智能计算方法及其在发酵过程中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智能可以看作是知识积累和知识运用的综合能力反应,主要是认识客观事物、掌握客观规律,以及运用知识去解决实际问题的能力。人工智能就是用人工系统来模拟人的问题求解、推理、学习等方面的能力。人工智能经过近半个世纪的发展,形成了多个研究发展方向,其中智能计算方法是智能科学当前研究的重要方向之一。在过去几十年的时间里,智能计算得到了广泛的研究和迅猛的发展,并在信号处理、模式识别、系统辨识、发酵控制、生物信息学、食品和医疗以及商业等领域取得了丰硕的成果。
     本文针对智能计算方法在生物发酵过程以及生物信息学中的相关应用进行了研究,包括Cascaded Centralized Takagi-Sugeno-Kang(CCTSK)模糊神经网络,多层感知器(Multi-Layer Perceptron)、径向基函数(Radial Basis Function,RBF)神经网络、Takagi-Sugeno-Kang (TSK)模糊系统等相关智能计算方法在谷胱甘肽、乳酸杆菌的发酵过程中的应用。另外,对生物信息学中基因表达调控网络的重构也做了一点工作,具体来说,本论文的创造性研究成果主要有:
     第一部分,对模糊系统进行了研究,建立了不确定的高斯混合模型和具有可加性的二型Takagi-Sugeno-Kang模糊系统之间的对应关系。然后利用Cascaded Centralized Takagi-Sugeno-Kang(CCTSK)模糊神经网络对谷胱甘肽(glutathione,GSH)的发酵过程进行建模。在实际的发酵生产过程中,由于菌体发酵过程自身的复杂性以及实验中的客观条件的限制,使得实验数据不可避免的含有一定量的噪音,从而使得传统的神经网络所建立的模型的收敛速度和精度明显下降,且建模结果缺乏可解释性。CCTSK模糊神经网络由于采用了中心化的级联的网络结构,实验结果表明,运用CCTSK模糊神经网络对谷胱甘肽发酵的过程所建立的模型具有良好的鲁棒性和更高的可解释性。
     第二部分,研究了鲁棒的基于熵准则的RBF谷胱甘肽发酵建模。利用信息论中关于熵的概念,从概率密度的角度出发,采用判别熵构造出一个新的误差准则函数——基于熵准则的误差准则函数,并将其应用于谷胱甘肽的发酵建模过程中。由于新的误差准则函数能够从训练样本的整体分布结构来进行模型的参数学习,从而有效地避免了传统的基于Mean Square Error(MSE)准则的RBF神经网络的过学习和泛化能力弱的缺陷。
     第三部分,进一步研究了基于熵准则的误差准则函数的特点。将新的准则函数用于多层感知器模型、径向基函数神经网络模型以及Takagi-Sugeno-Kang模糊系统模型中,然后对乳酸杆菌发酵生成多糖(exopolysaccharide,EPS)的过程进行建模,实验结果表明:新方法具有较高的预测精度、泛化能力以及良好的鲁棒性。
     最后一部分,研究了目前生物信息学中的热点——基因表达调控网络的重构问题。针对传统的线性组合模型只考虑了基因之间的线性调控关系的缺陷,引入了能量因子的概念,从而使得模型具备了分析基因间的非线性调控关系的特性。
Intelligence can be looked as an compositive reflection of the accumulation and the application of the knowledge. It refers to the cognition of objectively existing things, the mastery of objective regulation and the abilitiy of making use of knowledge to solve practical problems. Artificial Intelligence (AI) just try to simulate the abilities of solving, inferring and learing as human beings by synthetic systems.
     After developing for nearly half an century, Artificial Intelligence contains many reasearch fileds. And the Intelligence Computation Method is one of the significant important fields. Thus many researchers have paid much attention on this field.
     In the past decades, Intelligence Computation has been studied wildly and achieved rapid developments. Morever, it has been arrived at fruitful achievements in the application of so many fields, such as signal processing, pattern recognition, system identification, fermentation control, bioinformatics, food science, medical treatment and business.
     In this dissertation, Intelligence Compution Methods and their applications in fermentation process modelling and bioinformatics have been deeply investigatied. They include Cascaded Centralized Takagi-Sugeno-Kang (CCTSK) fuzzy neural networks, Multi-Layer Perceptron, Radial Basis Function (RBF) neural networks, Takagi-Sugeno-Kang (TSK) fuzzy system and their applications in the fermentation process of Glutathione (GSH) and exopolysaccharide (EPS). Among them, we also do some reasearches on the reconstruction of the gene express regulatory network of E. coli in bioinformatics. To be concrete, the contributions of this dissertation are as follows:
     (1) We do some reasearches on fuzzy logic system and translate Uncertain Gaussian Mixture Model to an additive type-2 Takagi-Sugeno-Kang fuzzy logic system, and then we introduce a fuzzy-inference based fuzzy neural network, called the Cascaded Centralized Takagi-Sugeno-Kang fuzzy neural networks, for GSH fermentation process. It is well known that the data obtained from experiments unavoidly contain noises in the practical fermentation production, because of the complexity of fermentation process, the shortage of chemical apparatus and the limitation of the experimetal situation. Therefore, the covergence performance and the prediction accuracy of the GSH fermentation process modelling are often deteriorated by the noise existing in the experimental data. Moreover, the traditional model for the GSH fermentation process is usually lack of the interpretation. Since the CCTSK fuzzy neural network introduces the syllogism inference and centralized strategy, it is demonstrated that the modelling has a good robustness to the noise data and a high interpretation for the GSH fermentatiom process modeling, compared with the traditional fuzzy neural networks.
     (2) A robustness Radial Basis Function neural network model based on entropy criterion for the Glutathione fermentation process has been deeply investigated. Originated from the Parzen window density estimator and relative entropy for the sampling set, we propose a new criterion function, called entropy-based criterion function. Then the new criterion function is applied in the Radial Basis Function neural network model for the Glutathione fermentation process. Since the novel entropy-based criterion can be used to train the parameters of the RBF neural network model from the whole distribution structure of the training data set, which results in the fact that the Radial Basis Function neural network model method can have global approximation capability. Compared with the Mean Square Error criterion, the advantage of this novel criterion exists in that the parameter learning can effectively avoid the over-fitting phenomenon, therefore the proposed criterion based RBF neural network model have much better generalization ability and robustness for the Glutathione fermentation process.
     (3) We attempt to do furthur researches on entropy-based criterion function, and then incorporate this entropy-criterion based objective function into Multi-Layer Perceptron (MLP) model, Radial Basis Function (RBF) neural network model and Takagi-Sugeno-Kang (TSK) fuzzy system model for exopolysaccharide (EPS) fermentation from Lactobacillus. Our experimental results indicate that the three modeling methods mentioned above with entropy-criterion based objective function have obvious advantages over these with Mean Square Error criterion based objective function in the sense of approximation/generalization capability and robustness.The reason leading to such results may be that entropy-criterion based objective function is derived from the Parzen window density estimator and relative entropy, and it considers the whole distribution structure of the training set in the parameter’s learning process, which is quite different from the MSE-criterion based objective function.
     (4) We also do some researches on the hot topic in bioinformatics fields, which is named as the reconstruction of gene express regulatory networks. Reconstruction of gene regulatory network is much significant to explore the essence of life. It is well known that the Linear Combination Model has been successfully applied to the reconstruction of the gene regulator network for its easy and fast solving. However, this model just takes the linear relationships between genes into account. In order to circumvent this problem, energy factor has been added in the Linear Combination Model, thus the model can be used to analysis the nonlinear relationships between genes. Then the proposed model has been applied to reconstruct the gene regulatory network of Escherichia coli on SOS DNA repair process. Our result demonstrates that the proposed model can reconstruct the SOS DNA repair process well and improve the accuracy.
引文
1. Nilson N J. Principle of Artificial Intelligence [M]. Togia Publishing Company, 1980.
    2. Winston P H. Artifiuecial Intelligence [M]. Addison-Wesley, 1984
    3.林尧瑞,马少平.人工智能导论[M].北京:清华大学出版社,1989
    4.夏定纯,徐涛.计算智能[M].科学出版社. 2008
    5.蔡自兴,徐光祐.人工智能及其应用[M].北京:清华大学出版社, 1996
    6.蔡自兴.人工智能控制[M].化学工业出版社. 2005
    7. Cai Zixing. Intelligent Control: Principles, Techniques and Application [M]. Singapore-New Jersey: Workd Scientific Publishers, 1997
    8. Dean T, Allen J and Aloimonos Y. Artificial Intelligence: Theory and Practice [M]. Pearson Education North Asia and Publishing House of Electronics Industry, 2003
    9.王永庆.人工智能原理与方法[M].西安:西安交通大学出版社. 1998
    10.王万森.人工智能原理及其应用[M].北京:电子工业出版社. 2000
    11. Yamashita S, Murao C. Fermentation process [J]. Journal of Society of Instrument and Control Engineer, 1978, 6 (10): 735-740
    12. Yamashita S, Hisoshi H, Inagaki T. Automatic control and optimiazation of fermentation processes-glutamic acid. In: Perlman D. Fermetation Advances [M], New York: Academic Press, 1969, 441-463
    13. Grayson P. Computer control of batch fermentations [J], Process Biochemistry, 1969, 4 (3), 43-44
    14. Hampel W. Applications of microcomputers in the study of microbial process [J]. Adv Biochem Eng, 1979 (13): 1-33
    15.曾翰卿.智能控制在啤酒发酵过程控制中的应用[J].电脑开发与应用. 1990, 3 (2), 38-39
    16.张克旭.氨基酸发酵工艺学[M],北京:中国轻工业出版社,1992
    17.杜锋,刘全,雷鸣.软测量技术及其在发酵过程中的应用[J],食品科学, 2002, 23 (8): 352-356
    18. Pan F, Chen J, Lun S Y. Intelligent control of the fed-batch fermentation process [C]. 14th World Congress of IFAC99. Beijing: Tsinghua University Press, 1998
    19. Staphanopoulus G, Stephanopoulos G. Artificial intelligence in the development and design of biochemical processes [J]. Trends in Biotechnology, 1986, 241-249
    20. Samaan M, Dahhou T, Queinnee J, et al. A control arithmetic research in fermentation process [C], Proceedings of the American Control Conference, San Diego: 1990, 2679-2685
    21.储炬,李友荣.现代工业发酵控制学[M],北京:化学工业出版社, 2002
    22. Landau I D, Samaan M, Saad M. The application of self-adaptive control in fermentation process [C]. Proceeding of the American Control Conference, San Diego: 1990, 2684-2689
    23.霍兰,等.基于人工神经网络的发酵过程动态模式及优化[J].山东科学, 1997, 10 (3): 49-52
    24.隋青美,等.自组织神经网络在发酵过程建模与控制中的应用[J].山东工业大学学报, 2001, 31 (2): 121-126
    25.杜立强,等.啤酒发酵过程的单神经元自适应PID控制[J].河北建筑科技学院学报, 2001, 18 (2): 40-43
    26. Miao Z, et al. Strategies for optimizing feed rate of fed-batch yeast fermentation by fuzzy neural network [J], Chinese Journal of Chemical Engineering, 1998, 6 (4): 340-347
    27.花强,等.神经网络建模方法在维生素C发酵过程中的应用[J],化工学报, 1996, 47 (4): 433-438
    28.秦肖臻,等.神经网络用于啤酒发酵中糖度建模[J],武汉纺织工学院学报, 1998, 11 (2): 33-35
    29.连晋生,等.神经网络多变量监控系统在发酵工业中的应用[J],吉林工学院学报, 1997, 18 (4): 32-36
    30.苗志奇,等.谷氨酸流加发酵过程中的神经网络优化研究[J],生物工程学报, 1998, 14 (2): 198-202
    31.胡泽新,等.基于神经网络的非线性状态观测器及其应用[J],华东理工大学学报, 1994, 20 (1): 45-51
    32. Horiuchi J, Hiraga K. Industrial application of fuzzy control to large-scale recombinant B2 production [C], Proceeding of the 7 th International Computer Application in Biotechnology, Osaka: Elsevier Science, 1998, 282-285
    33.王畅.模糊控制算法在计算机对发酵过程罐温控制中的应用[J],长沙电力学院学报(自然科学版),1999, 14 (4): 321-324
    34.杜立强,等.某发酵过程的Smith-Fuzzy控制[J],河北建筑科技学院学报, 2001, 18 (3): 25-28
    35.曾一江.啤酒发酵温度的模糊控制研究[J],计算机自动测量与控制, 2000, 8 (3): 30-32
    36.徐玲,等.一类生化工程先进控制的实现[J],仪表技术与传感器, 2001, (4): 22-24
    37.李景川,等.酵母流加发酵过程中的模糊控制器[J],无锡轻工业大学学报, 2001, 20 (1): 16-19
    38.陈翀,等.模糊神经网络建模方法的研究[J],计算机与应用化学, 2000, 17 (6): 501-504
    39.殷铭,张兴华,戴先中.基于模糊神经网络的发酵过程溶解氧预估控制[J],控制与决策, 2000, 15 (5): 523-526
    40.孟华,付小美,曹桂萍.柠檬酸发酵过程的神经网络模糊控制[J],河北工业科技, 1999, 16 (3): 53-54
    41.刘文定,等.神经网络模糊控制在烟叶发酵过程中的应用[J],电力学报, 1998, 13 (1): 15-18
    42. Jong H, Modeling and simulation of genetic regulatory systems: A literature review [J], Journal of Computional Biology, 2002, 9 (1): 91-103
    43.崔光照,张勋才,牛云云.重建基因调控网络[J],生物信息学, 2007, 3 (5): 125-128
    44.孙啸,陆祖宏,谢建明.生物信息学基础[M],北京:清华大学出版社,2005
    45.杜锋,雷鸣,刘全.发酵过程的先进控制[J].信息与控制, 2004, 33 (3):314-317
    46.高学金,等.微生物发酵过程建模与优化控制[J].控制工程, 2006, 13 (2):152-153
    47. Wang S., Chung F. L., New cascaded fuzzy system (CFS) and its robust analysis based on syllogistic fuzzy reasoning [J], Chin. J. Electron, 2004, 21(2): 116-126.
    48. Huang S. Gene expression profiling, genetic networks, and cellular states: an intrating concept for tumorigenesis and drag discovery [J], J Mol Med, 1999, 77 (6): 469-480
    49. Li C X, Li X, Guo Z, Gong B S, Tu K. Analysis of the mRNA expression similarity of genes in the same gene expression regulatory pathway [J]. Hereditas (Beijing), 2004, 26 (6): 929-933
    50.刘万霖,李栋,朱云平,贺福初.基于微整列数据构建基因调控网络[J],遗传, 2007, 29 (12): 1434-1442
    51. Kanehisa M., Post-Genome Informatics [M], Oxford University Press. 2001.
    52. Zadeh L A. Fuzzy sets [J]. Information and Control, 1965, 8 (2): 338-353
    53. Zadeh L A. Fuzzy algorithm [J]. Information and Control, 1968, 12: 94-102
    54. Zadeh L A. Outline of a new approach to analysis of complex systems and decision processes [J]. IEEE Trans. Systems, Man, Cybernetics, 1973, 3 (1): 28-44
    55. Zadeh L A. The concept of a linguistic variable and its application to approximate reasoning [J], Part 1,2 and 3. Information Science, 1975, 8-9: 199-249, 301-357, 43-80
    56.窦振中.模糊逻辑控制技术及其应用[M].北京:北京航空航天大学出版社, 1995
    57.诸静.模糊控制原理及应用[M].北京:机械工业出版社, 1995
    58.赵振宇,等.模糊理论和神经网络的基础与应用[M].北京:清华大学出版社, 1996
    59. Takagi T, Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Trans. On System, Man and Cybernetics, 1985,15(1): 116-132
    60. Liang Q L, Mendel J M. An introduction to type-2 TSK fuzzy logic systems [C]. In Proc. IEEE International Fuzzy systems conference. Seoul, 1999, 1534-1539
    61. Liang Q L, Mendel J M. Interval type-2 fuzzy logic systems: Theory and design [J]. IEEE Trans. Fuzzy Syst., 2000, 8(5):535-550
    62. Gan M T, Madasu H. From a Gaussian Mixture Model to additive fuzzy systems [J]. IEEE Trans. Fuzzy Syst., 2005, 13(3): 303-316
    63. Penninckx M J, Elskens M T. Metabolism and functions of glutathione in micro-organisms [J]. Adv Microbial Physiol, 1993, 34: 239-301
    64. Harington C R, Mead T H. Synthesis of glutathione [J]. Biochem J, 1935, 29(3): 1602-1611
    65.刘振玉.谷胱甘肽的研究与应用[J].生命的化学, 1995, 15(1): 19-21
    66. Cooper A J L, Kristal B S. Multiple roles of glutathione in the central nervous system [J]. Biol Chem, 1997, 378(8): 793-802
    67. Smith J E. Relationship of in vivo erythrocyte glutathione flux to the oxidized glutathione transport system [J]. J Lab Clin Med, 1974, 83: 444-450
    68.沈亚领,李爽,迟莉丽,雷肇祖.谷胱甘肽的应用与生产[J].工业微生物, 2000, 30(2): 41-45
    69. Meister A, Anderson M E. Glutathione [J]. Ann Rev Biochem, 1983, 52: 711-760
    70. Izawa S, Inoue Y, Kimura A. Oxidative stress response in yeast: effect of glutathione on adaptation to hydrogen peroxide stress in Saccharomyces cerevisiae [J]. FEBS Lett, 1995, 368: 73-76
    71. Osuji G O. Glutathione turnover and amino acid uptake in yeast: evidence for the participation of theγ-glutamyl cycle in amino acid transport [J]. FEBS Lett, 1979, 105(2): 283-85
    72.王荣民,曹新志,萧刚,檀亦兵,方隽.谷胱甘肽测定方法初探.食品与发酵工业[J], 1992, 18(6): 34-38
    73. Jahoor F, Jackson A, Gazzard B, Philips G, Sharpstone D, Frazer M E, Heird W. Erythrocyte glutathione deficiency in symptom-free HIV infection is associated with decreased synthesis rate [J]. Am J Physiol, 1999, 276(1): E205-E211
    74.卓肇文.还原型谷胱甘肽的功能与应用[J].氨基酸杂志, 1989, 1: 41-42
    75.程元恺.谷胱甘肽的解毒作用与毒性代谢物[J].生物化学与生物物理进展, 1994, 21(5): 395-399
    76.郑建仙.功能性食品[M].北京:中国轻工业出版社, 1995, 347-349
    77.袁尔东,郑建仙.功能性食品基料?谷胱甘肽的研究进展[J].食品与发酵工业, 1999, 25(5): 52-56
    78. Sen C K. Nutritional biochemistry of cellular glutathione [J]. Nutr Biochem, 1997, 8: 660-672
    79. Chiaradia E, Avellini L, Rueca F, Spaterna A, Porciello F, Antonioni M T, Gaiti A. Physical exercise, oxidative stress and muscle damage in racehorses [J]. Comp Biochem Physiol, 1998, 119B(4): 833-836
    80. Spodaryk K. The activity of red blood cell glutathione reductase and glucose-6-phosphate dehydrogenase, and level of reduced glutathione after physical exercise and training [J]. Pol J Environ Stud, 1998, 7(6): 361-362
    81. Meister A. Antioxidant functions of glutathione [J]. Life Chem Rep, 1994b, 12(1): 23-27
    82. Penninckx M J. An overview on glutathione in Saccharomyces versus non-conventional yeasts [J]. FEMS Yeast Research, 2002, 2: 295-305
    83.卫功元,李寅,堵国成,陈坚. Candida utilis生物合成谷胱甘肽的营养及环境条件[J].应用与环境生物学报, 2003, 9(6): 642-646
    84. Alfafara C G, Kanda A, Shioi T, Shimizu H, Shioya S, Suga K. Effect of amino acids on glutathione production by Saccharomyces cerevisiae [J]. Appl Microbiol Biotech, 1992a, 36(4): 538-540
    85. Alfafara C G, Miura K, Shimizu H, Shioya S, Suga K. Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 1992b, 37: 141-146
    86. Alfafara C G, Miura K, Shimizu H, Shioya S, Suga K. Cysteine addition strategy for maximum glutathione production in fed-batch culture of Saccharomyces cerevisiae [J]. Appl Microbiol Biotechnol, 1992, 37: 141-146
    87.北京大学生物系生物化学教研室编.生物化学实验指导[M].北京:高等教育出版社, 1984, 22~24
    88. Tietze F. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: application to mammalian blood and other tissues [J]. Anal Biochem, 1969, 27: 502-522
    89. Takagi T and Sugeno M. Fuzzy identification of systems and its application to modeling and control [J]. IEEE Trans. On System, Man, and Cybernetics, 1985, 15 (1): 116-132
    90. Hao Y. General SISO Takagi-Sugeno fuzzy systems with linear rule consequent are universal approximators [J], IEEE Transaction on Fuzzy Systems, 1998, 6 (4): 582-587
    91.曾珂,徐文立,张乃尧.典型T-S模糊系统是通用逼近器[J],控制理论与应用, 2001, 18 (2): 294-297
    92. Wang S T, Chung F L, Shen H B, Hu D W. Cascaded centralized TSK fuzzy system: universal approximator and high interpretation. Applied Soft Computing, 2005 , 5: 131-145.
    93. Linko P, Zhu Y H. Neural network modeling for realtime variable estimation and prediction in the control of glucoamylase fermentation [J]. Process Biochem, 1992, 27: 275-283
    94. Kennedy M J, Prapulla S G, Thakur M S. A comparison of neural networks to factorial design [J]. Biotechnol Tech, 1992, 6: 293-299
    95. Kearns M, Ron D. Algorithmic stability and sanity-check bounds for leave-one-out cross-validation [J]. Tenth Annual Conference on Computational Learning Theory, 1997, 152-162
    96. Desai K M, Akolkar S K, Badhe Y P, Tambe S S, Lele S S. Optimization of fermentation media for exopolysaccharide production from Lactobacillus plantarum using artificial intelligence based techniques [J]. Process Biochemistry, 2006, 41: 1842-1848
    97. Linko P, Zhu Y H. Neural network modeling for realtime variable estimation and prediction in the control of glucoamylase fermentation [J]. Process Biochem, 1992, 27: 275-283.
    98. Kennedy M J, Prapulla S G, Thakur M S. A comparison of neural networks to factorial design [J]. Biotechnol Tech, 1992, 6: 293-299.
    99.张光亚,方柏山.木聚糖酶氨基酸组成与其最适pH的神经网络模型[J].生物工程学报, 2005, 21(4): 658-661.
    100.林毅,蔡福营,张光亚.苏云金杆菌杀虫晶体蛋白活性预测的支持向量机模型[J].生物工程学报, 2007, 23(1): 127-132.
    101.林毅,蔡福营,袁宇熹,张光亚.基于均匀设计的主成分分析-支持向量机模型及其在几丁质酶最适pH建模中的应用[J].生物工程学报, 2007, 23(3): 514-519.
    102.王健,陈宁,杨海军,谭青乔,刘淑云,张克旭.基于BP神经网络的L-色氨酸发酵过程建模[J].天津轻工业学院学报, 2003, 18(3): 1-4.
    103.边肇祺,张学工,等.模式识别[M].北京:清华大学出版社,1999.
    104.Wong C C, Lai H R. Generating fuzzy control rules by a clustering algorithm based on a grey relational measure [C]. Proc of IEEE Int Conf Fuzzy Systems. Seoul Korea: IEEE press, 1999. 470– 473
    105.赵振宇,徐用懋.模糊理论和神经网络的基础与应用[M].北京:清华大学出版社,1996.
    106.Girolami M, He Chao. Probability density estimation from optimally condensed data samples [J]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2003, 25(10): 1253-1264.
    107. Erhan G, Jose C P. Information theoretic clustering [J]. IEEE Trans on Pattern Analysis and Machine Intelligence, 2002, 24(2): 158-171.
    108. Jang S R , Sun C T, Mizutani E. Neuro-fuzzy and soft computing [M]. Upper Saddle River, NJ: Prentice-Hall, 1997.
    109.Chung F L, Wang S T, Deng Z H, Hu D W. CATSMLP: Towards a robust and interpretable multilayer perceptron with sigmoid activation functions [J]. IEEE Transactions on Systems, Man and Cybernetics- Part B, 2006, 36(6): 1319-1331.
    110.Weuster-Botz D, Wandrey C. Medium optimization by genetic algorithm for continuous production of formate dehydrogenase [J]. Process Biochem, 1995, 30 (6): 563–71.
    111.Fang B S, Hong W C, Xiaolan X, Ning W, Zongding H. Using genetic algorithms coupling neural networks in a study of xylitol production:medium optimisation [J]. Process Biochem, 200, 38: 979–85.
    112.Franco-Lara E, Link H, Weuster-Botz D. Evaluation of artificial neural networks for modelling and optimization of medium composition with a genetic algorithm [J]. Process Biochem, 2006, 41 (10): 2200–6.
    113.冯斌,须文波.基于TSK模糊系统的生化变量预估模型[J].计算机与应用化学,2006, 23 (4): 343-346.
    114.Kullback S. Information Theory and Statistics [M]. New York: Dover Publications, 1968.
    115.Gardner W A. Learning characteristics of stochastic-gradient-descent algorithms: a general study, analysis and critique [J]. Sig. Proc. , 1984, 6: 113-133.
    116.王立新著,王迎军译.模糊系统与模糊控制[M].北京:清华大学出版社, 2003
    117.Iiya Shmulevich,et al. Inference of genetic regulatory networks under the bestfit extension paradigm [J],2002
    118.D’HaeseleerP,et al. Genetic network inference: from co-expression clustering to reverse engineering [J]. Bioinformatics,2000, 16:707-726
    119.Kanehisa M. Post-Genome Informatics [M]. Oxford University Press.2001
    120.Wessels L, et al. A comparison of genetic network models [C]. In: Pacific Symposium on Biocomputing,2001
    121.Wagner A. How to reconstruct a large genetic network from n gene perturbation in n^2 easy steps [J], Bioinformatic,2001;17:1183-1197
    122.Vansomeren E P,et al. Search for limited connectivity in genetic network [J],2002
    123.Hughes T R,et al.. Functional discovery via a compendium of expression profiles [J]. Cell, 2000, 102(1): 109-126
    124.Bhan A, Galas D J, Dewey T G. A duplication growth model of gene expression networks [J]. Bioinformatics, 2002, 18(11): 1486-1493
    125.Mnaimneh S, et al. Exploration of essential gene functions via titratable promoter alleles [J]. Cell, 2004, 118(1): 31-44.
    126.Li C X, Li X, Guo Z, Gong B S, Tu K. Analysis of the mRNA expression similarity of genes in the same gene expression regulatory pHereditas [J], Hereditas, 2004, 26(6): 929-933
    127.Tommi A. Simulation tool for genetic regulatory networks [J], Bioinformatics. 2003
    128.Paul S, Douglas A, Baxter, John H. Byrne.Modeling transcriptional control in genenetworks—methods, recent results, and future directions [J]. Bulletin of Mathematical Biology, 2000, 62: 247–292
    129.P. D'haeseleer X, Wen S, Fuhrman R, Somogyi. Linear modeling of mRNA expression levels during CNS development and injury [J]. Pacific Symposium on Biocomputing, 1999, 4: 41-52
    130.易东,李辉智.基因调控网络研究与数学模型的建立[J].中国现代医学杂志, 2003, 13 (24): 74-78
    131.Wessels L., et al. A comparison of genetic network models [J]. Pacific Symposium on Biocomputing, 2001
    132.Wahde M, Hertz J. Coarse-grained reverse engineering of genetic regulatory networks [J], Biosystems. 2000, 3(55): 129-136
    133.Tanay A, Shamir R. Computational expansion of genetic networks [J], Bioinformatics, 2001, 17: 270-278
    134.Maraud S, et al. Gene expression data analysis with a dynamically extended self-organized map that exploits class information [J], Bioinformatics, 2002, 18: 1446-1453
    135.Wagner A. Estimating Coarse Gene Network Structure from Large-Scale Gene Perturbation Data [J], Genome Res., February 1, 2002; 12(2): 309 - 315
    136.Akutsu T, et al. Identification of gene regulatory networks by strategic gene disruptions and gene overexpressions [C]. Proceedings of the ninth annual ACM-SIAM symposium on Discrete algorithms, 1998: 695-702
    137.Rung J, et al. Building and analysing genome-wide gene disruption networks [J], Bioinformatics, 2002, 18: 202– 210
    138.AkutsuT, et al. Inferring qualitative relations in genetic networks and metabolic pathways [J], Bioinformatics, 2000,16: 727-734
    139.Liang S, Furhman S, Somogyi R. Reveal a general reverse engineering algorithm for inference of genetic network architectures [J]. Pacific Symp Biocomp, 1998, 3: 18-29
    140.Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the boolean network model [J]. Pacific Syrup J. Biocom, 1999, 4: 17-28
    141.Somogyi R, Sniegoski CA. Modeling the complexity of genetic networks: understanding muitigenic and pleiotropic regulation [J]. Complexity, 1996, 1: 45-63
    142.Somogyi R, Fuhrman S. Distributivity a general information the oretic network measure, or why the whole is more than tiles um of its parts [C]. IPCAT97, 1997
    143.Yuh C H, Bolouri H,Davidson E H. Genomic cis-regulatory logic: experimental and computational analysis of a sea urchin gene [J]. Science, 1998, 9(27):1896-902
    144.Hoon M J L, Imoto S, Kobayashi K, Ogasawara N, Miyano S. Inferring gene regulatory networks from time-ordered gene expression data of Bacillus Subtilis using differential equations [J]. Pacific Symposium on Biocomputing, 2003, 8: 17-28
    145.Weaver D C, Workman C T, Stormo G D. Modeling regulatory networks with weight matrices [J]. Pacific Symp Biocomp, 1999, 4: 112-123
    146.Spears W M. Simulated annealing for hard satisfiability problems. In D.S. Johnson and M.A. Trick, editors, Cliques, coloring and satisfiability: second DIMACS implementation challenge [J], volume 26 of DIMACS series in discrete mathematics and theoretical computer science, 1996, 533-558.
    147.Reinitz J, Sharp D H. Mechanism of eve stripe formation [J]. Mech Dev, 1995, 49: 133-158
    148.Lhdesmki H, Hautaniemi S, Shmulevich I, et al. Relationships between probabilistic Boolean networks and dynamic Bayesian networks as models of gene regulatory networks [J]. Signal Processing , 2006 , 86: 814-834
    149.Quackenbush J. Computational analysis of microarray data [J] . Nat Reviews Genetics , 2001, 2: 418-427
    150.Butte A J, Kohane I S. Mutual information relevance networks: Functional genomic clustering using pairwise entropy lneasurements [J]. PSB ,2000,5:415-426
    151.SteuerR, et al. Bioinformatics, 2002, 18: 231-240
    152.Bickel D R. Probabilities of spurious connections in gene networks : application to expression time series [J] . Bioinformatics, 2005, 21: 1121-1128
    153.Friedman N. Inferring cellular networks using probabilistic graphical models [J]. Science, 2004 , 303: 799-805
    154.徐肖江,王连水,丁达夫.从酵母表达时间序列估计基因调控网络[J].生物化学与生物物理学报, 2003, 35: 707-716
    155.Rice J J,Tu Y, Stslsvitzky G. Reconstructing biological networks using conditional correlation analysis [J]. Bioinformatics, 2005, 21: 765-773
    156.Spirtes P, et al. In: Proc. of the Atlantic Symposium on Computational Biology [J], Genome Information Systems &Technology, 2000
    157.Heckerman D. A tutorial on learning with Bayesian networks In: Jordan MI, ed. Learning in graphical models [M]. USA: MIT Press, 1998, 301-354
    158.Bernardo D D, Gardner T S, and Collins J J. Robust identification of large genetic networks [J]. Pacific Symposium on Biocomputing, 2004, 9: 486-497
    159.Fricdman N, Linial M, Nachman I, Peter D. Using Bayesian networks to analyze expression data [J]. J Cornput Biol, 2000, 7: 601-620
    160.Imoto S, Goto T, Miyano S. Estimation of genetic networks and functional structures between genes by using Bayesian networks and nonparametric regression [J]. Pac Syrnp Biocornput, 2002, 7: 175-186
    161.Akutsu T, Miyano S, Kuhara S. Identification of genetic networks from a small number of gene expression patterns under the Boolean network model [J]. Pac Syrnp Biocornput, 1999, 4: 17~28
    162.Hartemink A J, Gifford D K, Jaakkola T S, Young R A. Using graphical models and genomic expression data to statistically validate models of genetic regulatory networks [J]. Pac Syrnp Biocomput, 2001, 6: 422-433
    163.Peter D, Regev A, Elidan G, Friedman N. Inferring subnetworks from perturbed expression profiles [J]. Bioinformatics, 2001, 17: 215-224
    164.Yoo C, Thorsson V, Cooper G F. Discovery of causal relationships in a gene-regulation pathway from a mixture of experimental and observational DNA microarray data [J]. Pac Symp Biocornput, 2002, 7: 498-509
    165.Smith V A, Jarvis E D, Hartemink A J. Evaluating functional network inference using simulations of complex biological systems [J]. Bioinformatics, 2002, 18: 216-224
    166.Husmeier D. Sensitivity and specificity of inferring genetic regulatory interactions from microarray experiments with dynamic Bayesian networks [J]. Bioinformtaics, 2003, 19: 2271-2282
    167.Ong I M, Glasner J D, Page D. Modelling regulatory pathways in E. coli from time series expression profiles [J]. Bioinformatics, 2002, 18: 241-248
    168.Chen, et al. Modeling gene expression with differential equations [C], Proc. Of Pacific Symposium on Biocomputing, 1999, 4: 29-40
    169.Tominaga, et al. Efficient numerical optimization algorithm based on genetic algorithm for inverse problem [C], Proc. of Genetic and Evolutionary Computation Computation Conference, 2000: 251-258
    170.Wahde M, Hertz J. Coarso-grained reverse engineering of genetic regulatory networks [J]. Biosystems, 2000, 55: 129-136
    171.Chen T, He H L, Church G M. Modeling gene expression with differential equations [J]. Pac Syrnp Biocomput, 1999, 4: 29-40
    172.D'haeseleer P, Wen X, Fuhrman S, Somogyi R. Linear modeling of mRNA expression levels during CNS development and injury [J]. Pac Symp Biocomput, 1999, 4: 41-52
    173.Akutsu T, Miyano S, Kuhara S. Inferring qualitative relations in genetic networks and metabolic pathways [J]. Bioinformatics, 2000, 16: 727-734
    174.Mcadams H H,Arkin A. Stochastic mechanisms in gene expression [J]. Proc Natl. Acad. Sci. USA, 1997, 94: 814-819
    175.Golub T R,Slonim D K,Tamayo P, et al. Molecular classification of cancer : class discovery and class prediction by gene expression monitoring [J]. Science, 1999, 286: 531-537
    176.吴昕,罗静初,李伍举.基因调控元件的计算机识别和基因调控网络构建[J],生物信息学, 2004, 12(7): 203-324
    177.Ronen M, Rosenberg R, Shraiman B I, Alon U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics [C]. Proceedings of the National Academy of Sciences, 2002, 99(16): 10555-10560.
    178.王明怡,夏顺仁,陈作舟.基于微阵列数据的基因网络预测方法研究进展[J],生物物理学报, 2005, 21(1): 19-25

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700