自主式水下机器人上层决策系统的研究与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自主式水下机器人(AUV, Autonomous Underwater Vehicle)的上层决策系统是AUV研究的关键技术,在一定程度上决定了AUV的智能化水平。本文旨在探讨一种可靠高效的AUV上层决策系统,使AUV在复杂的水底环境下实现自主导航。
     上层决策系统的核心是路径规划与决策控制:路径规划是在一定的环境模型中规划出一条从起始状态到目标状态的最优或近似最优无碰路径,决策控制依据规划好的路径对AUV做出运动决策,并且能够处理环境模型中的不确定因素和路径跟踪中出现的误差。本文着重研究了上层决策系统设计中的这两个关键问题,主要研究工作如下:
     首先对全局路径规划进行了研究,采用了一种基于快速步进算法(FFM, Fast Marching Method)的全局路径规划方法,针对AUV在大范围静态环境完全未知或部分已知的情况下,应用动态划分全局工作环境,以多次局部优化代替一次全局优化的路径规划方法。其次,探讨了一种基于行为的反应式结构决策控制系统,把AUV基本行为封装成理性行为和感性行两大模块。在决策控制系统的避障行为模块中,引入改进人工势场法进行二次局部路径规划,以使AUV在动态环境下能更好地进行实时避障,弥补了单纯路径规划不能应付动态环境的缺点。最后,设计了AUV上层决策系统,此决策系统集成了基于FM算法的路径规划方法与基于行为的反应式决策控制系统的优点,并且采用模块化思想,把决策系统分成任务管理模块、路径规划模块、决策控制模块、定位与地图构建模块(SLAM)等模块,其特点是易于实现与扩展。
     同时,本文先采用MATLAB语言对决策系统算法进行仿真验证,然后在Microsoft公司的VC++6.0开发环境下,采用C/C++语言实现决策系统。软件运行结果表明,设计的AUV上层决策系统是有效的,能够在复杂的环境下实现AUV的自主导航功能。
The upper Decision-making system is the crucial technology for research of modern Autonomous Underwater Vehicle (AUV) and determines AUV's intelligence level in some extent. This paper aims to explore a reliable and efficient AUV upper Decision-making system which allows AUV to achieve autonomous navigation in complex underwater environment.
     Path planning and Decision-making control are crucial issues for the AUV's upper Decision-making system. Path planning is used to extract cost or approximately cost optimal paths form starting position to the end in complex and continuous environments. Decision-making control makes decisions for AUV's movement based on planned paths, and is capable of handling the uncertainty in environments and correction of path tracking errors. This paper focuses on these two key issues for the design of the upper Decision-making system. The main research work is as follows:
     Firstly, this paper introduces the research of path planning. Global path planning based on Fast Marching (FM) algorithm is used to extract cost optimal paths from complex underwater environments. Then according to a large scale static unknown or partially unknown environment, this paper proposes a new path planning method which dynamically divides the global environment and uses multiple local optimizations instead of one-time global optimization. And meanwhile, we design a Decision-making control system with reactive structure based on behavior. This system divides AUV's behavior into two classes-Rational Behavior set and Perceptual Behavior set. Furthermore, in order to avoid dynamic obstacles, in avoidance behavior module of Decision-making control system improved artificial potential field (APF) is used to implement secondary path planning in local environments, which can make up for the disadvantage that the simple path planning couldn't cope with dynamic environments. Finally, this paper designs a AUV's upper Decision-making system which integrates the advantage of path planning method based on FM and Decision-making control system with reactive structure based on behavior, and adopts modular method dividing Decision-making system into task management module, path planning module. Decision-making control module, localization and mapping module and so on. which is characterized by easy to implement and expand.
     And meanwhile, this paper first verifies the effectiveness of AUV's Decision-making system by MATLAB simulation, then uses C/C++ language to implement this system on Microsoft's VC++6.0 development platform. Programming running results show that the design of the AUV's upper Decision-making system is effective, and succeed in implementing AUV's autonomous navigation with complex environments.
引文
[1]http://www.dsti. net/Special/News View/136国外自主式水下航行体(AUV)研发现状比较
    [2]李晔,常文田.自治水下机器人的研发现状与展望.机器人技术与应用,2007,1(1),55-59
    [3]翟宇毅,刘亮,龚振邦.超小型水下机器人的发展现状及若干问题探讨.机床与液压,2005,15(2):1-4
    [4]Edward F, et al. Multi-AUV Control and Adaptive Sampling in Monterey Bay [A]. Proc. IEEE Autonomous Underwater Vehicles 2004:Workshop on Multiple AUV Operations (AUV04) [C].Sebasco. Estates, Marine,2004:134-147
    [5]马伟峰,胡震.AUV的研究现状与发展趋势.火力与指挥控制,2008,33(6):11-13
    [6]Rob M E, Hans T. Performance of an AUV Navigation System at Arctic Latitudes [A]. Oceans 2003 MTS/IEEE Conference Proceedings[C]. San Diego. CA,2003.2:642-643.
    [7]彭学伦.水下机器人的研究现状与发展趋势.机器人技术与应用,2004,15(3):43-47
    [8]Robert L W. AUVs-A Technology Whose Time Has Come [A]. Proceedings of the 2002 International Symposium on Underwater Technology [C]. The New Sanno Hotel Tokyo. 2002:309-314.
    [9]王琦,王月海.基于规则的智能机器人的决策子系统研究与实现:[硕十学位论文].北京:北京工业大学,2010
    [10]Bo He, Bingsen Li, Design of Behavior-Based Modular Decision-making Control System for Autonomous Underwater Vehicle, proceedings of the 6th international conference on Fuzzy systems and knowledge discovery (FSKD'09) PP.4845-4850, Changchun. China. Aug,2009
    [11]任红恩.自主式水下机器人的反应式行为决策控制系统及仿真:[硕士学位论文].青岛:中国海洋大学,2010
    [12]李炳森.基于行为的模块化AUV决策控制系统及其仿真:[硕士学位论文].青岛:中国海洋大学,2009
    [13]L.B.Gary, The evolutionary development of the military autonomous underwater vehicle, in Proc. Fifth International Symposium on Unmanned Untethered Submersible Technology. vol. Chicago, IL,2000(5)3239-3243
    [14]易良.基于激励学习和人工势场法的机器人路径规划:[硕士学位论文].长沙:长沙理工大学,2007
    [15]柏艺琴,贺怀清.移动机器人路径规划方法简介.中国民航学院学报,2003(10):206-209
    [16]李磊,叶涛,谭民等.移动机器人技术研究现状与未来.机器人,2002,24(5):475-480.
    [17]陈波,杨宜民.关于足球机器人避障控制的研究.机器人,2004,26(2):110-112
    [18]Li Chen Fu, Dong Yueh Liu. An Efficient Algorithm for Finding a Collision-free Path Among Polyhedral Obstacles Journal of Robotics Systems.1990,7(1):129-137
    [19]J C Latombe. Robot Motion Planning. Kluwer, Norwell. MA.1991.
    [20]于红斌,李孝安.基于栅格法的机器人快速路径规划,微电子学与计算机,2005,22(6):98-100
    [21]马兆青,袁曾任.栅格的移动机器人实时导航和避障.机器人,1996,18(6):344-348
    [22]王醍策,张汝波,顾国昌.基于势场栅格法的机器人全局路径规划.哈尔滨工程大学学 报,2003,24(2):170-174
    [23]任世军,洪炳,黄德海.一种基于栅格扩展的机器人路径规划方法.哈尔滨工业大学学报,2001,33(1):68-72
    [24]胡小明,吴耿锋,樊建.基于时间栅格法和免疫算法的机器人动态路径规划.计算机应用.2005,25(3):657-660
    [25]Lozano PT. Spatial planning:a configurations space approach [J]. IEEE Trans Computers.1983,32(2):108-120.
    [26]Lozano PT.A simple motion planning algorithm for general robot manipulators [J].IEEE Journal of Robotics and Automation.1987,23(3):224-238.
    [27]王小忠,孟正大.机器人运动规划方法的研究.控制工程.2004,3(11):125-130
    [28]Khatib O.Real-Time Obstacle Avoidance for Manipulators and Mobile Robots[A]. IEEE International Conference on Robotics and Automation [C], St. Louis,1985,3 (25):500-505
    [29]谢文明.动态环境下基于人工势场引导进化算法的移动机器人路径规划:[硕士学位论文].武汉:武汉科技大学,2008
    [30]刘雁飞,裘聿皇.基于两层编码遗传算法的机器人路径规划.控制理论与应用,2000,17(3):429-432
    [31]Chia-Han Lin, Ling-Ling Wang. Intelligent collision avoidance by fuzzy logic control. Robotics and Autonomous System,20(1997):61-83.
    [32]胡小明,吴耿锋,樊建.基于时间栅格法和免疫算法的机器人动态路径规划.计算机应用,2005,25(3):657-660
    [33]马建光,方敦原.一种基于概率方法的车型机器人路径规划方法.计算机工程与应用,2004,13(4):93-94
    [34]Tsoukalas L H, Houstis E N, Jones G V. Neuro fuzzy motion planners for intelli-gent robots. Journal of Intelligent and Robotic Systems.1997,19(5):339-356
    [35]卓睿,陈宗海,陈春林.基于强化学习和模糊逻辑的移动机器人导航.计算机仿真,2005,22(8):157-162
    [36]Nils J. Nilsson. Principles of Artificial Intelligence. New York:Tioga Publishing Company, 1980.161-189
    [37]Brooks RA. A robust layered control system for a mobile robot. IEEE Journal of Robotics and Automation,1986, RA-2(1):14-23
    [38]Ronald C. Arkin. Motor schema-based mobile robot navigation [J]. Int. Journal of Robotics Research,1989,8(4):92-112
    [39]谭民,王硕,曹志强.多机器人系统(第一版).北京:清华大学出版社,2005.50-150
    [40]韩盈盈.自主式水下机器人的分布式运动控制系统算法与实现:[硕士学位论文].青岛:中国海洋大学,2010
    [41]C. Petres and P. Patron, "Path planning for unmanned underwater vehicles," in Proceedings of the IJCAI 2005 Workshop on Planning and Learning in A Priori Unknown or Dynamic Domains, Edinburgh, UK, August 2005.
    [42]R. Kimmel, A. Amir and A.M. Bruckstein, Finding shortest paths on surfaces using level sets propagation, IEEE Trans, on PAMI, Vol.17, No.1, pp.635-640,1995.
    [43]R.Kimmel and J.A.Sethian,Optimal Algorithm for Shape from Shading and Path Planning, Journal of Mathematical Imaging and Vision 14:237-244,2001.
    [44]J.A.Sethian and S.J.Osher, Front propagation with cuvature dependent speed:algorithms based on hamilton-jacobi formulations, Journal of Computational Physics, vol.79, pp. 12-49,1988.
    [45]L. Cohen and R. Kimmel, Global minimum for active contour models:A minimal path approach., lnternationnal Journal of Computer Vision, vol.24. no.1, pp.57-78,1997.
    [46]Lawrence C. Evans, Entropy and Partial Differential Equations, Department of Mathematics. UC Berkeley.
    [47]J.A.Sethian and A.Vladimirsky. Ordered Upwind Methods for Static Hamilton-Jacobi Equations[J].Dept.of Mathematics,University of California,Berkeley 94720.
    [48]J.A.Sethian. Level Set Methods and Fast Marching Methods[M]. Cam-bridge, Massachusetts:Cambridge University Press,1999
    [49]HE Bo, RAN Hongge, et al. "Path Planning and Tracking for Autonomous Underwater Vehicles", ICIA 2009, pp.728-733. Zhuhai. China, June 2009.
    [50]段群杰,张铭均,张菁.基于模糊神经网络的水下机器人局部路径规划方法.船舶工程,2001,1(13):54-61
    [51]H.P.Moravec, A. Elfes. High resolution maps from building for an autonomous mobile robot[J].IEEE Int Conf Robotics and Automation,1985:116-121
    [52]张颖,吴成东,于谦.基于遗传算法的机器人路径规划.沈阳建筑工程学院学报,2002,18(4):302-305
    [53]Bo He, Xiang Zhou, Path Planning and Tracking for AUV in Large-scale Environment, 2010 2nd International Asia Conference on Informatics in Control, Automation and Robotics (CAR 2010);Wuhan, China, March 6-7,2010
    [54]周翔.大尺度环境下的AUV路径规划与路径跟踪:[硕士学位论文].青岛:中国海洋大学,2010
    [55]Bo He, Hongen Ren, Wei Kan; Design and Simulation of Behavior-Based Reactive Decision-making Control System for Autonomous Underwater Vehicle; The 2nd IEEE International Conference on Advanced Computer Control(ICACC 2010); Shenyang, China 27th-29th March 2010
    [56]KhatibO.Real-time obstacle avoidance for manipulators and mobile robots[J]. The International Journal of Robotics Research,1986,5(1):90-98.
    [57]沈文君.基于改进人工势场法的机器人路径规划算法研究:[硕士学位论文].广州:暨南大学,2009
    [58]Wei Li. Fuzzy logic-based perception-action behavior control of a mobile robot in uncertain environments, IEEE World Congress On Computational Intelligence,1994:1626-1631
    [59]L Moreno, E Moraleda. Fuzzy supevisor for behavioral control of autonomous systems, IEEE World Congress On Computational Intelligence,1993:258-261
    [60]孙鑫,余安萍.VC++深入详解.北京:电子工业出版社,2008
    [61]Bo He, Ke Yang, Shuai Zhao, Yitong Wang. Underwater Simultaneous Localization and Mapping Based on EKF and Point Features. ICMA (IEEE), Changchun, Jilin, China,2009
    [62]候俊杰.深入浅出MFC第二版.武汉:华中科技大学出版社,2001
    [63]Jim Beverage, Robert Wiener. Multithreading Applications in Win32.Person Education, 1996
    [64]郭晓鹏,李存斌.Visual C++高级编程及其项目应用开发.北京:中国水利水电出版社,2004,1:88-119
    [65]任春云.自主式水下机器人的同时定位与地图构建算法及实现:[硕士学位论文].青岛:中国海洋大学,2010
    [66]Bradski.G. and Kaehler.A.. Learning OpenCV(影印版).东南大学出版社,2009.
    [67]蒋新松,封锡盛,王棣棠.水下机器人.沈阳:辽宁科学技术出版社,2000:17-31,38-39,330-338,353-357
    [68]Marco, D.B. Healey, A.J. Dept. Command, control, and navigation experimental results with the NPS ARIES AUV. IEEE Journal of Oceanic Engineering,2001. Volume:26 Issue: 4:466~476
    [69]Forrest C. Young. Phoenix Autonomous Underwater Vehicle (AUV):Networked Control of Multiple Analog and Digital Devices Using LonTalk. NAVAL POSTGRADUATE SCHOOL MONTEREY CA. DEC 97. A803243
    [70]陈建平.我国潜水器发展状况及存在的问题.中国船舶,1999(2):12-15
    [71]齐勇.导游机器人硬件系统设计与最优路径规划:[硕士学位论文].青岛:中国海洋大学,2006
    [72]陈涛.AUV推进系统故障诊断与容错方法研究:[硕士学位论文].哈尔滨:哈尔滨工程大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700