathematical Theory of Communication.1963,University of Illinois Press,Urbana,Ill.
    【107】Wen X.,Fuhrman S.,Michaels GS.,Carr D.B.,Smith S.,Barker J.L.,and Somogyi R.Large-Scale Temporal Gene Expression Mapping of CNS Development.Proc Natl Acad Sci USA,1998,95:334-339.
    【108】Murphy,K.,and Mian,S.Modelling gene expression data using dynamic Bayesian networks.1999,Technical report,University of California at Berkeley,Berkeley,CA.Unpublished report.
    【109】Heckerman,D.,Geiger,D.& Chickering,D.M.,Learning Bayesian networks:The combination of knowledge and statistical data',Machine Learning,1995,20:197-243.
    【110】A.Datta,et.al.External control in makovian genetic regulatory networks.Machine learning,2003,52:169-191.
    【111】J.-L.Gouze,T.Sari,A class of piecewise linear differential equations arising in biological models,Dyn.Syst.2002,17:299-316.
    【112】H.De Jong,J.-L.Gouze,C.Hernandez,M.Page,T.Sari,H.Geiselmann,Qualitative simulation of genetic regulatory networks using piecewise-linear models,J.Math.Biol.2003,66:301-340.
    【113】E.H.Snoussi,Qualitative dynamics of piecewise-linear differential equations:A discrete mapping approach,Dyn.Stab.Syst.1989,4:189-207.
    【114】A.F.Filippov.Differential Equations with Discontinuous Righthand Sides.1988,Kluwer Academic Publishers.
    【115】R.Ghosh and C.J.Tomlin.Lateral inhibition through Delta-Notch signaling:A piecewise affine hybrid model.In M.D.Di Benedetto and A.Sangiovanni-Vincentelli,editors,Hybrid Systems:Computation and Control(HSCC 2001),2001,2034:232-246.
    【116】L.Glass and J.S.Pasternack.Stable oscillations in mathematical models of biological control systems.J.Math.Biol.1978,6:207-223.
    【117】K.R.Heidtke and S.Schulze-Kremer.Design and implementation of a qualitative simulation model of phage infection.Bioinformatics,1998,14(1):81-91.
    【118】Chen,T.Modeling Gene Expression With Differential Equations,1999,Pac.Symp.Biocomput.
    【119】杜华,p53在调节细胞周期组织和细胞凋亡中的作用及其机制,国外医学-放射医学核医学分册,2002,26(2):79-82.
    【120】张启新,张举,p53网络控制机理与建模,中国科技论文在线,http:/www.paper.edu.cn.
    【121】Levine A J,Momand J.Tumor Suppressor Genes:The p53 and Retinoblastoma Sensitivity Genes and Gene Products.Biochem Biophys Acta,1990,1032.
    【122】K.F.Pirollo,L.Xu,E.H.Chang,Non-viral gene delivery for p53,Curr.Opin.Molec.Therapeut.2000,2:168-175.
    【123】张燕,血清p53抗体与肺癌.国外医学肿瘤学分册.2000,27:170.
    【124】Michael Weller,Predicting response to cancer chemotherapy:the role of P53,Cell Tissue Res,1998,292:435-445.
    【125】Andrew R.Cuddihy,Robert G Bristow,The P53 protein family and radiation sensitivity:Yes or no? Cancer and Metastasis Reviews,2004,23:237-257.
    【126】Mark A.Ritter,Kennedy W.Gilchrist,etc,The role of P53 in radiation therapy outcomes for favorable-to-intermediate-risk prostate cancer T,Radiation Oncology Biol.Phys,2002,53:574-580.
    【127】王志洁,范维柯,p53基因与肿瘤细胞凋亡,国外医学临床生物化学与检验学分册,2000,21(2):93-95.
    【128】曾常茜,王振明,p53抗体与恶性肿瘤,北华大学学报(自然科学版),2002,3(4):300-302.
    【129】Weller.,2004.Rosenfeld N.,Sigal A.,Geva-Zatorsky N.,Levine AJ.,Elowitz MB.,Alon U,Dynamics of the p53-Mdm2 feedback loop in individual cells.Nat Genet,2004,36:147-150.
    【130】Lahav,G,Rosenfeld,N.,Sigal,A.,Geva-Zatorsky,N.,Levine,AJ.,Elowitz,Alon U.,.Dynamics of the p53-MDM2 feedback loop in individual cells.Nat Genet 2004,36:147-150.
    【131】M.Ptashne.A Genetic Switch:Phage and Higher Organisms.1992,Cell Press & Blackwell Science,Cambridge,MA,2nd edition.
    【132】RK Geyer,ZK Yu,and CG Maki.The MDM2 RING-finger domain is required to promote p53 nuclear export.Nat Cell Biol,2000,2(9):569-73.
    【133】Paul Brazhnik and Kurt W.Kohn.,HAUSP-regulated switch from auto-to p53 ubiquitination by Mdm2(in silico discovery),Mathematical Biosciences,2007,1:60-77.
    【134】K.Klemm and S.Bornholdt,Topology of biological networks and reliability of information processing,PNAS,December 20,2005;102(51):18414-18419.
    【135】L.S'anchez and D.Thieffry.Alogical analysis of the Drosophila gap genes.J.Theor.Biol,2001,211(2):115-141.
    【136】方福德,杨焕明,张德昌,等.分子生物学前沿技术,1998,北京:北京医科大学、中国协和医科大学联合出版社.
    【137】L.Li,M.Story,R.Legerski,Cellular responses to ionizing radiation damage,Int.J.Radiat.Oncol.Biol.Phys,vol.2001,49:1157-1162.
    【138】C.Perez and L.Brady,Principles and Practice of Radiation Oncology.1998,Philadelphia,PA:Lippincott-Raven,784-785.
    【139】S.Banin.,L.Moyal.,S.Shieh,Y.Taya et al.,"Enhanced phosphorylation of P53 by ATM in response to DNA damage",Science,1998,28:11674-1677.
    【140】Siim.Pauklin,Arnold.Kristjuhan,Toivo.Maimets et al.,"ARF and ATM/ATR cooperate in P53-mediated apoptosis upon oncogenic stress",Biochemical and Biophysical Research Communications,2005,334:386-394.
    【141】Bakkenist CJ,Kastan MB.DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation,Nature,2003,421:499-506.
    【142】NH Chehab,A Malikzay et al.Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage.Proc Natl Acad Sci U S A,1999,96(24):13777-82.
    【143】SH Khan,J Moritsugu,and GM Wahl.Differential requirement for p19ARF in the p53-dependent arrest induced by dna damage,microtubule disruption,and ribonucleotide depletion.Proc Natl Acad Sci U S A,2000,97(7):3266-3271.
    【144】BD Aguda.A quantitative analysis of the kinetics of the g(2)dna damage checkpoint system.Proc NatlAcad SciU SA,1999,96(20):11352-11357.
    【145】R.N.Tchuraev and V.A.Ratner.A continuous approach with threshold characteristics for simulation of gene expression.1983,In K.Bellmann,editor,Molecular Genetic Information Systems:Modelling and Simulation,64-80.
    【146】T Rich,RL Allen,and AH Wyllie.Defying death after DNA damage.Nature,2000,407(6805):777-83.
    【147】D.Thieffry,A.M.Huerta,E.P'erez-Rueda,and J.Collado-Vides.From specific gene regulation to genomic networks:A global analysis of transcriptional regulation in Escherichia coli.BioEssays,2007,20(5):433-440,1998.
    【148】S.Dudiot et al,Comprison of discrimination methods for the classification of tumors using gene expression data,June 2000,Technical report,Berkeley.
    【149】Cara L.Benjamin and Honnavara N.Ananthaswamy.,p53 and the pathogenesis of skin cancer,Toxicology and Applied Pharmacology,2007,224(3):241-248.
    【150】Lars-Christian Horn,Claudia Hanel,Erika Bartholdt and Jochen Dietel.,Mixed serous carcinoma of the endometrium with trophoblastic differentiation:analysis of the p53 tumor suppressor gene suggests stem cell origin,Annals of Diagnostic Pathology,In Press,Corrected Proof,Available online 29 October 2007.
    [151] W. Dfichting, W. UlmeP, T. Ginsberg, Cancer: A Challenge for Control Theory and Computer Modeling, European Journal of Cancar, 1996,32:1283-1295.
    [152] Martin. Kiihne, Enriqueta. Riballo et al, 2004. "A Double-Strand Break Repair Defect in ATM-Deficient Cells Contributes to Radiosensitivity", CANCER RESEARCH, 2004,6:500-508.
    [153] Nicolas, Magne., Robert-Alain, Toillon et al., NF-kB modulation and ionizing radiation: mechanisms and future directions for cancer treatment. Cancer Letters.231, 2006, 2(18): 158-168.
    [154] J, Chalmers., Poly (ADP-ribose) Polymerase-1 and Ionizing Radiation: Sensor, Signaler and Therapeutic Target. Clinical Oncology,2004,16: 29-39.
    [155] John, Thacker., The RAD51 gene family, genetic instability and cancer. Cancer Letters, 2005,219:125-135.
    [156] Rothkamm, K., Lobrich, M., Evidence for a lack of DNA double-strand break repair in human cells exposed to very low x-ray doses. Proc Natl Acad Sci USA. 2003,100:4973-4975.
    [157] S. Lain., D, Lane., Improving cancer therapy by non-genotoxic activation of P53. European Journal of Cancer. 2003,39:1053-1060.
    [158] S, Tribius., A, Pidel., D, Casper., ATM protein expression correlates with radioresistance in primary glioblastoma cells in culture. Int. J. Radiat. Oncol. Biol. Phys, 2001,50:511-523.
    
    [159] D.Hanahan, and R.A.Weinberg.the hallmarks of cancer,Cell, 100:57-70,2000.
    [160] Bert Vogelstein, Kenneth W Kinzler, Cancer genes and the pathways they Control, Nature Medicine, 2004,10:789-799.
    [161] T Soussi, K Dehouche, and C Beroud. p53 website and analysis of p53 gene mutations in human cancer. Hum Mutat, 2000,15(1):105-13.
    [162] Sole R.V, I.Salazar-Cuidad, S.A.Newman. Gene network dynamics and the evolution of development. Trends Ecol. Evol, 2000,15:479-480.
    [163] Werner Diichting,et al, Computer Simulation Applied to Radiation Therapy in Cancer Research, Applied mathematics and computation, 1996,74:191-207.
    [164] Edgar Grinstein and Peter Wernet., Cellular signaling in normal and cancerous stem cells, Cellular Signalling, 2007,19(12):2428-2433.
    [165] Mingxin Che, Michelle DeSilvio, Alan Pollack, David J. Grignon et al, Prognostic Value of Abnormal p53 Expression in Locally Advanced Prostate Cancer Treated With Androgen Deprivation and Radiotherapy: A Study Based on RTOG 9202, International Journal of Radiation Oncology*Biology*Physics, 2007,69(4): 1117-1123.
    [166] Wael A. Ahmed, Kenji Suzuki, Yoshihiro Imaeda and Yoshimune Horibe., Ki-67, p53 and epidermal growth factor receptor expression in early glottic cancer involving the anterior commissure treated with radiotherapy, Auris Nasus Larynx,In Press, Corrected ProofAvailable online 8 November 2007.
    [167] Jun Watanabe, Yuko Kamata, Norihisa Seo, Isao Okayasu and Hiroyuki Kuramoto., Stimulatory effect of estrogen on the growth of endometrial cancer cells is regulated by cell-cycle regulators, The Journal of Steroid Biochemistry and Molecular Biology, 2007,107(3-5): 163-171.
    
    [168] R. Thomas and R. d'Ari. Biological Feedback, 1990, CRC Press.
    [169] M Fussenegger, JE Bailey, and J Varner. A mathematical model of caspase function in apoptosis. Nat Biotechnol,2000,18(7):768-774.
    [170] Daniel Brewer. Attempts at parameter estimation for a mathematical model of the p53 protein network, http://cn.arxiv.org/.
    [171] D.M. Wolf and F.H. Eeckman. On the relationship between genomic regulatory element organization and gene regulatory dynamics. J. Theor. Biol., 1998, 195(2):167-186.
    [172] A. Blais and B. D. Dynlacht,Constructing transcriptional regulatory networks,Genes & Dev,2005,19(13):1499-1511.
    [173] A.D. Keller. Specifying epigenetic states with autoregulatory transcription factors.J. Theor. Biol, 1994,170(2):175-181.
    [174] H. de Jong, "Modeling and simulation of genetic regulatory systems: a literature review", Comput Biol, 2002,9(1):67-103.
    [175] J. J. Fox. From topology to dynamics in biochemical networks. Chaos, 2001, 11(4):809-815.
    [176] Chen, K.C., et.al. Kinetic analysis of a molecular model of the budding yeast cell cycle. Mol. Biol. Cell 2000,11(1):369-391.
    [177] Barkai, N., and Leibler, S. Robustness in simple biochemical networks. Nature, 1997, 387:913-917.
    [178] Glass, L, and Pasternack, J.S. Prediction of limit cycles in mathematical models ofbiological oscillations. B. Math. Biol.1978,40: 27-44.
    [179] Edwards, R., Siegelmann, H.T., Aziza, K., and Glass, L. Symbolic dynamics and computation in model gene networks. Chaos, 2001,11(1):160—169.
    [180] Snoussi, E.H., and Thomas, R. Logical identification of all steady states: The concept of feedback loop characteristic states. Bull. Math. Biol. 1993,55(5):973-991.
    [181] Omholt, S.W. et. al. Description and analysis of switchlike regulatory networks exemplified by a model of cellular iron homeostasis. J. Theor. Biol. 1998,195: 339-350.
    [182] Margarita B. Rogatcheva, Krista L. Fritz et al., Characterization of the porcine ATM gene: Towards the generation of a novel non-murine animal model for Ataxia-Telangiectasia, Gene, 2007,405(1-2): 27-35.
    [183] M.S. Lindstrom, K.G Wiman, Myc and E2F1 induce P53 through p14ARF-independent mechanisms in human fibroblasts, Oncogene, 2003,22:4993-5005.
    [184] Samuel Bottani and Basile Grammaticos., Analysis of a minimal model for p53 oscillations, Journal of Theoretical Biology, 2007,249(2) :23 5-245.
    [185] JD Oliner, KW Kinzler, PS Meltzer, DL George, and B Vogelstein. Amplification of a gene encoding a p53-associated protein in human sarcomas. Nature, 1992,358(6381):80-83.
    [186] Yoshihisa Watanabe, Kiyoshi Shibata, Haruhiko Sugimura and Masato Maekawa., p53-Dependent change in replication timing of the human genome, Biochemical and Biophysical Research Communications, 2007,364(2):289-293.
    [187] Gang Zheng, Jinying Ning and Yu-Chung Yang., PLAGL2 controls the stability of Pirh2, an E3 ubiquitin ligase for p53, Biochemical and Biophysical Research Communications, 2007,364( 2):344-350.
    [188] Valentina Cecchinato, Raffaella Chiaramonte et al, Resveratrol-induced apoptosis in human T-cell acute lymphoblastic leukaemia MOLT-4 cells, Biochemical Pharmacology, 2007,74(11):1568-1574.
    [189] Dipali A. Date, Cara J. Jacob, Mike E. Bekier et al., Borealin is repressed in response to p53/Rb signaling, Cell Biology International, 2007,31(12):1470-1481.
    [190] Sebastian Bredow, Daniel E. Juri, Karen Cardon and Yohannes Tesfaigzi., Identification of a novel Bcl-2 promoter region that counteracts in a p53-dependent manner the inhibitory P2 region,Gene, 2007,404(1-2): 110-116.
    [191] Jing Li, Yuequn Wang, Xiongwei Fan, Xiaoyang Mo, Zequn Wang., ZNF307, a novel zinc ringer gene suppresses p53 and p21 pathway, Biochemical and Biophysical Research Communications, 2007,363(4):895-900.
    [192] Kasandra J.-L. Riley and L. James Maher III., Analysis of p53-RNA interactions in cultured human cells, Biochemical and Biophysical Research Communications, 2007,363(2):381-387.
    [193] Luonan Chena Tetsuya Kobayashi. Designing Oscillators in Synthetic Gene Networks Based on Multi-Scale Dynamics. 2002,Proceedings of the IEEE Computer Society Bioinformatics Conference.
    [194] Qi JP, Shao SH, Zhu Y, Mathematical modeling of P53 gene regulatory network, DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006,13:11-15.
    [195] J.-P. Qi, S.-H. Shao, D.-D. Li, and G-P. Zhou, A dynamic model for the P53 stress response networks under ion radiation, Amino Acids, 2007, 33 (1): 75-83.
    [196] J.P. Qi, S.H. Shao, Jinli Xie and Y. Zhu., A mathematical model of P53 gene regulatory networks under radiotherapy,Biosystems,2007,90(3):698-706.
    【197】L.Chen,K.Aihara.Stability of Genetic Regulatory Networks with Time Delay.IEEE Trans.on Circuits and Systems -I,2002,49(5):602-608.
    【198】L.Chen,K.Aihara.A Model of Periodic Oscillation for Genetic Regulatory System.IEEE Trans.on Circuits and Systems -I,2002,49(10):1101-1105.
    【199】Tetsuya Kobayashinw,Luonan Chen.Modeling Genetic Switches with Positive Feedback Loops.J.theor.Biol.2003,221:379-399.
    【200】A.Goldbeter.A model for circadian oscillations in the Drosophila period protein(PER),.Proc.R.Soc.Lond.,1995,vol.B.261,no.1362:319-324.
    【201】N.Barbai,S.Leibler.Biological rhythms:Circadian clocks limited by noise.Nature,2000,403(67):267.
    【202】徐肖江,王连水,丁达夫.从酵母表达时间序列估计基因调控网络.生物化学与生物物理学报,2003,35(8):707-716.
    【203】易东,杨梦苏等.相关分析在建立基因调控网络模型中的应用.中国卫生统计,2003,20(3):144-146.
    【204】Tyson.J.J.Models of cell cycle control in eukaryotes,Biotechnol,1999,71:239-244.
    【205】Tyson.J J.,B,Novak.Regulation of the eukaryotic cell cycle:molecular antagonism,hysteresis,and irreversible transitions.Theor Biol,2001,210(2):249-263.
    【206】Wang X F,Chen G Complex networks:Small world,scale world,scale free and beyond.IEEE Circuits and System Magazine,3(1),2003:6-21.
    【207】Chou KC.Review:Structural bioinform5tics and its impact to biomedical science.Current Medicinal Chemistry,2004,11:2105-2134,.
    【208】J.Stark,R.Callard,and M.Hubank,"From the top down:towards a predictive biology of signalling networks",Trends Biotechnol,2003,21(7):290-293.
    【209】Wyrick,J.J.and R.A.Young.Deciphering gene expression regulatory networks.Curr Opin Genet Dev 2002,12(2):130-136.
    【210】R.Thomas,D.Thieffry,and M.Kaufman.Dynamical behaviour of biological regulatory networks:I.Biological role of feedback loops and practical use of the concept of the loop-characteristic state.Bull.Math.Biol,1995,57(2):247-276.
    【211】R.Thomas,On the relation between the logical structure of systems and their ability to generate multiple steady states or sustained oscillations,Springer Ser.Synerget,1981,9:180-193.
    【212】R.Thomas,M.Kaufman,Multistationarity,the basis of cell differentiation and memory.I.Structural conditions of multistationarity and other nontrivial behaviour,Chaos,2001,11:170-179.
    【213】C.Chaouiya,E.Remy,D.Thieffry,Petri net modelling of biological regulatory networks,CMSB 2005(Workshop,Computational Methods in Systems Biology),3-5 April 2005,Edinburgh,UK.
    【214】R.Thomas,The role of feedback circuits:positive feedback circuits are a necessary condition for positive real eigenvalues of the Jacobian matrix,Ber.Busenges.Phys.Chem.1994,98(9):1148-1151.
    【215】N.I.Markevich,J.B.Hoek,B.N.Khodolenko,Signaling switches and bistability arising from multisite phosphorylation in protein kinase cascades,J.Cell Biol.2004,164(3):353-359.
    【216】R.Karmakar,I.Bose,Graded and binary responses in stochastic gene expression,q-bio.OT/0411012,2004.
    【217】Borisuk,M.T.,and Tyson,JJ.Bifurcation analysis of a model of mitotic control in frog eggs.J.Theor.Biol.1998,195:69-85.
    【218】Alexander Rapp,Karl Otto Greulich,After double-strand break induction by UV-A,homologous recombination and nonhomologous end joining cooperate at the same DSB if both systems are available,Journal of Cell Science,2004,117:4935-4943.
    【219】F.Daboussi,A.Dumay,F.Delacote,B.S.Lopez,"DNA double strand break repair signalling:the case of RAD51 post-translational regulation",Cell.Signal,2002,14:969-975.
    【220】W.C,Dewey.,C.C,Ling.,R.E,Meyn.Radiation-induced apoptosis:relevance to radiotherapy. Int. J. Radiat. Oncol. Biol.Phys, 1995, 33:781-796.
    [221] Chou, K.C. Review: structural bioinformatics and its impact to biomedical science. Curr. Med. Chem, 2004,11: 2105-2134.
    [222] Joe Budman., Gilbert, Chu. Processing of DNA for nonhomologous end-joining by cell-free extract. The EMBO Journal, 2005,24:849-860.
    [223] Zhou, GP., Deng, MH. An extension of Chou's graphical rules for deriving enzyme kinetic equations to system involving parallel reaction pathways. Biochem J, 1984,222:169-176.
    [224] Xiao, X., Shao, S., Ding, Y., Huang, Z., Chen, X., Chou, KC. An application of gene comparative image for predicting the effect on replication ratio by HBV virus gene missense mutation. J Theor Biol, 2005,235:555-565.
    [225] Thu Zar Lwin, Jason J. Durant and Donald Bashford., A Fluid Salt-bridging Cluster and the Stabilization of p53, Journal of Molecular Biology, 2007,373(5):1334-1347.
    [226] Andrew G. Li, Landon G Piluso, Xin Cai, Brian J. Gadd et al, An Acetylation Switch in p53 Mediates Holo-TFIID Recruitment, Molecular Cell, 2007,28(3):408-421.
    [227] David W. Meek., P53 regulation and activity, Toxicology, 2007,240(3):133-134.
    [228] Nicholas B. La Thangue., Control of the p53 response, Toxicology, 2007,240(3):134.
    [229] Xin Lu., P53: A heavily dictated "dictator" of life and death, Curr Opin Genet Dev, 2005,15:27-33.
    [230] John Mercer, Nichola Figg, Victoria Stoneman, Denise Braganza and Martin R. Bennett., The role of p53 in atherosclerosis, Toxicology, 2007,240(3):134-135.
    [231] Yinyuan Wu, Da Xing, Wei R. Chen and Xichao Wang., Bid is not required for Bax translocation during UV-induced apoptosis, Cellular Signalling, 2007,19(12): 2468-2478.
    [232] Ismail Ahmed Ismail, Ku-Seong Kang, Hae Ahm Lee et al., Genistein-induced neuronal apoptosis and G2/M cell cycle arrest is associated with MDC1 up-regulation and PLK1 down-regulation, European Journal of Pharmacology, 2007,575(1-3):12-20.
    [233] Jean-Francois Dufour, Otmar Huber, Sara C. Kozma, Xin Lu and Rune Toftgard., Tumour suppressors in liver carcinogenesis, Journal of Hepatology, 2007,47(6):860-867.
    
    [234] Nigel J. Gooderham., P53 and therapeutic opportunities, Toxicology, 2007,240(3): 135.
    [235] Lynette Moore, Xiongbin Lu, Nader Ghebranious, Stuart Tyner and Lawrence A. Donehower., Aging-Associated Truncated Form of p53 Interacts with Wild-Type p53 and Alters p53 Stability, Localization, and Activity, Mechanisms of Ageing and Development,In Press, Accepted Manuscript, Available online 1 November 2007.
    [236] R. Alur, C. Belta, F. Ivanˇc(?)c, V. Kumar, M. Mintz, GJ. Pappas, H. Rubin, and J. Schlug. Hybrid modeling and simulation of biomolecular networks. In M.D. Di Benedetto and A. Sangiovanni-Vincentelli, editors, Hybrid Systems:Computation and Control (HSCC 2001), Springer-Verlag, 2001, 2034:19-32.
    [237] R. Alves and M.A. Savageau. Comparing systemic properties of ensembles of biological networks by graphical and statistical methods. Bioinformatics, 2000, 6(6):527-533.
    [238] Shai S.Shen-Orr et al. Network motifs in the transcriptional regulation network of Escherichia coli. Nature.genetics 2002, 31:64-68.
    [239] H. de Jong, J. Geiselmann, G Batt, C. Hernandez, and M. Page. Qualitative simulation of the initiation of sporulation in B. subtilis. Technical Report RR-4527, INRIA, 2002. Submitted to Bull. Math. Biol.
    [240] H. de Jong, J. Geiselmann, C. Hernandez, and M. Page. Genetic Network Analyzer: Qualitative simulation of genetic regulatory networks. Bioinformatics, 2003,19(3):336-344.
    [241] Yu Chen, and Dong Xu, Global protein function annotation through mining genome-scale data in yeast Saccharomyces cerevisiae. Nucleic Acids Research, 2004 32(21):6414-6424.
    [242] R. Edwards and L. Glass. Combinatorial explosion in model gene networks. Chaos, 2000,10(3):691-704.
    [243] M.B. Elowitz and S. Leibler. A synthetic oscillatory network of transcriptional regulators. Nature, 2000,403(6767):335-338.
    
    [244] D. Endy and R. Brent. Modelling cellular behavior. Nature, 2001,409(6818):391-395.
    
    [245] Kai Rothkamm, Ines Kruger, Larry H. Thompson, etc, Pathways of DNA Double-Strand Break Repair during the Mammalian, Cell Cycle, MOLECULAR AND CELLULAR BIOLOGY, 2003,23:5706 -5715.
    [246] Martin C Raff. Molecular Biology of the Cell, 2002 Garland Publishing, UK and USA, 4th edition, chapter 24, pages 1363-1421.
    [247] JW Zhu, D DeRyckere et al. apoptosis during thymic negative selection. Cell Growth Differ, 1999,10(12):829-838.
    
    
    [248] J. Stark, R. Callard, and M. Hubank. towards a predictive biology of signalling networks. Trends Biotechnol, 2003,21(7): 290-3.
    [249] Smolen, P., Baxter, D.A., and Byrne, J.H. Effects of macromolecular transport and stochastic fluctuations on dynamics of genetic regulatory systems. Am. J. Phys, 1999, 277: 777-790.
    [250] Wolf, D.M., and Eeckman, F.H. On the relationship between genomic regulatory element organization and gene regulatory dynamics. J. Theor. Biol. 1998,195: 167-186.
    [251 ] McAdams, H.H., and Shapiro, L. Circuit simulation of genetic networks. Science 1995, 269: 650-656.
    [252] Gibson, M., and Brack, J, An efficient algorithm for generating trajectories of stochastic gene regulation reactions, 1998, Technical Report ETR026, Parallel and Distributed Computing Group, CalTech, Pasadena, CA.
    [253] P. Yin, AJ Turberfield, S. Sahu, JH Reif. Design of an Autonomous DNA Nanomechanical Device capable of Universal Computation and Arbitrarily Complex Translational Motion, 2004,10th international meeting on computer based on DNA.
    
    [254] Y Benenson, et.al. An autonomous molecular computer for logical control of gene expression. Nature, 2004,429:423-429.
    
    [255] J C Mellor, et.al. Circuits of the cell. DDT:Biosilico,2004 2(3):120-126.
    [256] Somogyi R., Fuhrman S., Askenazi M., Wuensche A. The gene expression matrix:Towards the extraction of genetic network architectures, in "The Second World Congress of Nonlinear Analysts (WCNA)', 1996.
    [257] Gierer, A. Generation of biological patterns and form: Some physical, mathematical, and logical aspects. Prog. Biophys.,Mol. Biol, 1981, 37:1-47.
    
    [258] C. Soule, Graphic requirements for multistationarity, Com-PlexUs 1,2003:123-133.
    [259] Simon, J. Barnett, N. Hannett, C.T. Harbison, N.J. Rinaldi, T.L. Volkert, J.J. Wyrick, J. Zeitlinger, D.K. Gifford, T.S. Jaakkola et al., Serial regulation of transcriptional regulators in the yeast cell cycle. Cell, 2001,106:697-708.
    [260] L. Glass, Classification of biological networks by their qualitative dynamics, J. Theor. Biol, 1975, 54:85-107.
    [261] Aerts S, Van Loo P, Thijs G, Moreau Y, De Moor B, Computational detection of cis -regulatory modules, Bioinformatics. 2003,19(Suppl 2):II5-II14.
    
    [262] Torgeir R. Hvidstenl, Bartosz Wilczynski2,3, Andriy Kryshtafovych2, Jerzy Tiuryn4, Jan Komorowski1,5 and Krzysztof Fidelis, Discovering regulatory binding-site modules using rale-based learning, Genome Research, 2005,15:856-866.
    [263] P. Kemmeren, T. T. J. P. Kockelkorn, T. Bijma, R. Donders, and F. C. P. Holstege, Predicting gene function through systematic analysis and quality assessment of high-throughput data, Bioinformatics, 2005,21:1644-1652.
    [264] D. Grigoriev, S. Vakulenko, Complexity of gene circuits, Pfaf-fian functions and morphogenesis problem, C. R.Acad. Sci. Paris, Ser. I, 2003,337 (11):721—724.
    [265] A. Ben-Hur and H.T. Siegelmann. Computation in gene networks. In M. Margenstern and Y. Rogozhin, editors, Machines, Computations, and Universality: Third International Conference (MCU 2001) Springer-Verlag, Berlin, 2001, 2055 of LNCS: 11-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700