白皮松生物量分配及径向生长与气候因子的关系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林是陆地生态系统的主体,也是陆地生态系统中生产力最高的系统,森林生态系统在全球碳收支中扮演着重要角色,森林碳库的任何变化都将对大气CO2浓度产生影响。准确估计森林生态系统的生物碳储量以及森林生长与气候因子之间的关系将有利于探明森林生长对气候变化的响应。本论文以白皮松(Pinus bungeana Zucc. et Endl.)为研究对象,在甘肃徽县采伐30株白皮松标准木,分析比较了不同林龄(16a、35a、50a和68a)白皮松林分的生物量、碳、氮密度分配,同时建立关键气候因子-年轮宽度模型,利用白皮松生物量方程预测未来气候变化下森林生物量以及碳汇能力的变化。本研究探讨了在未来气候变化下森林生长对气候变化的响应机理,为减少预测森林生态系统碳储量估算中不确定性提供一些方法,并为制定应对气候变化下的森林可持续经营与碳汇功能评估政策提供依据。主要研究结果如下:
     (1)随着林龄的增大,树木各组分生物量平均生长率也增加,在0~16a、17~35a、36~50a和51~68a树木平均生长率分别是1.91,4.72,6.16和9.75kg·year-1。树木各组分生物量分配趋势在不同林龄阶段相对稳定:去皮树干>树枝>粗根>树叶>树皮>细根(≤5mm)。根冠比在不同林龄阶段基本保持恒定,约为0.28。
     (2)以胸径(DBH)为自变量的幂函数是估算树木各组分生物量的最优模型。在输入变量中加入树高(H)并没有显著地改善树木各组分生物量的预测。此外,还应考虑林龄对生物量模型参数的影禹。
     (3)乔木层各组分生物量也随林龄增加,总生物量由16a的47.96t ha-1增加至68a的299.23t ha-1,植被总生物量由16a的54.13t ha-1增加至68a的313.73t ha-1。林下植被的生物量随林龄先增加后减少。
     (4)林龄对树木各组分碳、氮含量没有显著影响,不同组分间碳、氮含量存在显著差异,其范围分别为48.74~51.81%和0.21~1.55%;不同林龄下白皮松各组分含碳率为:树叶>树皮>树枝>树根>去皮树干,含氮率为:树叶>树枝>树皮>树根>去皮树干。林龄对树叶和去皮树干的碳氮比影响较大,碳氮比随着林龄的增加而显著升高。建议在以后白皮松碳、氮库计算中,使用各林龄全树平均含碳、氮率,分别为49.62%和0.43%。
     (5)土壤总有机碳、氮含量均随着土层深度的增加而减小,随着林龄的增加土壤碳、氮含量增大。0-20cm土壤是决定士壤碳、氮密度的主要深度,分别占土壤总碳密度的61.9%~63.7%和士壤总氮密度的58.3%~60.0%。
     (6)林分总碳密度和总氮密度分别从16a的93.38t ha-1和6.60t ha-1增加到68a的240.34t ha-1和8.63L ha-1。幼龄林(16a)和中龄林(35a)阶段,土壤碳库是白皮松林生态系统最大的碳库,乔木层其次:而在近熟林(50a)和成熟林(68a)阶段,乔木层碳库为最大碳库,土壤层其次。在各要龄阶段土壤为生态系统的最大氮库,乔森层其次
     (7)基于响应面孙数建立了白皮松树木径向生长-气候因子模型:RWI1=0.277-0.029×TmaxC3+0.058×TmaxC3+0.058×TmeanP9在气温升高1.4、2.7和4.0℃情景下预测的皮松林木胸径分别增加4.5%、8.6%和12.7%。16a、35a、50a和68a的白皮松林分在气温升高1.4、2.7和4.0℃情景下,乔木层生物量分别增加11.9%~32.2%、6.1%~25.4%、11.8%~32.2%、5.9%~25.2%。
Forests play an important role in carbon (C) exchange between the atmosphere and the terrestrial biosphere, and store more C per unit area than any other terrestrial ecosystem. Therefore afforestation/reforestation may act as an effective measure to mitigate elevated atmospheric CO2concentrations. Information on tree biomass is essential in the sustainable ecosystem management and estimation of C pools. There is therefore a continuing need for accurate information on forest biomass, the capacity of forests to sequester C and the relationship between forest growth and climate factor. Accurate data on biomass accumulation and partitioning are crucial for many ecological applications, from forest management to global carbon accounting. We investigated in an age-sequence of secondary lacebark pine (Pinus bungeana Tucc. et Endl.) forests (16-,35-,50-, and68-year-old) in western China, to understand the pattern of biomass partitioning, C and N pools during stand development, to develop allometric equations, to build climate factor-treering-biomass model and to predict the biomass, C and N pools under global warming scenarios. The main results showed that:
     (1) With stand ageing, biomass in all tree components of lacebark pine increased. The mean biomass of each of tree component increased steadily as the stand aged. The average tree growth rate increased with stand age, being1.91,4.72,6.16and9.75kg tree-1year-1for the16-,35-,50-, and68-year-old stand, respectively. The ratio of below-to aboveground biomass (~0.28) was, independent of stand age. The pattern of biomass distribution for different components of the tree was in the order of stem wood> branch> root> foliage> stem bark> fine root.
     (2) Power equation is the best model for predicting the biomass of lacebark pine components. Compared to DBH-H allometric equations, the DBH-only equations performed slightly better and are much more efficient to apply.
     (3) Total tree biomass demonstrated a rapid increase from the young stand to the mature stand, from47.96t ha-1for the16-year-old stand to299.23t ha-1for the68-year-old stand. The forest ecosystem biomass increased from54.13t ha-1in the16-year-old stand to313.73t ha-1in the 68-year-old stand. The understory biomass increased in earlier stages of stand development and then declined in later stages.
     (4) C concentrations of individual tree components varied conservatively from49to52%over stand age but N concentrations differed significantly among components and remained constant across stand ages, ranging from0.21to1.55%, suggesting a constant C concentration of49.62%for C and0.43%for N conversion in modeling.
     (5) Mineral soil organic C and N amounts decreased with increasing soil depth in all stands. Soil C and N concentrations in the younger stands tended to be lower than that in the older stands. Approximately60%of mineral C and N were stored within the upper20cm soil layer.
     (6) Ecosystem C (93.38~240.34Mg C ha-1) and N (6.60~8.63Mg N ha-1) of lacebark pine increased with stand age. However, the changes in C and N stocks during stand development showed the reverse U-shaped pattern for understory and the U-shaped pattern for mineral soil. Mineral soil was the dominant N pool for all stands (79-96%) and was the largest C pool in younger stands (53%~71%). Trees were the largest C" pool in older stands (55%~62%). The contribution of trees to ecosystem C and N pools increased, but that of mineral soil decreased, with stand age.
     (7) The relationship between radial growth of lacebark pine and climate factors was analyzed and the following model was built: RWI=0.277-0.029×TmaxC3+0.058×TmeanP9, where RWI is the index of tree-ring, TmaxC3the mean temperature in current March and TmeanP9the mean temperature in previous September. Assuming a future temperature increase of1.4,2.7and4.0°C the radial growth of lacebark pine was predicted to increase by4.5%,8.6%and12.7%, respectively. The biomass of lacebark pine would increase by11.9%~32.2%,6.1%~25.4%,11.8%~32.2%and5.9%~25.2%for the16-,35-,50-, and68-year-old stand, respectively.
引文
1.《第二次气候变化国家评估报告》编写委员会.第二次气候变化国家评估报告[M].北京:科学出版社,2011.
    2. 曹吉鑫.北京北部山区不同林龄的油松和侧伯人工林碳库研究[D].北京:北京林业大学,2011.
    3. 曹受金,曹福祥,项文化.利用树木年轮研究湖南炎陵气温变化情况——1840年以来5~7月份气温变化情况重建[J].中南林业科技大学学报,2012,32(4):10-14.
    4. 柴正礼,姚孟春,张小全,朱建华,侯振宏,王晓春.树木年轮对气候变化响应研究进展[J].安徽农业科学,2010,38(2):959-961.
    5. 陈彩虹,田大伦,方晰,等.城郊4种人工林林下植物物种多样性、生物量与土壤养分相关性[J].水土保持学报,2010,(6):213-217.
    6. 陈峰,袁玉江,魏文寿,王丽丽,喻树龙,李杨,等.树轮记录的过去384a乌鲁木齐河源7月温度变化[J].冰川冻土,2011a,33(1):55-63.
    7. 陈峰,袁玉江,魏文寿,张同文,张瑞波,等.树轮记录的贺兰山北部近2008年5-7月温度变化[J].应用气象学报,2011b,22(4):463-471.
    8. 陈灵芝,任继凯,鲍显诚,等.北京西山(卧佛寺附近)人工油松林群落学特性及生物量的研究[J].植物生态学与地植物学丛刊,1984,(3):173-181.
    9. 陈灵芝,陈清朗,鲍显诚,等.北京山区的侧柏林(Platycladus orientalis)及其生物量研究[J].植物生态学与地植物学丛刊.1986,(1):17-25.
    10.陈民生,赵京岚,刘杰,等.人工林林下植物研究进展[J].山东农业大学学报(自然科学版),2008,(2):321-325.
    11.陈泮勤,王效科,王礼茂.中国陆地生态系统碳收支与增汇对策[M].北京:科学出版社,2008.
    12.陈泮勤.地球系统碳循环[M].北京:科学出版社,2004,10.
    13.陈遐林.华北主要森林类型的碳汇功能研究[D].北京:北京林业大学,2003.
    14.程堂仁.甘肃小陇山森林生物量及碳储量研究[D].北京:北京林业大学,2007.
    15.崔海亭,刘鸿雁,戴君虎.山地生态学与高山林线研究[M].北京:科学出版社,2005.
    16.党承林,吴兆录,王崇云,等.云南中甸长苞冷杉群落的生物量和净生产量研究[J].云南大学学报(自然科学版),1994,16(3):214-219.
    17.方精云,陈安平,赵淑清,等.中国森林生物量的估算:对Fang等Science一文(Science,2001,291:2320-2322)的若干说明[J].植物生态学报,2002,26(2):243-249.
    18.方精云,郭兆迪,朴世龙,陈安平.1981~2000年中国陆地植被碳汇的估算[J].中国科学(D辑:地球科学).2007,37(06):804-812.
    19.方精云,刘国华,徐嵩龄.我国森林植被的生物量和净生产量[J].生态学报,1996, 15(5):497-508.
    20.方精云,刘国华,徐嵩龄.中国陆地生态系统碳库[D].见:王如松,方精云,高林,冯宗炜编.现代生态学热点问题研究[C].北京:中国科技出版社,1996.251-277.
    21.方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报,2001,25(5):594-602.
    22.方精云.北半球中高纬度的森林碳库可能远小于目前的估算[J].植物生态学报,2000,24(5):635-638.
    23.方晰,田大伦,项文化.间伐对杉木人工林生态系统碳贮量及其空间分配格局的影响[J].中南林业科技大学学报,2010,30(11):47-53.
    24.冯险峰,刘高焕,陈述彭,等.陆地生态系统净第一性生产力过程模型研究综述[J].自然资源学报,2004,19(3):369-378.
    25.冯宗炜,陈楚莹,张家武.湖南会同地区马尾松林生物量的测定[J].林业科学,1982,18(2):127-134.
    26.冯宗炜,王效科,吴刚.中国森林生态系统的生物量和生产力[M].北京:科学出版社,1999.
    27.高露双.长白山典型树干种径向生长与气候因子的关系研究[D].北京:北京林业大学,2011.
    28.耿玉清.北京八达岭地区森林土壤理化特征及健康指数的研究[D].北京:北京林业大学,2006.
    29.勾晓华,陈发虎,李金豹,等.利用树木年轮资料重建祁连山中段春季降水的变化[J].兰州大学学报:自然科学版,2002,38(1):105-110.
    30.关玉秀等.油松林林生态系统的研究(Ⅱ)河北承德与山西太岳油松林生产力的比较[J].北京林业大学学报,1986,(1):1-10.
    31.国庆喜,张锋.基于遥感信息估测森林的生物量[J].东北林业大学学报,2003,31(2):13-16.
    32.韩士杰,廖利平,姜风岐.关于森林界面生态学的思考[J].应用生态学报,1998,9(5):538-542.
    33.何艺玲,傅懋毅.人工林林下植物的研究现状[J].林业科学研究,2002,(6):727-733.
    34.侯爱敏,彭少麟,周国逸.树木年轮对气候变化的响应研究及应用[J].生态科学,1999,18(3):16-23.
    35.胡海清,赵致奎,王晓春,张远东.基于树轮火疤塔河蒙克山樟子松林火灾的频度分析.生态学报,2010,30(23):6372-6379.
    36.黄玉梓,樊后保,李燕燕,等.氮沉降对杉木人工林生长及林下植物碳库的影响[J].生态环境学报,2009(4):1407-1412.
    37.姜倩倩,田娜娜,夏泰英,许玉婷,鲁法典.温度、降水与树木径向生长关系研究进展[J].山东农业大学学报(自然科学版),2012,43(3):480-482.
    38.蒋高明,韩兴国,林光辉.大气CO2浓度升高对植物的直接影响——国外十余年来模 拟实验研究之主要手段及基本结论[J].植物生态学报,1997,21(6):489-502.
    39.康兴成,程国栋,陈发虎,勾晓华.祁连山中部公元904年以来树木年轮记录的旱涝变化[J].冰川冻土,2003,25(5):518-525.
    40.雷静品,封晓辉,施征,白登忠,肖文发.海拔梯度上青海云杉向生长与气候关系稳定性研究[J].西北植物学报,2012,32(12):2518-2529.
    41.雷静品.三峡库区马尾松、柏木林木生长及健康经营研究[D].北京:中国林业科学研究院,2009.
    42.冷泠.大岗山丝栗栲和樟树年轮宽度对气候变化响应研究[D].中国林业科学研究院硕士论文,2007.
    43.李朝,周伟,关庆伟,等.徐州石灰岩山地侧柏人工林生物量及其影响因子分析[J].安徽农业大学学报,2010,(4):669-674.
    44.李春平,吴斌,张宇清.山东郓城农田防护林杨树器官含碳率分析[J].北京林业大学学报,2010,32(2):74-78.
    45.李春义,马履一,王希群,徐听.抚育问伐对北京山区侧柏人工林林下生物多样性的短期影响[J].北京林业大学学报,2007,29(3):60-66.
    46.李春义,马履一,徐听.森林抚育对生物多样性影响的研究进展[J].世界林业研究2006,19(6):27-32.
    47.李德军,莫江明,方运霆,等.氮沉降对森林植物的影响[J].生态学报,2003,23(9):1891-1900.
    48.李合生主编.现代植物生理学[M].北京:高等教育出版社,2002,184-1 85.
    49.李怒云,吕佳(编译).林业碳汇计量[M].北京:中国林业出版社,2009,314-316.
    50.李文华,等.长白山主要生态系统生物生产量的研究[J].森林生态系统研究,1981,2:34-50.
    51.李意德,等.我国热带天然林植被C贮存量的估算[J].林业科学研究,1999,11(2):156-162.
    52.李志恒,张一平.陆地生态系统物质交换模型[J].生态学杂志,2008,27(7):1207-1215.
    53.刘光崧.土壤理化分析与剖面描述[M].北京:中国标准出版社,1996.
    54.刘广菊,胡海清,张海棠.天然次生林火干扰史的重建方法.东北林业大学学报,2008,36(5):74-77.
    55.刘国华,傅伯杰,方精云.中国森林碳动态及其对全球碳平衡的贡献[J].生态学报,2000,20(5):733-740.
    56.刘磊,温远光,卢立华,等.不同林龄杉林人工林林下植物组成及其生物量变化[J].广西科学.2007(2):172-176.
    57.刘慎愕.动态地植物学—基本理论的探讨及其应用[M],刘慎愕文集,北京:科学出版社,1985.
    58.刘世荣,徐德应,王兵.气候变化对森林生产力的影响[J].1994,7(4):425-430.
    59.刘卫国,潘晓玲,高炜,等.新疆阜新绿洲生态系统生物量遥感估算分析[J].资源科学,2005,27(5):134-140.
    60.刘增兰.浅谈全球环境变化的生态后果[J].安徽农学通报,2004,10(2):74-75.
    61.马履一,李春义,王希群,徐昕.不同强度间伐对北京山区油松生长及其林下植物多样性的影响[J].林业科学.2007,43(5):1-9.
    62.马钦彦,陈遐林,王娟,等.华北主要森林类型建群种的含碳率分析[J].2002,24(5/6):97-100.
    63.马钦彦,谢征鸣.中国油松林储碳量基本估计[J].北京林业大学学报,1996,18(3):31-34.
    64.马钦彦.华北油松人工林单株林木的生物量[J].北京林学院学报.1983(4):1-16.
    65.马钦彦.油松生物量及第一性生产力的研究[D].北京:北京林业大学,1988.
    66.马钦彦.中国油松生物量的研究[J].北京林业大学学报,1989(4):1-10.
    67.马炜,孙玉军,郭孝玉.不同林龄长白落叶松人工林碳储量[J].生态学报,2010,30(17):4659-4667.
    68. 毛学文,张海林,孔红.小陇山种子植物区系组成及特征的研究[J].植物研究,2003,23(4):485-491.
    69.毛学文.小陇山植物区系的研究[J].西北植物学报,1998,18(6):110-112.
    70.潘维铸,李利村,高正衡.2个不同地域类型杉木林的生物产量和营养元素分布[J].中·南林业科技,1979(4):12-14.
    71.潘维铸,田大伦.森林生态系统第一性生产量的测定技术与方法[J].湖南林业科学,1981,2:112.
    72.朴世龙,方精云.1982-1999年青藏高源植被净第一性生产力及其时空变化[J].自然资源学报,2002,17(3):373-380.
    73.漆良华,刘广路,范少辉,等.不同抚育措施对闽西毛竹林碳密度、碳贮量与碳格局的影响[J].生态学杂志2009,28(8):1482-1488.
    74.茹文明.老顶山人工油松林生物量的研究[J].河南科学,1999,14(增刊):64-65.
    75.邵雪梅,范金梅.树轮宽资料所指示的川西过去气候变化[J].第四纪研究,1999(1):81-89.
    76.邵雪梅,吴祥定.华山树木年轮年表的建立[J].地理学报,1994,49(2):174-180.
    77.邵雪梅,吴祥定.利用树轮资料重建长白山区过去气候变化[J].第四纪研究,1997(1):76-85.
    78.邵月红,潘剑君,孙波.不同森林植被下土壤有机碳的分解特征及碳库研究[J].水土保持学报,2005,(3):24-28.
    79.沈长泗,陈金敏,张志华,等.利用树木年轮重建山东峄山200年降水变化[J].地理研究,1998,17(2):150-156.
    80.史大林.碳汇林经营数表编制的探索[D].北京:北京林业大学,2008.
    81.孙睿,朱启疆.气候变化对中国陆地植被净第一性生产力影响的初步研究[J],遥感学报,2001,5(1):58-61.
    82.索安宁,巨天珍,张俊华,等.甘肃小陇山锐齿栋群落生物多样性特征分析[J].西北植物学报,2004,24(10):1877-1881.
    83.汪永文,王力,王丽丽,等.马尾松混交林林下植物结构及化物量特征研究[J].安徽农业大学学报.2010(2):312-316.
    84.王九龄.中国北方造林技术大全[M].北京:北京科学技术出版社,1992:560-593.
    85.王邵军,阮宏华.全球变化背景下森林生态系统碳循环及其管理[J].南京林业大学学报:自然科学版,2011,35(2):113-116.
    86.王绍强,刘纪远,于贵瑞.中国陆地土壤有机碳蓄积量估算误差分析[J].应用生态学报.2003.14(05):797-802.
    87.王婷,于丹,李江风,马克平.树木年轮宽度与气候变化关系研究进展[J].植物生态学报,2003,27(1):23-33.
    88.王婷.嵩山侧柏人工林群落结构、生物量及物种多样性研究[D].河南农业大学,2000,28-31.
    89.王小平,刘晶岚,王九龄,等.白皮松种子及球果形态特征的地理变异[J].北京林业大学学报,1998,20(3):25-30.
    90.王小平,刘晶岚,王九龄.白皮松种子休眠特性的种源变异[J].应用生态学报,2000,11(1):9-12.
    91.王小平,王九龄,刘晶兰,等.白皮松分布区的气候区划.林业科学[J],1999,35(4):101-106.
    92.王小平.白皮松生物学及种子生理生态.北京:中国环境科学出版社.2002.
    93.王晓春,及莹.树木年轮火历史研究进展[J].植物生态学报,2009,33(3):587-597.
    94.王效科,冯宗炜.中国森林生态系统中植物固定大气碳的潜力[J].生态学杂志,2000,19(4):72-74.
    95.王效科.中国森林生态系统的生物量、碳贮量和生物质燃烧释放的含碳气体[D].北京:中国科学院生态环境研究中心,1997.
    96.王秀云,孙玉军.森林生态系统碳储量估测方法及其研究进展[J].世界林业研究,2008,21(5):26-29.
    97.王旭,周广胜,蒋延玲,贾丙瑞,王风玉,周莉.山杨白桦混交次生林与原始阔叶红松林土壤呼吸作用比较[J].植物生态学报,2007,31(3):348-354.
    98.王妍,张旭东,彭镇华,等.森林生态系统碳通量研究进展[J].世界林业研究,2006,19(3):12-17.
    99.吴鹏飞,朱波.桤柏混交林林下植物结构及生物量动态[J].水土保持通报,2008,(3):44-48.
    100.吴祥定,邵雪梅.采用树轮宽度资料分析气候变化对树木生长量影响的尝试[J].地理学报,1996,51(S1):92-10.
    101.吴祥定.树木年轮与气候变化[M].北京:气象出版社,1990.
    102.吴仲民,李意德,曾庆波,等.尖峰岭热带山地雨林C素库及皆伐影响的初步研究[J].应用生态学报,1998,9(4):341-344.
    103.夏冰,邓飞,周康,等.青海麦秀林场紫果云杉次生林的干扰重建[J].植物资源与环境学报,2002,11(2):6-10.
    104.夏冰,邓飞,周康,王谦,董旭.树轮分析用于森林干扰强度推则的实例研究[J].植物资源与环境学报,2001,10(1):1-6.
    105.夏冰,贺善,安兰涛,邓飞,姚淦.亚高山云冷杉混交林树木生长释放与干扰分析[J].植物资源与环境,1997,6(1):1-8.
    106.肖文发,聂道平,张家诚.我国杉木林生物量与能量利用率的研究[J].林业科学研究,1999,12(3):237-243.
    107.肖必威.中国森林生物量与生产力的矼究[D].哈尔滨:东北林业大学,2005.
    108.肖瑜.陕西省不同气候区域油松人工林生物量和生产力的比较研究[J].植物生态学与地植物学学报,1990,14(3):237-246.
    109.胥辉.一种与材积相容的生物量模型[J].北京林业大学学报,1999,21(5):32-36.
    110.徐德应,刘世荣.温室效应、全球变暖与林业[J].世界林业研究,1992,(1):25-32.
    111.徐化成,李湛东,邱扬.大兴安岭北部地区原始林火干扰历史的研究[J].生态学报,1997,17(4):337-343.
    112.徐郑周,刘广营,王广海,等.燕山山地华北落叶松人工林群落生物多样性及其生物量的研究[J].林业资源管理,2010,(2):43-49.
    113.许绍惠,边立琪,郭泳,等.白皮松抗寒性及抗寒育苗技术的研究[J].林业科学,1994,30(6):497-505.
    114.薛立,杨鹏.森林生物量研究综述[J].福建林学院学报,2004,24(3):283-288.
    115.杨尔,杨秀琴.甘肃武都五凤山林区油松人工林的生物量和生物产研究[J].西北师范大学学报(自然科学版),2004,40(1):70-75.
    116.杨洪晓,吴波,张多屯,等.森林生态系统的固碳功能和碳储量研究进展[J].北京师范大学学报(自然科学版),2005,41(2):172-177.
    117.杨昆.管东生.森林林下植物生物量收获的样方选择和模型[J].生态学报.2007(2):705-714.
    118.杨丽韫,罗天祥,吴松涛.长白山原始阔叶红松林不同演替阶段地下生物量与碳、氮贮量的比较[J].应用生态学报,2005,16(7):1195-1199.
    119.尹艳豹,曾伟生,唐守正.中国东北落叶松立木生物量模型的研建[J].东北林业大学学报.2010(9):23-26.
    120.于大炮,王顺忠,唐立娜,代力民,王庆礼,王绍先.长白山北坡落叶松年轮年表及其与气候变化的关系[J].应用生态学报.2005,16(01):14-20.
    121.于贵瑞,孙晓敏,等.陆地生态系统通量观测的原理与方法[M].北京:高等教育出版 社,2006.
    122.于贵瑞,孙晓敏.中国陆地生态系统碳通量观测技术及时空变化特征[M].北京:科学出版社,2008:4-5.
    123.袁士云.小陇山林区白皮松种质资源保护技术研究[J].林业实用技术,2004,(10):4-6.
    124.曾伟生,唐守正.国外立木生物量模型研究现状与展望[J].世界林业研究.2010(4):30-35.
    125.翟明普.北京西山地区油松无宝枫混交林生物量和营养元素循环的研究[J].北京林业学院学报,1982,4:67-79.
    126.张城,王绍强,于贵瑞,等.中国东部地区典型森林类把土壤有机碳储量分析[J].资源科学,2006,(2):97-103.
    127.张存涛.小陇山白皮松种质资源现状及保护对策[J].甘肃林业科技,2005,30(1):64-65.
    128.张建国,李吉跃.我国北方主要造林树种抗旱特性的研究.见:张守攻.中国青年绿色论坛论文精选.北京:中国林业出版社,1995:38-41.
    129.张萍.北京森林碳储量研究[D].北京,北京林业大学,2009.
    130.张修玉.广州三种主要森林生物量与碳储量分配特征[D].广州,中山大学,2009.
    131.张峥,张涛,郭海涛等.温室效应及其生态影响综述[J].环境保护科学,2000,26(99):36-38.
    132.赵林,殷鸣放,陈晓非,等.森林碳汇研究的计量方法及研究现状综述[J].西北林学院学报,2008,23(1):59-63.
    133.赵敏,周广胜.基于森林资源清查资料的生物量估算模式[J].应用生态学报,2004,15(8):1468-1472.
    134.赵敏,周广胜.中国森林生态系统的植物碳贮量及其影响因子分析[J].地理科学,2004,24(1):50-54.
    135.赵士洞,汪业勖,于振良,等.中国森林生态系统碳循环研究[J].见:中国生态学会编,中国生态学会通讯,2000(特刊):50-52.
    136.赵焱,张学忠,王孝安.白皮松天然林地理分布规律研究[J].西北植物学报,1995,15(2):161-166.
    137.赵志江,谭留夷,康东伟,刘琪璟,李俊清.云南小中甸地区丽江云杉径向生长对气候变化的响应[J].应用生态学报,2012,23(3):603-609.
    138.郑光,田庆久,陈镜明,等.结合树龄信息的遥感森林生态系统生物量制图[J].遥感学报,2006,10(6):932-940.
    139.郑淑霞,上官周平.树木年轮与气候变化关系研究[J].林业科学,2006,42(6):100-107.
    140.政府间应对气候变化专门委员会(IPCC).2006国家温室气体清单指南中的农业、林业和其他土地利用.见:国家林业局应对气候变化和节能减排工作领导小组办公室.造林项目碳汇计量与监测指南[M].北京:中国林业出版社,2008.
    141.周国模,吴家森,姜培坤.不同管理模式对毛竹林碳贮量的影响[J].北京林业大学学 报,2006,28(6):51-55.
    142.周园,邹春静,徐文铎.全球气候变暖与东北植被分布关系的研究[J].安徽农业科学2009.37(11):5229-5231.
    143.Abrams M.D., RulTner C.M, DeMco T.E. Dendroecology and species co-existence in an old-growth Ouercus-Acer-Tilia talus slope forest in the central Appalachians, USA [J]. Forest F.cology and Management, 1998, 106: 9-18.
    144.Abrams M.D., van de Gevel S., Godson R.C., et al. the dendroecology and climatic impacts for old-growth white pine and hemlock on the extreme slopes of the Berkshire Hills, Massachusetts, USA [J]. Canadian Journal of Botany, 2000, 78: 851-861.
    145. Antos J.A. Parish R. Dynamics of an old-growth, fire-initiated, subalpine forest in southern interior British Columbia: tree size, age, and spatial structure[J]. Canadian Journal of Forest Research. 2002a, 32: 1935-1946.
    146. Antos J.A., Parish R. Structure and dynamics of a nearly steady-state subalpine forest in south-central British Columbia, Canada [J]. Oecologia, 2002b, 130: 126-135.
    147. Aubient M., el al. Estimates of the annual net Carbon and water exchange of forests: The Furo-Flux Methodology [J]. Advances in Eeological Research, 2000, 30: 113-175.
    148. Bertrand, A. & Castonguay Y. Plant adaptation to overwintering stresses and implications of climate change[J]. Canadian Journal of Botany, 2003, 81(12): 1145-1 152.
    149. Bi H., Turner J., Lambert M. Additive biomass equations for native eucalypt forest trees of temperate Australia [J]. Trees, 2004, 18(4):467-479.
    150.Biondi F. & Waikul K. DFNDROCUM2002: AC++Program for statistical calibration of climate signals in tree-ring chronologies [J].Computer Geoscienees, 2004, (30): 303-311.
    151. Bollschweiler M., Stoffel M., Ehmisch M., Monbaron M., Reconstructing spatio-temporal patterns of debris-flow activity using dcndrogeomorphological methods [J]. Geomorphology, 2007, 87(4): 337-351.
    152. Bollschweiler M., Stoffel M., Schneuwly D.M. Dynamics in debris-flow activity on a forested cone-a case study using different dendroecological approaches [J]. Catena, 2008, 72(1): 67-78.
    153.Bonan G.B. and Sirois L. Air temperature, tree growth, and the northern and southern range limits of Picea mariana [J]. Journal of Vegetation Science, 1992, (3): 495-506.
    154. Bray J.R. Root production and the estimation of net productivity [J]. Canadian Journal of Botany, 1963,41:65-72.
    155. BrifTa K.R., Jones P.D., Schweingruber F.H. Tree-ring density reconstructions of summer temperature patterns across western North Americasince 1600 [J]. Journal of Climate, 1992, (5): 735-754.
    156. Briffa, K.R., Schweingruber F.H., Jones P.D. Reduced sensitivity of recent tree-growth to temperature at high northern latitudes [J]. Nature,1998,391(68):678-682.
    157. Brown S., Lugo A.E. Biomass of tropical forests:a new estimate based on forest volumes [J]. Science,1984,223:1290-1293.
    158. Buckley B.M., Cook E.R., Peterson M.J., et al. A changing temperature response with elevation for Lagarostrobus franklinii in Tasmania Australia [J]. Climatic Change, 1997(36):477-498.
    159.Burleigh J.S., Alfaro R.I., Borden J.H., et al. Historical and spatial characteristics of spruce budworm Choristoneura fumiferana (Clem.) (Lepidoptera:Tortricidae) outbreaks in northeastern British Coloumbia [J]. Forest Ecology and Management,2002,168:301-309.
    160.Cairns, M.A., S. Brown, E.H. Helmer, and G.A. Baumgardner.1997. Root biomass allocation in the world's upland forests. Oecologia 111(1):1-11.
    161.Cao, J.X., Wang X.P., Tian Y., Wen Z.Y., Zha T.S. Pattern of carbon allocation across three different stages of stand development of a Chinese pine (Pinus tabulaeformis) forest [J]. Ecological Research,2012,27:883-892.
    162.Ceulemans R.& Mousseau M. Effects of elevated atmospheric CO2on wood plants [J]. New phytologist,1994,127:425-446.
    163.Ciais P., Tans P.P., Trolier M., White J.W. Cand R.J. Francey. A large northern hemispher terrestrial CO2 sinks indicated by the 13C/12C ration of atmospheric CO2 [J]. Science, 1995,(269):1098-1102.
    164.Cienciala E., Cerny M., Tatarinov F., Apltauer J., Exnerova. Z. Biomass functions applicable to Scots pine [J]. Trees,2006,20(4):484-495.
    165. Clark, J.S. Effect of climate change on fire regimes in northwestern Minnesota [J]. Nature, 1988,334:33-235.
    166. Cook E. R., Cole J. On predicting the response of forests in eastern North America to future climate change [J]. Climatic Change,1991,(19):271-283.
    167.Cook E.R, Bird T., Peterson M., et al. Climatic change in Tasmania inferred from a 1089-year tree-ring chronology of huon pine [J]. Science (Washington, D.C.),1991(253): 1266-1268.
    168.Corominas J. Moya J. Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, eastern Pyrenees, Spain [J]. Geomorphology,1999,30:79-93.
    169.Cui X. Y., Wang Y. F., Niu H. S., et al. Effect of long-term grazing on soil organic carbon content in semiarid steppes in Inner Mongolia [J], Ecology Research,2005, (5):519-527.
    170.Cullen L. E., Palmer J. G., Duncan R. P., et al. Climate change and tree-ring relationships of Nothofagus menziesii tree-line forest [J]. Canadian Journal of Forest Research,2001,31: 1981-1991
    171. D'Arrigo R.D., Jacoby G.C., Free R.M. Tree-ring width and maximum latcwood density at the North American treeline: parameters of climatic change [J]. Canadian Journal of Forest Research, 1992,(22): 1290-1296.
    172.Davi U., Dufrene E., Francois C., Le Maire G., Loustau D., Bosc A., Rambal S., Granier A., Moors E. Sensitivity of water and carbon fluxes to climate changes from 1960 to 2100 in European forest ecosystems[J]. Agricultural and Forest Meteorology, 2006, 141: 35-56.
    173. Di Filippo A., Alessandrini A., Biondi F., Blasi S., Portoghesi L., Piovesan G., Climate change and oak growth decline: Dendroecology and stand productivity of a Turkey oak (Quercus cerris L.) old stored coppice in Central Italy[J]. Annals of Forest Science, 2010, 67: 706-719.
    174. Diaz S., Mercado C., Alvarez-Cardenas S. Structure and population dynamics of Pinus lagunae M.-F.Fassini[J]. Forest Ecology and Management, 2000, 134: 249-256.
    175. Dieter M., Elsasser P. Carbon Stocks and Carbon Stock Changes in the free Biomass of Germany's Forests [J]. Forstwissenschaftliches Centralblatt, 2002, 121(4): 195-210.
    176. Dixon R.K., Brown S., Houghton R.A., Solomon A.M., Trexler M.C., Wisniewski J. Carbon pools and flux of global forest ecosystems [J]. Science, 1994, 263:185-190.
    177. Dobbertin K., Grissino-Maycr H.D. Bibliografie and glossar zur dendrochronologie:zwei neue informationsquellen fur die jahrringforschung [J]. Schweizerische Zeit schrift fur Forstwesen, 2006, 155(6): 238-240.
    178. F.bermeyer E. Die gesamte Lehre der Waldstreu mil Riicksicht auf die chemische Statik des Waldbaues [M]. Belin: J.Springer, 1876, 116.
    179. F.dmands J.D., Brabander D.J., Coleman D.S. Uptake and mobility of uranium in black oaks: implications for biomonitoring depicted uranium-contaminated groundwater [J]. Chemosphere, 2001, 44: 789-795.
    180. Ehle D.S., Baker W.I,. Disturbance and stand dynamics in ponderosa pine forests in Rocky Mountain national park, USA [J]. Ecological Monographs, 2003, 74: 541-566.
    181.F.manuel W.R., Shugart H.H., Stevenson M.L. Climatic change and the broad_scale distribution of terrestrial e-cosystem complexes [J]. Climatic Change, 1985, 7: 29-43.
    182.Eronen M., Lindholm M., Saastamoine S., et al. Variable Holocene climate, treeline dynamics and changes in natural environments in northern Finnish Lapland [J]. Chemosphere: Global Change Science 1999, 1: 377-387.
    183. Fang J.Y., Chen A.P., Peng C.H., et al. Changes in forest biomass carbon storage in China Between 1949 and 1998 [J]. Science, 2001, 292: 2320-2322.
    184. Fang J.Y., Wang G.G., Liu G.H., et al. Forest biomass of China: an estimation based on the biomass-volume relationship [J]. Ecological Application, 1998, 8: 1084-1091.
    185. Firm D., Nagel T.A., Diaci J. Disturbance history and dynamics of an old-growth mixed species mountain forest in the Slovenian Alps [J]. Forest Ecology and Management,2009, 257(9):1893-1901.
    186. Flannigan, M.D.& Wotton B.M. Climate, weather and area burned. in E. A. Johnson and K. Miyanishi, editors. Forest fires:behavior and ecological effects [M]. New York: Academic Press,2001:335-357.
    187.Foley J.A., Kutzbach J.E., Coe M.T. and Levis S. Feedbacks between climate and boreal forests during the Holocene epoch [J]. Nature,1994, (371):52-54.
    188. Fritts H.C. Reconstruction large scale climate patterns from tree-ring data, Tuson, USA [M]. Arizona:The Arizona University Press,1991.
    189. Fritts H.C. Tree ring and climate [M]. London:Academy Press,1976:1-567.
    190. Fritts. H.C. Dendrochrological modeling of the effects of climatic change on tree-ring with chronologies from the chaco canyon area, southwesten United States [J]. Tree-Ring Buletin, 1992,52:31-58.
    191.Garcia Morote, F.A., Lopez Serrano F.R., Andres M., Rubio E., Gonzalez Jimenez J.L., Heras J. Allometries, biomass stocks and biomass allocation in the thermophilic Spanish juniper woodlands of Southern Spain [J]. Forest Ecology and Management,2012,270(8): 85-93.
    192. Gates D.M. Climate change and forests [J]. Tree Physiology,1990, (7):1-5.
    193.George S.S., Nielsen E. Hydroclimatic change in southern Manitoba since A.D.1409 inferred from tree rings [J]. Quaternary Research,2002,58:103-111.
    194.Goldblum D., Rigg L.S. Tree growth response to climate change at the deciduous-boreal forest ecotone, Ontario, Canada [J]. Canadian Journal of Forest research,2005,(35): 2709-2718.
    195.Gower S.T., Kucharik, C.J., Norman J.M. Direct and indirect estimation of leaf area index, fAPAR, and net primary production of terrestrial ecosystems. Remote Sens [J]. Environ, 1999,70(1):29-51.
    196. Grau H.R. Easdale T.A., Paolini L. Subtropical dendroecology-dating disturbances and forest dynamics in northwestern Argentina montane ecosystems [J]. Forest Ecology and Management,2003,(177):131-143.
    197. Graybill D. A.& Shiyatov S.G. A 1009 year tree_ring reconstruction of mean June_July temperature deviations in the Polar Urals [M]. In:Tree_Ring Bulletin,1997, special issue (Reprinted from Nobel, R.D., J. L. Martin & K.F. Jensen eds.1989. Symposium on air pollution effects of vegetation. US-DA forest service, northwestern forest experiment station.37-42).
    198. Green K. & Wright R. Field response of photosynthesis to CO2 enhancement in ponderosa pine[J]. Ecology, 1977. 58: 687-692.
    199.Grissino-Mayer H.D. & T.W. Swetnam. Century-scale climate forcing of fire regimes in the American Southwest [J]. Holocene, 2000, (10): 207-214.
    200. Grissino-Mayer, H.D. A manual and tutorial for the proper use of an increment borer[J]. Tree-Ring Research, 2003. 59(2):63-79.
    201.Grission-mayer H.D. Evaluating crossdating accuracy: a manual and tutorial for the computer program cofecha[J]. Tree-ring Research, 2001, 57(2): 205-221.
    202. Graven R., Rolstad J., Storaunet K.O., et al. Using forest stand reconstructions to assess the role of structural continuity for late-successional species [J]. Forest Ecology and Management, 2002, 164: 39-55.
    203. Outsell S.L., Johnson E.A. Accurately ageing trees and examining their height-growth rates: implications for interpreting forest dynamics[J]. Journal of Ecology, 2002, 90: 153-166.
    204. Hamrick, J.L. Response of forest trees to global environmental changes [J]. Forest Ecology and Management, 2004, (197): 323-335.
    205. He, J.S.,Zhang Q.B., Bazzaz F.A. Differential drought responses between saplings and adult trees in four co-occurring species of New England [J]. Trees, 2005, (19): 442-450.
    206. Hessl A.F., Graumlich L.J. Interactive effects of human activities, herbivory and fire on quaking aspen (Populus tremuloides) age structure in western Wyoming [J]. Journal of biogeography, 2002, 29: 889-902.
    207. Houghton R.A., Skole D.L., Nobre C.A., et al. Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon[J]. Nature, 2000, 403: 301-304.
    208. Howe E., Baker W.L. Landscape heterogeneity and disturbance interactions in a subalpine watershed in northern Colorado, USA [J]. Annals of the Association of American Geographers, 2003, 93: 797-813.
    209. Hughes M.K. Dendrochronology in climatology-the state of the art [J]. Dendrochronologia, 2002,20:95-116.
    210. Idso S.B. et al. Effects of atmospheric CO2 enrichment on photosynthesis respiration and growth of sour orange trees [J]. Plant physiology, 1992, 99: 341-343.
    211. Imai N., Samejima H., Langner A., et al. Co-Benefits of Sustainable Forest Management in Biodiversity Conservation and Carbon Sequestration [J]. PLOS ONE, 2009, 4(12): e8267, 1-7.
    212.IPCC. 2006 IPCC guidelines for national greenhouse gas inventory. [EB/OL]. [2006-12-15]. http://www.ipcc-nggip.iges.or.jp/public/2006gl/index.html.
    213. IPCC. Climate Change [A]. In: The Science of Climate Change [R]. Houghton J T, et al. (eds.) Cambridge:Cambridge University Press.1996.
    214. IPCC. Climate Change 2007:Impacts, Adaptation and Vulnerability [M|. Cambridge: Cambridge University Press, UK,2007,878.
    215. IPCC. IPCC special report:land use, land-use change and forestry [M], Cambridge University Press, Cambridge, UK,2000,4.
    216. Jacoby G.C., Arrigo R.D., Davaajamts T. Mongolian tree rings and 20th_century warming [J]. Science,1997,273:771-773.
    217. Janssens, I.A., Sampson, D.A., Cennak, J., et al. Above- and belowground phytomass and carbon storage in a Belgian Scots pine stand [J] Ann. For. Sci.,1999,56(2):81-90.
    218. Jardon Y. Morin H., Dutilleul P. Periodicite et synchromisme des epidemies de la tordeuse des bourgeons de 1'epinette au Quebec [J]. Canadian Journal of Forest Research,2003,33: 1947-1961.
    219. Jenkins J.C., Chojnacky D.C., Heath L.S., Birdsey R.A. National-scale biomass estimators for United States trees species [J]. Forest Science,2003,49(1):12-35.
    220. Jobbagy E.G.& Jackson R.B. The distribution of soil nutrients with depth:Global patterns and the imprint of plants [J]. Biogeochemistry,2001,53:51-77.
    221.Kauppi P.E., Miedlikinen K., Kunsela A.K. Biomass and carbon budget of European forests,1971 to 1990 [J]. Science,1992,256:70-74.
    222. Kendall M.G. Rank Conrrelation Methods [M]. London:Griffin.1970:125-130.
    223.Kohler M.A. On the use of double-mass analysis for testing the consistency of meteorological records and for making required adjustments [J]. Bull American Meteorology Society,1949,82:96-97.
    224. Korner, C. Biomass fractionation in plants:a reconsideration of definitions based on plant functions. P.173-185 in:A whole plant perspective on carbon-nitrogen interactions. Roy, J., and E. Gamier (eds.) [M]. SPB Academic Press, The Hague.1994.
    225. Korner, C. Biosphere responses to CO2 enrichment [J]. Ecological Applications,2000, (10), 1590-1619.
    226.Kozlowski T.T. Acclimation and adaptive responses of woody plants to environmental stresses [J]. Botonical Review,2002, (68):270-334.
    227. Kramer K., Leinonen I., Loustau D. The importance of phenology for the evaluation of impact of climate change on growth of boreal, temperate and Mediterranean forests ecosystems:an overview [J]. International Journal of Biometeorology,2000, (44):67-75.
    228. LaDeau S.L.& Clark J.S. Rising CO2 levels and the fecundity of forest trees [J]. Science, 2001,292:95-98.
    229. Laiho R.& Laine J. Tree stand biomass and carbon content in an age sequence of drained pine mires in southern Finland [J]. Forest Ecology and Management, 1997, 93: 161-169.
    230. LaMarche V.C., Graybill D.A., Fritts H.C., Rose M.R.Increasing atmospheric and carbon dioxide: tree ring evidence for growth enhancement in annual vegetation. Science, 1984, 225: 1019-1021.
    231.Lamlon S.H. and Savidge R.A. A reassessment of carbon content in wood: variation within and between 41 north American species [J]. Biomass and Bioenergy, 2003, 25(4): 381-388.
    232.Lara A., Aravena J.C., Villalba R., et al. Dendroclimatology of high-elevation Nothofagus pumilio forests at their northern distribution limit in the central Andes of Chile [J]. Canadian Journal of Forest Research, 2001, 31: 925-936.
    233. Levy P.E., Hale S.E., Nicoll B.C. ? Biomass expansion factors and root: shoot ratios for coniferous tree species in Great Britain [J]. Forestry, 2004, 77(5): 421-430.
    234. Li C.Y., Zha T.S., Liu J.L., Jia X. Pattern of Carbon and Nitrogen distribution across a chronosequence of secondary lacebark pine in China [J]. Forestry Chronicle. 2013, 89(2): 192-198.
    235. Li, X.D., Yi M.J., Son Y., Park P.S., Lee K.H., Son Y.M., Kim R.H., Jeong M.J. Biomass and Carbon Storage in an Age-Sequence of Korean Pine (Pinus koraiensis) Plantation Forests in Central Korea [J]. J. Plant Biol., 2011, 54: 33-42.
    236. Lieth H. (1971)The phenological viewpoint in Productivity studies.In Productivity of forest ecosystems (ed. UNESCO) pp. 71-83.UNESCO, Paris
    237. Litton C.M., Raich J.W., Ryan M.G. Review: carbon allocation in forest ecosystems [J]. Global Change Biology, 2007,13(10):2089-2109.
    238. Liu Yu, Cai Qiufang, Shi Jiangfeng, et al. Seasonal precipitation in the south-central Helan Mountain region, China, reconstructed from tree ring width for the past 224 years [J]. Canadian Journal of Forest Research, 2005(35): 2403-2412.
    239.Lo Y., Blanco J.A., Seely Brad, et al. Relationships between climate and tree radial growth in interior British Columbia [J]. Forest Ecology and Management, 2010, 259: 932-942.
    240. Lopez Serrano F., Garcia Morote F., Andres Abellan M., Tendero A., Del Cerro A. Site and weather effects in allometries: a simple approach to climate change effect on pines [J]. Forest Ecology and Management, 2005, 215(1):251-270.
    241. Matamala R., Conzalez-Meier M.A., Jastrow J.D., et al. Impacts of fine root turnover on forest NPP and soil C sequestration potential [J]. Science, 2003, 302(5649): 1385-1387.
    242. May, R.M. On the theory of niche overlap [J]. Theoretical Population Biology, 1974, (5): 297-332.
    243.McClenahen J.R, Houston D.B. Comparative age structure of a relict prairie transition forest and indigenous forest in southeastern Ohio, USA [J]. Forest Ecology and Management,1998,112:31-40.
    244. Mokany K., Raison J.R., Prokushkin S.A. Critical analysis of root:shoot ratios in terrestrial biomes [J]. Global Change Biology,2006,12:84-96.
    245. Moncrieff J.B., Jvis P.G., Valentini R. Canopy fluxes In:Sala, O R Jackson, H Mooney & B Howarth eds. Methods in ecosystems cience [M]. Berlin:Springer Verlag,1999. 161-180.
    246. Mundo I.A., Barrera M.D., Roig F.A. Testing the utility of Nothofagus pumilio for dating a snow avalanche in Tierra del Fuego, Argentina [J]. Dendrochronologia,2007,25(1):19-28.
    247. Nash S.E. Archaeological tree-ring dating at the Millennium [J]. Journal of Archaeological Research,2002,10:243-274.
    248.Neeff T., Dutra L.V., dos Santos J.R., et al. Tropical forest measurement by interferometric height modeling and P-band radar backscatter [J]. Forest Science 2005,51 (6):585-594.
    249.Niklasson M., Drakenberg B. A 600-year tree-ring fire history from Norra Kvills National Park, southern Sweden:implications for conservation strategies in the hemiboreal zone [J]. Biological Conservation,2002,101:63-71.
    250. Noh, N.J., Son Y., Lee S.K., Seo K.W., Heo S.J., Yi M.J., Park P.S., Kim R.H., Son Y.M., Lee K.H., Carbon and nitrogen storage in an age-sequence of Pinus densiflora stands in Korea [J]. Science China Life sciences,2010,53:822-830.
    251. Norton D.A. A dendrochronological study of Nothofagus solandri tree growth along an elevational gradient, South Island, New Zealand. In Establishment and tending of subalpine forests. Edited by H. Turner and W. Tranquillini [J]. Swiss Federal Institute of Forestry Research, Birmensdorf. pp.1985(a):159-171.
    252. Norton D.A. Tree-growth-climate relationships in subalpine Nothofagus forests, South Island, New Zealand [J]. N.Z. J. Bot.1984(22):471-481.
    253.Ogurtsov M., Helama S., Eronen M., et al. Centennial-to-millennial fluctuations in July temperatures in North Finland as recorded by timberline tree rings of Scots pine [J]. Quaternary Research,2005,63:182-188.
    254. Pastor J.& Mladenoff D.J. The southern boreal-northern hard wood forest border. In: Shugart R.L. and Bonan G.B. eds. A systems Analysis of the Global Boreal Forest [M]. Cambridge:Cambridge University Press,1992:216-240.
    255. Pastor J.& Post W.M. Response of northern forests to CO2-induced climate change [J]. Nature,1988, (333):55-58.
    256. Paul K. I., Polglase P. J., Nyakuengama J. G., el al. Change in soil carbon Following afforestation [J]. Forest Ecology and Management.2002,168 (1-3):241-257.
    257.Pederson, N., Cook, E.R., Jacoby, G.C., Peteer, D.M., Griffin, K.L. The influence of winter temperatures on the annual radial growth of six northern range margin tree species [J]. Dendrochronologia, 2004, (22): 7-29.
    258. Peichl M. and Arain M.A. Above and belowground ecosystem biomass and carbon pools in an age-sequence of temperate pine plantation forests [J]. Agriculture and Forest Meteorology, 2006, 140: 51-63.
    259. Peichl M., & Arain M.A. Allometry and partitioning of above-and belowground tree biomass in an age-sequence of white pine forests[J]. Forest Ecology and Management, 2007, 253(1-3):68-80.
    260. Pregitzer K..S. & Fuskirchen F.S. Carbon cycling and storage in world forests: biome patterns related to forest age [J]. Global Change Biology., 2004, 10:1-26.
    261.Prentice I.C, Cramer W., Harrison S.P., et al. A global biome model based on plant physiology and dominance, soil properties and climate [J]. Journal of Biogeography, 1992, (19): 117-134.
    262. Rathgeber C., Roche P. Spatio-temporal growth dynamics of a subAlpine Pintts uncincita stand in the French Alps [J]. Comptes Rendus Biologies, 2003, 326: 305-315.
    263. Rogers H.H., Thomas J.F., Bingham G.E. Response of agronomic and forest species to elevated atmospheric carbon dioxide [J]. Science, 1983, 220: 428-429.
    264. Ruiz-Villanucva V., Diez-Herrcro A., Stoffel M., Bollschwciler M., Bodoque J.M., Ballesteros J.A. Dendrogeomorphic analysis of flash floods in a small ungauged mountain catchment(Central Spain) [J]. Geomorphology, 2010, 118(3/4): 383-392.
    265.Rustad L.E., Campbell J.L., Marion G.M., et al. A meta-analysis of the response of soil respiration, net nitrogen mineralization, and above-ground plant growth to experimental ecosystem warming[J]. Oecologia, 2001, 126(4): 543-562.
    266. Ryerson D.E., Swetnam T.W., Lynch A.M. A tree-ring reconstruction of western spruce budworm outbreaks in the San Juan Mountains, Colorado, USA [J]. Canadian Journal of Forest Research, 2003, 33: 1010-1028.
    267. Sanford R.L., Cuevas E. Root growth and rhizosphere interactions in tropical forests//Mulkey S.S., Chazdon R.L., Smith A.P. Tropical forest plant ecophysiology [M]. New York: Chapman and Hall, 1995: 268-300.
    268. Schimel D.S. Terrestrial ecosystems and the carbon cycle [J]. Global Change Biology, 1995, 1:77-91.
    269.Scholl A.E., Taylor A.M., Fire regimes, forest change, and self-organization in an old-growth mixed-conifer forest, Yosemitc National Park, USA [J]. Ecological Applications, 2010, 20(2): 362-380.
    270. Sheppard P.R., Graumluch L.J., Conkey L.E. Reflected-light analysis of conifer tree rings for reconstructing [J]. Holocene, 1996,6:62-68.
    271.Shugart H.H., Smith T.M., Post W.M. The application for application of individual based simulation models for assessing the effects of global change [J]. Annual Reviews of Ecology and Systematics,1992,(23):15-38.
    272.Solberg S., Andreassen K., Clarke N., et al. The possible influence of nitrogen and acid deposition on forest growth in Norway [J]. Forest Ecology and Management,2004,192: 241-249.
    273. Son, Y.H., Hwang J.W., Kim Z.S., Lee W.K., Kim J.S. Allometry and biomass of Korean pine (Pinus koraiensis) in central Korea [J]. Bioresour. Technol.,2001,78:251-255.
    274. Spittlehouse, D.L. Integrating climate change adaptation into forest management [J]. Forest Chronicle,2005b, (81):691-695.
    275.Stoffel M., Schneuwly D., Bollschweiler M., Lievre I., Delaloye R., Myint M., Monbaron M. Analyzing rockfall activity (1600-2002) in a protection forest-a case study using dendrogeomorphology [J]. Geomorphology,2005,68(3/4):224-241.
    276. Strunk H. Dating of geomorphological processes using dendrogeomorphological methods [J]. Catena,1997,31:137-151.
    277.Sykes M.T. and Prentice I.C. Climate change, tree species distributions and forest dynamics:A case study in the mixed conifer/hardwoods zone of northern Europe [J]. Climatic Change,1996,(34):161-177.
    278. Taylor, A.R., Wang J.R., Chen H.Y.H. Carbon storage in a chronosequence of red spruce (Picea rubens) forests in central Nova Scotia, Canada. Can [J]. Journal of Forest Research, 2007,37:2260-2269.
    279. Turner D.P., Koepper G.J., Harmon M.E., et al. A carbon budget for forests of the conterminous United States [J]. Ecological Applications,1995,5:421-436.
    280. Vanninen, P., and A. Makela. Fine root biomass of Scots pine stands differing in age and soil fertility in southern Finland [J]. Tree Physiology,1999,19(12):823-830.
    281. Vennetier, M., Vila, B, Liang, E.Y., Guibal, F., Ripert C., Chandioux O. Impacts du changement climatique sur la productivite' forestie' re et le de' placement dune limite bioclimatique en re' gionme' diterrane' enne franc, aise. Inge'nie'ries,2005, (44):49-61.
    282. Villalba R., Boninsegna J.A., Veblen T.T., et al. Recent trends in tree-ring records from high elevation sites in the Andes of northern Patagonia [J]. Climte Change,1997(36): 425-454.
    283. Walther G.R. Plants in a warmer world [J]. Perspect Plant Ecology Evolution System,2003, (6):169-185.
    284. Wang C.K. Biomass allometric equations for 10 co-occurring tree species in Chinese temperate forests [J]. Forest Ecology and Management,2006,222(1-3):9-16.
    285. Wang X.C., Ji Y. Review of advances in dendropyrochronology. Acta Ecologica Sinica, 2009,33(3): 587-597.
    286. Wang, X.P., Fang J.Y., Zhu B. Forest biomass and root-shoot allocation in northeast China [J]. Forest Fxology and Management, 2008, 255( 12): 4007-4020.
    287. Watson R.T., Noble I.R., Bolin B., et al. IPCC special report-Land use, Land-Use Change, and Forestry [R], Cambridge University Press, 2000.
    288. Watson R.T., Rodhe H., et al. Greenhouse gases and aerosols [A]. In: Houghton J T. et al. (eds.) The IPCC Scientific Assessment [C]. Cambridge University Press, Cambridge. 1990. 1-40.
    289. Wiles G.C., Calkin P.E., Jacoby G.C. Tree-ring analysis and Quaternary geology: Principles and recent applications [J]. Geomorphology, 1996, 16: 259-272.
    290. Winjum J.K., Dixon R.K. and Schroeder P. Forest Management and Carbon Storage: an Analysis of 12 Key Forest Nations[J]. Water. Air and Soil Pollution, 1993, 70:239-257.
    291. Winter L.E., Brubaker L.B., Franklin J.F., et al. Canopy disturbances over the five-century lifetime of an old-growth Douglas-fir stand in the Pacific Northwest[J]. Canadian Journal of Forest Research, 2002, 79:1057-1070.
    292. Winter L.E., Brubaker L.B., Franklin J.F., et al. Initiation of an old-growth Douglas-fir stand in the Pacific Northwest: a reconstruction from tree-ring records [J]. Canadian Journal of Forest Research, 2002, 32:1039-1056.
    293. Woodward, F.I. & Cramer W. Plant functional types and climatic changes: introduction[J]. Journal of Vegetation Science, 1996, (7): 306-308.
    294. Worbes M., Staschel R., Roloff A., et al. free ring analysis reveals age structure, dynamics and wood production of a natural forest stand in Cameroon [J]. Forest Fxology and Management, 2003, 173: 105-123.
    295. Xiao C.W. & Ceulemans R. Allometric relationships for below- and aboveground biomass of young Scots pines [J]. Forest Ecology and Management, 2004, 203(1-3): 177-186.
    296. Yang Y.H. & Luo Y.Q. Isometric biomass partitioning pattern in forest ecosystems: evidence from temporal observations during stand development [J]. Fxology, 2011, 99:431-437.
    297. Yu Da-pao, Gu Hui-yan, Wang Jian-dong, et al. Relationships of climate change and tree ring of Betula ermanii tree line forest in Changbai Mountain [J]. Journal of Forestry Research, 2005, 16(3): 187-192.
    298.Zagalikis G., Cameron A.D., Miller D.R. The application of digital photogrammetry and image analysis techniques to derive tree and stand characteristics[J]. Canadian Journal of Forest Research, 2005, 35(5): 1224-1237.
    299.Zhang Q.B., Alfaro R.I. Spatial synchrony of the two-year cycle budworm outbreaks in central British Columbia, Canada [J]. Oikos,2003,102(1):146-154.
    300. Zhang Q.B., Hebda R.J. Variation in radial growth patterns of Pseudotsuga menziesii on the central coast of British Columbia, Canada [J]. Canadian Journal of Forest Research, 2004,34:1946-1954.
    301. Zhu Z.L., Sun X.M., Wen X.F., et al. Study on the progressing method of nighttime CO: eddy covariance flux data in China flux [J]. Science in China series D:Earth Science,2006, 49(S2):36-46.
    302.Zielonka T., Holeksa J., Ciapala S. A reconstruction of flood events using scarred trees in the Tatra Mountains, Poland [J]. Dendrochronologia,2008,26(3):173-183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700