产油微藻的筛选与评价、高产油策略及其差异性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
产油微藻是生物柴油生产的理想原料,随着能源危机的加剧,它逐渐成为各国政府和藻类学家关注的焦点。实现微藻生物柴油产业化的关键在于如何提高油脂产量,受藻种性能和培养条件所限,许多已开展的研究工作并不具备实际指导意义,而且对于“天然产油微藻(非模式微藻)”生理生化特性的研究也较少,而这些研究工作正是解决理论瓶颈、提高油脂产量的关键。本论文主要开展了“产油微藻的筛选”、“光强、初始氮供应量和氮源形式三种策略提高微藻油脂产量的可行性”、“两株不同类型天然产油微藻生理生化特性及其差异性研究”、“产油小球藻脂类积累过程中的生长、碳流分配以及光合特性研究”、“产油微藻扩大培养的产能评价”等五个方面的研究工作,主要研究结果如下:
     1.对实验室保藏的20株微藻进行了评价(真眼点藻纲2株,硅藻纲1株,绿藻门17
     株),根据生物质浓度、总脂含量、β-胡萝卜素含量以及总脂收获量等参数的高低,筛选出6株总脂收获量超过2.0gL~(-1)的微藻,它们是韦氏真眼点藻(Eustigamatos vischeri)、荒漠栅藻(Scenedesmus deserticola)、麻织绿球藻(Chlorococcum tatrense)、眼点拟微绿球藻(Nannochloropsis oculata)、椭圆绿球藻(Chlorococcum ellipsoideum)和雪绿球藻(Chlorococcum nivale),经“生物柴油质量预测模型”的验证,6种微藻生物柴油的质量均符合中国(BD100)、美国(ASTM6751)和欧盟(EN14214)的标准;在6株潜力微藻中,韦氏真眼点藻(E.vischeri)的总脂收获量可达4.0gL~(-1),同时该藻还可以积累2.39%DW的β-胡萝卜素,具有极高的开发利用价值。
     2.通过测定生物质浓度、总脂含量和中性脂含量,探索了“光强”、“初始氮供应量”、
     “氮源形式”三种策略,对6株产油微藻生长和中性脂积累的影响,结果表明:三种策略均可以提高6株产油微藻的中性脂产量,但存在明显的种间差异和因素交叉影响;6株产油微藻优化后的中性脂产量分别为:韦氏真眼点藻(4.9gL~(-1),高光强+尿素+低氮供应)、荒漠栅藻(4.1gL~(-1),高光强+硝酸钠+高氮供应)、椭圆绿球藻(3.8gL~(-1),高光强+尿素+低氮供应)、眼点拟微绿球藻(3.0gL~(-1),高光强+硝酸钠+高氮供应)、雪绿球藻(2.7gL~(-1),高光强+硝酸钠+低氮供应)、麻织绿球藻(2.7gL~(-1),高光强+硝酸钠+高氮供应)。根据产油微藻对起始氮供应量的响应规律,将产油微藻分为3种类型:类型-I,低氮供应降低了生物质浓度而提高了中性脂含量;类型-II,低氮供应同时降低生物质浓度和中性脂含量;类型-III,低氮供应同时提高了生物质浓度和中性脂含量,类型-III更具产业化价值。
     3.本论文研究了3.5mM、5.9mM、8.8mM和17.6mM四种初始氮浓度条件下,两株不同类型的天然产油微藻––荒漠栅藻S.deserticola(类型I)和韦氏真眼点藻E.vischeri(类型III),在细胞生长、生化组成、氮吸收利用、光合作用及呼吸作用等方面的变化规律及差异性,主要研究结果为:
     (1)生长特性:有利于两株微藻细胞分裂的氮浓度均为8.8mM,而有利于两株微藻生物质积累的氮浓度为17.6mM(荒漠栅藻)和5.9mM(韦氏真眼点藻);随初始氮供应量的降低,荒漠栅藻的单位细胞重量降低,而韦氏真眼点藻的单位细胞重量增加;
     (2)氮的吸收利用:两株微藻具有相似的NO3-的吸收规律,但韦氏真眼点藻具有比荒漠栅藻更高蛋白质合成速率和合成量;
     (3)生化组成:培养过程中,两株微藻均表现出“碳水化合物和蛋白质含量降低、总脂含量升高”的趋势;高浓度氮供应有利于两株微藻蛋白质的合成,而低浓度氮供应有利于碳水化合物和脂类的合成;荒漠栅藻中性脂的积累速率和积累量显著高于韦氏真眼点藻,而韦氏真眼点藻的碳水化合物含量高于荒漠栅藻;荒漠栅藻在培养中后期大量积累角黄素,其积累量与氮浓度呈负相关,韦氏真眼点藻在培养中后期大量积累β-胡萝卜素,其积累量与氮浓度呈正相关;两株微藻其余光合色素的含量在培养过程中均显降低趋势,降低幅度与初始氮供应量呈负相关;
     (4)光合作用和呼吸作用:培养过程中,两株微藻的光合效率(F_v/F_m,rETR和P_n)和呼吸速率均呈现降低趋势,韦氏真眼点藻具有较低的热耗散效率和高的光能利用效率。
     4.以分离自广东某热带湖泊的产油微藻JNU13为实验材料,通过18SrRNA基因序列分析和形态学观察,初步确定该藻株为普通小球藻JNU13(Chlorella vulgarisJNU13),研究了该藻在脂类积累过程中的细胞生长、碳流分配及光合特性,(1)生长与脂类积累:培养前期,普通小球藻JNU13的细胞分裂与胞内脂类积累可以同步进行,培养中后期,细胞分裂停止,胞内脂类积累成为生物量浓度增加的主要原因;(2)碳流分配:培养前期,普通小球藻JNU13固定的碳主要用于碳水化合物的合成,培养中后期,主要用于脂类的合成;(3)光合特性:光合效率的降低对普通小球藻JNU13脂类积累存在反馈抑制作用,脂类积累过程中伴随光系统能量分配的改变,光系统I能量比例降低,光系统II能量比例相对稳定,与氧气释放相关的Z型电子传递链活性降低,可变电子传递链可以为产油微藻JNU13的生长提供能量,高光合效率使高氮供给组获得了比低氮供给组更高的总脂含量。
     5.利用体积为24L的室内平板式光生物反应器(光径为4.0cm),对荒漠栅藻(S.deserticola)和眼点拟微绿球藻(N.oculata)进行了扩大培养及产能评价,结果表明:两株微藻在平板式光生物反应器中生物质浓度、总脂含量以及总脂收获量均显著低于0.3L柱式光生物反应器(光径3.0cm)的培养结果;荒漠栅藻和眼点拟微绿球藻的单位面积生物质产率分别为16.43gm~2day~(-1)和17.08gm~2day~(-1),总脂产率为7.64gm~2day~(-1)和5.48gm~2day~(-1);荒漠栅藻藻粉成本为1868.2元/千克,眼点拟微绿球藻藻粉成本为1949.9元/千克,室内培养条件下,高通气搅拌成本和光照成本是藻粉成本过高的主要原因。
Oleaginous microalgae are considered as an optimal feedstock for biodiesel production. With the growing energy crisis, research on biodiesel production from microalgae has been the concern of governments and researchers worldwide. To enhance lipid productivity is one of the most critical problems to realize microalgal biodiesel industrialization. Due to the limitation of both of oleaginous microalgal species and experimental condition, some of previous studies have less guiding significance. Moreover, studies on natural oleaginous microalgae (non-model microalgae) are limited. To overcome these shortcomings are exactly the key solving steps for theoretical bottleneck and lipid productivity improvement. This study mainly focused on "oleaginous microalgal screening","effects of high light intensity, initial nitrogen supply, urea on the growth and neutral lipid accumulation of oleaginous microalgae","regulations and differences in physiology and biochemistry of two natural microalgal species under various intial nitrogen supply","growth, carbon flow distribution, and photosynthetic performance of oleaginous microalgae in the process of lipid accumulationand","assessment, and economic analyses of oleaginous microalgae in large-scale cultivation". The main results are listed as follows:
     1. Twenty strains of freshwater and marine microalgae, including17strains of Chlorophytes,2strains of Eustigmatophytes, and1strain of Bacillariophytes, were investigated in this study. By comparing their biomass concentration, total lipid content, β-carotene content and total lipid yield, six strains of oleaginous microalgae which had over2.0g L-1of lipid yield were selected. These were E. vischeri, S. deserticola, C. tatrense, N. oculata, C. ellipsoideum, and C. nivale. After testing by prediction model of the quality of biodiesel, their lipids complied with the standards set by China (BD100), USA (ASTM6751), and EU (EN14214). Among them, the lipid yield of E. vischeri could reach up to4.0g L-1. Simultaneously, it could accumulate2.39%DW β-carotene. This microalga was considered to have extremely high developing value.
     2. By analyzing the level of biomass concentration, neutral lipid content, and neutral lipid yield, we investigated effects of high light intensity, initial nitrogen supply, and urea on growth and lipid accumulation in six strains of oleaginous microalgae. The results indicated that these three kinds of strategies of high-yield oil (high light intensity, initial nitrogen supply, and urea) could improve the neutral lipid yield, but a close relationship exists between lipid production, microalgal species, and individual strategies. The neutral lipid yield of microalgae after optimization were listed follows:E. vischeri(4.9g L-1, high light+urea+low nitrogen supply), S. deserticola (4.1g L-1, high light+nitrate+high nitrogen supply), C. ellipsoideum (3.8g L-1, high light+urea+low nitrogen supply), N. oculata (3.0g L-1, high light+nitrate+high nitrogen supply), C. nivale (2.7g L-1, high light+nitrate+low nitrogen supply), C. tatrense(2.1g L-1, high light+nitrate+high nitrogen supply). Considering the changes in biomass concentration and neutral lipid content, we found three patterns of response to low nitrogen supply. These were type-I (decrease in biomass concentration and increase in lipid content), type-Ⅱ (reduction in both biomass concentration and lipid content), and type-Ⅲ (enhancement of both biomass concentration and lipid content). Type-Ⅲ microalgae could be the potential candidate for the large-scale oil production.
     3. The growth, biochemical composition, nitrogen uptake, photosynthesis performance and respiration of two kinds of natural oleaginous microalgae, S. deserticola (type-I) and R. vischeri (type-Ⅲ), under3.5mM,5.9mM,8.8mM, and17.6mM of initial nitrogen supply were studied. The main results were listed as follows:
     (1) Growth characteristic:the optimal nitrogen concentration for cell division of two microalgal strains was8.8mM. However, the optimal nitrogen concentration for biomass accumulation was17.6mM(S. deserticola) and5.9mM(E. vischeri), respectively. With the initial nitrogen supply decreased (17.6mM→3.5mM), cell weight of S. deserticola reduced, while cell weight of E. vischeriincreased.
     (2) NO3-uptake and utilization:S. deserticola and E. vischeri had the similar nitrogen uptake rate. Nevertheless, the protein synthesis rate and yield in E. vischeri were higher than that of S. deserticola, respectively.
     (3) Biochemical composition:with the cultivation time, the carbohydrate and protein content in S. deserticola and E. vischeri showed a decreased tendency, while total lipid content showed an increased tendency. High nitrogen supply could accelerate protein synthesis, but low nitrogen supply was beneficial to the synthesis of carbohydrate and lipid in S. deserticola and E. vischeri. The synthesis rate of neutral lipid and content in S. deserticola was significant higher than that of E. vischeri. However, E. vischeri obtained higher carbohydrate content than S. deserticola. In the middle and later periods of culture, S. deserticola could accumulate large amount of canthaxanthin, the content of which was negative positive correlation with nitrogen concentration. However, K vischeri could accumulate large amount of P-carotene, the content of which was positive correlation with nitrogen concentration. All of other pigments, including chrolophyll and carotenoid, showed a great decrease tendency in content.
     (4) Photosynthetic performance and respiration:with the cultivation time, the respiration rate and photosynthetic efficiency of S. deserticola and K vischeri, expressed as Fv/Fm, rETR and Pn, showed a decreased tendency. E. vischeri exhibited less non-photochemical quenching and higher photosynthetic efficiency than S. deserticola.
     5. A strain of oleaginous microalgae JNU13, which was isolated from a tropical lake in Guangdong province, was used as experimental material in this study. By analyzing18S rRNA gene sequence and cellular ultrastructure, this microalgal strain was identified to be Chlorella vulgaris JNU13. The growth, carbon flow distribution and photosynthetic performance were investigated. The main results were listed as follows:(1) in the early stage of cultivation, lipid accumulation and cell division of Chlorella vulgaris JNU13could be synchronized. During the middle and late stages of cultivation, cell division suspended, the increase in lipid content became the main reason for biomass concentration increase;(2) in the early stage of cultivation, most of the CO2fixed by microalgae were used for the synthesis of carbohydrate. However, during the middle and late stages of cultivation, the fixed carbon was mainly used for the synthesis of lipid;(3) the decreased photosynthetic efficiency had obvious feedback inhibition on lipid accumulation of Chlorella vulgaris JNU13. The energy distribution between photosystems has been changed in the process of lipid accumulation (reduce in the energy distribution of photosystem I, no obvious change in the energy distribution of photosystem II). The activity of z-scheme electron transport chain related to oxygen release decreased. Alternative electron transport chain could offere energy for the growth of Chlorella vulgaris JNU13. High photosynthetic efficiency was the main reason that high nitrogen supply treatments could obtain higher lipid content than low nitrogen supply treatment.
     4. The large-scale cultivation of S. deserticola and N. oculata were conducted in a self-designed flat glass photobioreactor (24L, light path:4.0cm). Potential lipid productivity and cost of these two strains of microalgae were investigated. The results showed that biomass concentration, lipid content and lipid yield of S. deserticola and N. oculata cultured in flat glass photobioreactor were remarkable low compared to that of bubble column photoreactor (0.3L, light path:3.0cm). The areal biomass productivity of S. deserticola and N. oculata were16.43g m2day-1and17.08g m2day-1, respectively. The areal lipid productivity of S. deserticola and N. oculata were7.64g m2day-1and5.48g m2day-1. The total costs of S. deserticola and N. oculata were Y1868.2kg-1and Y1949.9kg-1, respectively. Under the laboratory conditions, high agitation, aeration and light cost resulted in high total cost of microalgal biomass.
引文
[1]曹春晖,孙世春,麦康森,等.光照强度对四株海洋绿藻总脂含量和脂肪酸组成的影响
    [J].生态学报,2010,30(9):2347–2353.
    [2]韩博平,韩志国,付祥.藻类光合作用机理与模型[M].北京:科学技术出版社,2003.
    [3]胡鸿钧,魏印心.中国淡水藻类–系统、分类及生态[M].北京:科学出版社,2006.
    [4]胡章喜,安民,段舜山,等.不同氮源对布朗葡萄藻生长、总脂和总烃含量的影响[J].生态学报,2009,29(6):3288–3294.
    [5]江泽民.对中国能源问题的思考[J].上海交通大学学报,2008,42(3):345–359.
    [6]蒋汉明,高坤山.氮源及其浓度对三角褐指藻生长和脂肪酸组成的影响[J].水生生物学报,2004,28(5):545–551.
    [7]匡廷云.光合作用原初光能转换过程的原理与调控[M].江苏:科学科技出版社,2003.
    [8]李荷芳,周汉秋.光照强度对海洋微藻脂肪含量及脂肪酸组成影响的研究[J].海洋科学集刊,2001,43:178–183.
    [9]李美艳,冯连勇.福岛核危机对日本能源战略的影响及启示[J].中外能源,2013,18(3):1–6.
    [10]李涛,李爱芬,桑敏,吴洪,尹顺吉,张成武.富油能源微藻的筛选及产油性能评价[J].中国生物工程杂志,2011,4:98–105.
    [11]刘平怀,郝宗娣,杨勋,张森,时杰.不同氮源对2种微藻生长及总脂含量的影响[J].生态环境学报,2012,21(8):1429–1433.
    [12]刘志媛.铁对几种不同代谢类型微藻的生长和油脂积累的影响[D].青岛:中国科学院海洋研究所,2008.
    [13]欧明明,蔡伟民.铁限制对铜绿微囊藻光系统活性变化的影响[J].环境化学,2005,24(6):651–653.
    [14]邱昌恩,况琪军,刘国祥,胡征宇.不同氮浓度对绿球藻生长及生理特性的影响[J].中国环境科学,2005,25(4):408–411.
    [15]石娟,潘克厚.不同光照条件对小新月菱形藻和等鞭金藻8701生长及生化成分的影响[J].中国水产科学,2004,11(2):121–128.
    [16]王金娜,严小军,周成旭,徐继林.产油微藻的筛选及中性脂动态积累过程的检测[J]. 生物物理学报,2010,26(6):472-480.
    [17]王立柱,温皓程,邹渝,周稳稳,谢通慧,张永奎.产油微藻的分离、筛选及自养培养氮源、碳源的优化[J].微生物学通报,2010,37(3):336-341.
    [18]许瑾,张成武,李爱芬,桑敏,吴洪,刘敏胜,朱振旗.华南地区淡水产油微藻藻株的分离与筛选[J].可再生能源,2011,29(1):66-71.
    [19]杨军.施加铁对海洋微藻生长影响的实验室研究[D].青岛:青岛海洋大学,2001.
    [20]杨凯.高油脂微藻筛选及不同培养条件对其脂肪酸含量及组分的影响[D].苏州:苏州大学,2009.
    [21]朱顺妮,王忠铭,尚常花,周卫征,杨康,袁振宏.微藻脂肪合成与代谢调控[J].化学进展,2011,23(10):2069-2076.
    [22]BP世界能源统计年鉴[R],伦敦:BP集团,2012.
    [23]Aaronson S. Effect of incubation temperature on the macromolecular and lipid content of the phytoflagellate Ochromonas danica[J].J Phycol,1973,9:111-113.
    [24]Adams C, Godfrey V, Wahlen B, Seefeldt L, Bugbee B. Understanding precision nitrogen stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae[J]. Bioresource Technol,2013,131:188-194.
    [25]Alonso D L, Belarbi E H, Fernandez-Sevilla J M, Rodriguez-Ruiza J, Grima E M. Acyl lipid composition variation related to culture age and nitrogen concentration in continuous culture of the microalga Phaeodactylum tricornutum[J].Phytochemistry,2000,54(5):461-471.
    [26]Alric J. Cyclic electron flow around photosystem I in unicellular green algae[J]. Photosynth Res,2010,106(1-2):47-56.
    [27]Amaro H M, Guedes A C, Malcata F X. Advances and perspectives in using microalgae to produce biodiesel[J]. Appl Energ,2011,88:3402-3410.
    [28]Andersen R A. Algal culturing techniques[M]. London:Elsevier Academic Press,2005.
    [29]Antia N J, Harrison P J, Oliveira L. The role of dissolved organic nitrogen in phytoplankton nutrition, cell biology and ecology. Phycologia[J],1991,30:1-89.
    [30]Azachi M, Sadka A, Fisher M, Goldshlag P, Gokhman I, Zamir A. Salt induction of fatty acid elongase and membrane lipid modifications in the extreme halotolerant alga Dunaliella salina[J]. Plant Physiol,2002,129(3):1320-1329.
    [31]Bar E, Rise M, Vishkautsan M, Arad S. Pigment and structural changes in Chlorella zofingiensis upon light and nitrogen stress[J]. J Plant Physiol,1995,146(4):527-534.
    [32]Benning C and Ohta H. Three enzyme systems for galactoglycerolipid biosynthesis are coordinately regulated in plants [J]. J Biol Chem,2005,280(4):2397-2400.
    [33]Benson A A, Bassham J A, Calvin M. The Path of Carbon in Photosynthesis. V. Paper Chromatography and Radioautography of the Products[J]. J Am Chem Soc,1950,72(4):1710-1718.
    [34]Benson A A, Wiser R, Ferrari R A, Miller J A. Photosynthesis of galactolipids[J]. J Am Chem Soc,1958,80(17):4740-4740.
    [35]Berges J A, Berges J A, Charlebois D O, Mauzerall D C. Differential effects of nitrogen limitation on photosynthetic efficiency of photosystems I and II in Microalgae[J]. Physiol,1996,110:689-696.
    [36]Brennan L, Owende P. Biofuels from microalgae-A review of technologies for production, processing, and extractions of biofuels and co-products [J]. Renew Sustain Energy Rev,2010,14:557-577.
    [37]Breuer G, Lamers P P, Martens D E, Draaisma R B, Wijffels R H. The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains[J]. Bioresource Technol,2012,124:217-226.
    [38]Buchanan B B, Gruissem W, Jones R L. Biochemistry&molecular biology of plants[M]. Rockville:American Society of Plant Physiologists,2004.
    [39]Cakmak T, Angun P, Demiray Y E, Ozkan A D, Elibol Z, Tekinay T. Differential effects of nitrogen and sulfur deprivation on growth and biodiesel feedstock production of Chlamydomonas reinhardtii[J].Biotechnol Bioeng,2012,109(8):1947-1957.
    [40]Chisti Y. Biodiesel from microalgae[J]. Biotechnol Adv,2007,25:294-306.
    [41]Choi G G, Kim B H, Ahn C Y, et al. Effect of nitrogen limitation on oleic acid biosynthesis in Botryococcus braunii[J].J Appl Phycol,2011,23(6):1031-1037.
    [42]Christie W W. Lipid analysis:Isolation, separation, identification and structural analysis of lipids[M]. Oxford:Pergamon Press,1982.
    [43]Cobelas M A, and Lechado J Z. Lipids in microalgae. A review. I. Biochemistry. Grasas y Aceites,1989,40:118-145.
    [44]Constantopoulos G, Bloch K. Effect of light intensity on the lipid composition of Euglena gracilis[J]. J Biol Chem,1967,242:3452-3538.
    [45]Converti A, Casazza A A, Ortiz E Y, Perego P, Borghi M D. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production[J]. Chem Eng Process,2009,48:1146-1151.
    [46]Coombs J, Darley W M, Holm-hansen O. Studies on the biochemistry and fine structure of silica shell formation in diatoms. Chemical composition of Navicula pelliculosa during silicon-starvation synchrony [J]. Plant Phy si ol,1967,42:1601-1606.
    [47]Courchesne N M D, Parisien A, Wang B, Lan C Q. Enhancement of lipid production using biochemical, genetic and transcription factor engineering approaches [J]. J Biotechnol,2009,141(1-2):31-41.
    [48]Silva A F, Lourenco S O, Chaloub R M. Effects of nitrogen starvation on the photosynthetic physiology of a tropical marine microalga Rhodomonas sp.(Cryptophyceae)[J]. Aquatic Botany,2009,91(4):291-297.
    [49]Davis R, Aden A, Pienkos P T. Techno-economic analysis of autotrophic microalgae for fuel production[J]. Appl Energ,2011,88,3524-3531.
    [50]Das P, Aziz S S, Obbard J P. Two phase microalgae growth in the open system for enhanced lipid productivity[J]. Renewable Energy,2011,36(9):2524-2528.
    [51]Dean A P, Sigee D C, Estrada B, Pittman J K. Using FTIR spectroscopy for rapid determination of lipid accumulation in response to nitrogen limitation in freshwater microalgae[J]. Bioresource Technol,2010,101:4499-4507.
    [52]Doan T T Y, Sivaloganathan B, Obbarda J Philip. Screening of marine microalgae for biodiesel feedstock[J]. Biomass and Bioenergy,2011,35(7):2534-2544.
    [53]Dubois M, Gilles K A, Hamilton J K, Rebers P A, Smith Fred. Colorimetric method for determination of sugars and related substances[J]. Anal Chem,1956,28(3):350-356.
    [54]Falkowski P G, Sukenik A, Herzig R. Nitrogen limitation in Isochrysis galbana (Haptophyceae) relative abundance of chloroplast proteins[J]. J Phycol,1989,25(3):471-478.
    [55]Fidalgo J P, Cid A, Torres E, Sukenik A, Herrero C. Effects of nitrogen source and growth phase on proximate biochemical composition, lipid classes and fatty acid profile of the marine microalga Isochrysisgalbana[J].Aquaculture,1998,166:105-116.
    [56]Flynn K J, Hipkin C R. Interactions between iron, light ammonium, and nitrate:insights from the construction of a dynamic model of algal physiology[J]. J Phycol,1999,35:11711190.
    [57]Fogg G E. Photosynthesis and formation of fats in a Diatom[J]. Ann Bot London,1956,20:265-285.
    [58]Gao S, Shen S, Wang G, et al. PSI-driven cyclic electron flow allows intertidal macro-algae Ulva sp.(Chlorophyta) to survive in desiccated conditions[J]. Plant Cell Physiol,2011,52(5):885-893.
    [59]Garcia-Ferris C, Moreno J. Oxidative modification and breakdown of ribulose-1,5-bisphosphate carboxylase/oxygenase induced in Euglena gracitis by nitrogen starvation[J]. Planta,1994,193(2):208-215.
    [60]Gong Y, Jiang M. Biodiesel production with microalgae as feedstock:from strains to biodiesel. Biotechnol Lett,2011,33(7):1269-1284
    [61]Griffiths M J, Harrison S T L. Lipid productivity as a key characteristic for choosing algal species for biodiesel production[J]. J Appl Phycol,2009,21:493-507.
    [62]Griffiths M J, Hille R P, Harrison S T L. Lipid productivity, settling potential and fatty acid profile of11microalgal species grown under nitrogen replete and limited conditions[J]. J Appl Phycol,2012,24:989-1001.
    [63]Guckert J B, Cooksey K E. Triglyceride accumulation and fatty acid profile changes in Chlorella (Chlorophyta) during high pH-induced cell cycle inhibition [J]. J Phycol,1990,26(1):72-79.
    [64]Guedes A C, Amaro H M, Malcata F X. Microalgae as sources of high added-value compounds-a brief review of recent work[J]. Biotechnol Prog,2011,27(3):597-613.
    [65]Guschina I A, Harwood J L. Algal lipids and effect of the environment on their biochemistry[M]. Lipids in Aquatic Ecosystems.2009,1-24.
    [66]Guschina I A, Harwood J L. Lipids and lipid metabolism in eukaryotic algae[J]. Progress in Lipid Research,2006,45(2):160-186.
    [67]Han D, Wang J, Sommerfeld M, Hu Q. Susceptibility and protective mechanisms of motile and non motile cells of Haematococcus pluvialis (Chlorophyceae) to Photo oxidative stress[J]. J Phycol,2012,48(3):693-705.
    [68]Hanagata N, Dubinsky Z. Secondary carotenoid accumulation in Scenedesmus komarekii (Chlorophyceea, Chlorophyta)[J]. J Phycol,1999,35:960-966.
    [69]Harwood J L, Jones L A. Lipid Metabolism in Algae[J]. Advan Botan Res,1989,16:1-53.
    [70]Heldt H W. Plant Biochemistry3th edition. San Diego:Elsevier Academic Press,2005.
    [71]Hemchandra T P, Robertson P. Protein and Lipid Content of Chlorella vulgaris in Relation to Light[J]. Nature,1960,188(4755):1031-1032.
    [72]Ho S H, Chen C Y, Chang J S. Effect of light intensity and nitrogen starvation on CO2fixation and lipid/carbohydrate production of an indigenous microalga Scenedesmus obliquus CNW-N[J]. Bioresource Technol,2012,113:244-252.
    [73]Hsieh C H, Wu W T. Cultivation of microalgae for oil production with a cultivation strategy of urea limitation[J]. Bioresource Technol,2009,100:3921-3926.
    [74]Hsueh H T, Li W J, Chen H H. Carbon bio-fixation by photosynthesis of Thermosynechococcus sp. CL-1and Nannochloropsis oculta[J].J Photochem Photobiol B: biology,2009,95(1):33-39.
    [75]Hu Q, Guterman H, Richmond A. A flat inclined modular photobioreactor for outdoor mass cultivation of photoautotrophs[J]. Biotechnol Bioeng,1996,51(1):51-60.
    [76]Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A. Microalgal triacylglycerols as feedstocks for biofuel production:perspectives and advances. Plant J,2008,54,621-639.
    [77]Huppe H C, and Turpin D H. Integration of carbon and nitrogen metabolism in plant and algal cells[J]. Annu Rev Plant Biology,1994,45(1):577-507.
    [78]Jain R K, Coffey M, Lai K. Enhancement of seed oil content by expression of glycerol-3-phosphate acyltransferase genes[J]. Biochem Soc Trans,2000,28(6):959-960.
    [79]James G O, Hocart C H, Hillier W, Chen H, Kordbacheh F, Price G D, Djordjevic M A. Fatty acid profiling of Chlamydomonas reinhardtii under nitrogen deprivation[J]. Bioresource Technol,2011,102:3343-3351.
    [80]Jiang Y, Yoshida T, Quigg A. Photosynthetic performance, lipid production and biomass composition in response to nitrogen limitation in marine microalgae[J]. Plant Physiol Biochem,2012,54:70-77.
    [81]Jorquera O, Kiperstok A, Sales E A. Comparative energy life-cycle analyses of microalgal biomass production in open ponds and photobioreactors[J]. Bioresource Technol,2010,101(4):1406-1413.
    [82]Khozin-Goldberg I, Shrestha P, Cohen Z. Mobilization of arachidonyl moieties from triacylglycerols into chloroplastic lipids following recovery from nitrogen starvation of the microalga Parietochloris incisa[J].BBA-Mol Cell Biol Lipids,2005,1738:63-71.
    [83]Kolber Z, Zehr J, Falkowski P. Effects of growth irradiance and nitrogen limitation on photosynthetic energy conversion in photosystem I [J]. Plant Physiol,1988,88:923-929.
    [84]Kuppers U, Weidner M. Seasonal variation of enzyme activities in Laminaria hyperborea[J]. Planta,1980,148(3):222-230.
    [85]Lapuerta M, Rodriguez-Fernandez J, de Mora E F. Correlation for the estimation of the cetane number of biodiesel fuels and implications on the iodine number[J]. Energy Policy,2009,37(11):4337-4344.
    [86]Lardizabal K, Effertz R, Levering C. Expression of Umbelopsis ramanniana DGAT2A in seed increases oil in soybean[J]. Plant physiol,2008,148(1):89-96.
    [87]Larson T R and Rees T A V. Changes in cell composition and lipid metabolism mediated by sodium and nitrogen availability in the marine diatom Phaeoactylum tricormttum (Bacillariophyceae)[J]. J Phyol,1996,32:388-393.
    [88]Lee S J, Go S, Jeong G T, Kim S K. Oil Production from Five Marine Microalgae for the Production of Biodiesel [J]. Biotechnol Bioprocess Eng,2011,16:561-566.
    [89]Lemoine Y, Schoef B. Secondary keto-carotenoid astaxanthin biosynthesis in algae:a multifunctional response to stress[J]. Photosynth Res,2010,106:155-177.
    [90]Li Y, Han D, Hu G, et al. Inhibition of starch synthesis results in overproduction of lipids in Chlamydomonas reinhardtii[J].Biotechnol Bioeng,2010,107(2):258-268.
    [91]Li Y, Horsman M, Wang B, Wu N, Lan C. Effects of nitrogen sources on cell growth and lipid accumulation of green alga Neochloris oleoabundans[J].Appl Microbiol Biotechnol,2008,81:629-636.
    [92]Li Y, Han D, Sommerfeld M, et al. Photosynthetic carbon partitioning and lipid production in the oleaginous microalga Pseudochlorococcum sp.(Chlorophyceae) under nitrogen-limited conditions[J]. Bioresource technol,2011,102(1):123-129.
    [93]Li X, Xu H, Wu Q. Large-scale biodiesel production from microalga Chlorella protothecoides through heterotrophic cultivation in bioreactors[J]. Biotechnol and bioeng,2007,98(4):764-771.
    [94]Liang K, Zhang Q, Gu M, Cong W. Effect of phosphorus on lipid accumulation in freshwater microalga Chlorella sp.[J]. J Appl Phycol,2013,25(1):311-318.
    [95]Lin Q, Lin J. Effects of nitrogen source and concentration on biomass and oil production of a Scenedesmus rubescens like microalga[J]. Bioresource Technol,2011,102:1615-1621.
    [96]Liu W, Huang Z, Li P Xia J, Chen B. Formation of triacylglycerol in Nitzschia closterium mimttissima under nitrogen limitation and possible physiological and biochemical mechanisms [J]. J Exp Mar Biol Ecol,2012,419:24-29.
    [97]Lourenco S O, Barbarino E, De-Paula J C, Pereira L O S, Marquez U M L. Amino acid composition, protein content and calculation of nitrogen to protein conversion factors for19tropical seaweeds[J]. Phycol Res,2002,50(3):233-241.
    [98]Lourenco S O, Barbarino E, Mancini-Filho J, Schinke K P, Aidar E. Effects of different nitrogen sources on the growth and biochemical profile of10marine microalgae in batch culture:an evaluation for aquaculture[J]. Phycologia,2002,41(2):158-168.
    [99]Lowry O H, Rosebrough N J, Farr A L, et al. Protein measurement with the Folin phenol reagent[J]. J Boil Chem,1951,193(1):265-275.
    [100]Luisa Gouveia. Microalgae as a Feedstock for Biofuels[M]. New York:Springer,2011.
    [101]Lynn S G, Kilham S S, Kreeger D A, Interlandi S J. Effect of nutrient availability on the biochemical and elemental stoichiometry in the freshwater diatom Stephanodiscus minutulus (Bacillariophyceae)[J]. J Phycol,2000,36(3):510-522.
    [102]Ma F, Hanna M A. Biodiesel production:a review. Bioresource Technol,1999,70:1-15
    [103]Maisonneuve S, Bessoule J J, Lessire R, Delseny M, Roscoe T J. Expression of rapeseed microsomal lysophosphatidic acid acyltransferaseisozymes enhances seed oil content in Arabidopsis[J]. Plant Physiol,2010,152(2):670-684.
    [104]Mata T M, Martinsa A A, Caetano N S. Microalgae for biodiesel production and other applications:A review[J]. Renew Sustain Energy Rev,2010,14(1):217-232.
    [105]Materassi R, Paoletti C, Balloni W. Some considerations on the production of lipid substances by microalgae and cyanobacteria[J]. Algal Biomass:Production and Use. Amsterdam:Elsevier,1980,619-626,625-653.
    [106]Merzlyak M N. Effect of nitrogen starvation on optical properties pigments and arachidonic acid conitent of the unicellular green algal Parietochloris incisa[J].J Phycol,2007,43:833-843.
    [107]Montero M F, Aristizabal M, Reina G G. Isolation of high-lipid content strains of the marine microalga Tetraselmis suecica for biodiesel production by flow cytometry and single-cell sorting[J]. J Appl Phycol,2011,23(6):1053-1057.
    [108]Msanne J, Xu D, Konda A R, Casas-Mollano J A, Awada T, Cahoon E B, Cerutti H. Metabolic and gene expression changes triggered by nitrogen deprivation in the photoautotrophically grown microalgae Chlamydomonas reinhardtii and Coccomyxa sp. C-169[J]. Phytochemistry,2012,75:50-59.
    [109]Nayak M, Jena J, Bhakta S, et al. Screening of fresh water microalgae from eastern region of India for sustainable biodiesel production[J]. Int J Green Energy,2011,8(6):669-683.
    [110]Nichols B W. Fatty acid metabolism in the chloroplast lipids of green and blue-green algae [J]. Lipids,1968,3(4):354-360.
    [111]Opute F L. Studies on fat accumulation in Nitzschia palea[J].Ann Bot London,1974,38:889-902.
    [112]Orcutt D M, Patterson G W. Effect of light intensity upon lipid composition Nitzschia closterium(Sylindrotheca fusiformis)[J].Lipids,1974,4:1000-1003.
    [113]Ordog V, Stirk W A, Balint P, Staden J V, Lovasz C. Changes in lipid, protein and pigment concentrations in nitrogen-stressed Chlorella mimttissimacultures[J]. J Appl Phycol,2012,24:907-914.
    [114]Orpez R, Martinez M E, Hodaifa G, Yousfi F E, Jbari N, Sancheza S. Growth of the microalga Botryococcus braunii in secondarily treated sewage[J]. Desalination,2009,246(1-3):625-630.
    [115]Pal D, Khozin-Goldberg I, Cohen Z, Boussiba S. The effect of light, salinity, and nitrogen availability on lipid production by Nannochloropsis sp.[J]. Appl Microbiol Biotechnol,2011,90(4):1429-1441.
    [116]Patterson G W. Effect of culture temperature on fatty acid composition of Chlorella sorokiniana[J].Lipids,1970,5(7):597-600.
    [117]Piorreck M, Pohl P. Formation of biomass, total protein, chlorophylls, lipids and fatty acids in green and blue-green algae during one growth phase[J]. Phytochemistry,1984,23(2):217-223.
    [118]Pirastru L, Darwish M, Chu F L, Perreault F, Sirois L, Sleno L, Popovic R. Carotenoid production and change of photosynthetic functions in Scenedesmus sp. exposed to nitrogen limitation and acetate treatment[J]. J Appl Phycol,2012,24:117-124.
    [119]Platt T, Gallegos C L, Harrison W G. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton[J]. J Mar Res,1980,38:687-701.
    [120]Plumley F G, Douglas S E, Switzer A B, Schmidt G W. Nitrogen-dependent biogenesis of chlorophyll-protein complexes. In WR Briggs, ed, Photosynthesis. AR Liss,1989, New York,311-329
    [121]Pragya Namita, Pandey K K, Sahoo P K. A review on harvesting, oil extraction and biofuels production technologies from microalgae[J]. Renew Sustain Energy Rev,2013,24:159-171.
    [122]Rabbani S, Beyer V P. Induced-carotene synthesis driven by triacylglycerol deposition in the unicellular algal Dunaliella bardawil[J].Plant Physiol,1998,116:1239-1248.
    [123]Ramos M J, Fernandez C M, Casas A, Rodriguez L, Perez A. Influence of fatty acid composition of raw materials on biodiesel properties[J]. Bioresource Technol,2009,100(1):261-268.
    [124]Raven J A. Nutrient transport in microalgae[J]. Advan Microb physiol,1981,21:47-226.
    [125]Rawat I, Kumar R R, Mutanda T, Bux F. Biodiesel from microalgae:A critical evaluation from laboratory to large scale product on [J]. Appl Energy,2013,103:444-467.
    [126]Reitan K I, Rainuzzo J R, Olsen Y. Effect of nutrient limitation on fatty acid and lipid content of marine microalgae[J]. J Phycol,1994,30(6):972-979.
    [127]Rhiel E, Krupinska K, Wehrmeyer W. Effects of nitrogen starvation on the function and organization of the photosynthetic membranes in Cryptomonas maculata (Cryptophyceae)[J]. Planta,1986,169(3):361-369.
    [128]Richardson B, Wagner F W, Welch B E. Growth of Chlorella sorokiniana at hyperbaric oxygen pressures[J]. Appl Microbiol,1969,17(1):135-138.
    [129]Richmond A. Handbook of microalgal culture:biotechnology and applied phycology[M]. Wiley-Blackwell,2008.
    [130]Rios S D, Torres C M, Torras C, Salvadoa J, Mateo-Sanz J M, Jimenez L. Microalgae-based biodiesel:Economic analysis of downstream process realistic scenarios[J]. Bioresource Technol,2013,136:617-625.
    [131]Rismani-Yazdi H, Haznedaroglu B Z, Hsin C, Peccia J. Transcriptomic analysis of the oleaginous microalga Neochloris oleoabundans reveals metabolic insights into triacylglyceride accumulation[J]. Biotechnol Biofuels,2012,5:74.
    [132]Robert E L. Phycology (4th edition)[M]. Cambridge:Cambridge University Press,2008.
    [133]Rodolfi L, Zittelliv G C, Bassi N, Padovani G, Biondi N, Bonini G, Tredici M R. Microalgae for oil:strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor[J]. Biotechnol Bioeng,2009,102(1):100-112.
    [134]Roessler P G. Changes in the activities of various lipid and carbohydrate biosynthetic enzymes in the diatom Cyclotella cryptica in response to silicon deficiency[J]. Arch Biochem Biophys,1988,267(2):521-528.
    [135]Schenk P M, Thomas-Hall S R, Stephens E, Marx U C, Mussgnug J H, Posten C, Kruse O, Hankamer B. Second Generation Biofuels:High-Efficiency Microalgae for Biodiesel Producton[J]. Bioenerg Res,2008,1:20-43.
    [136]Scott S A, Davey M P, Dennis J S, Horst I, Howe C J, Lea-Smithand D J, Smith A G. Biodiesel from algae:challenges and prospects[J]. Curr Opin Biotechnol,2010,21:277-286.
    [137]Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the US department of energy's aquatic species program:biodiesel from algae[R]. Golden:National Renewable Energy Laboratory,1998.
    [138]Shelef G, Sukenik A, Green M. Microalgae harvesting and processing:a literature review[R]. Technion Research and Development Foundation Ltd., Haifa (Israel),1984.
    [139]Siaut M, Cuine S, Cagnon C, et al. Oil accumulation in the model green alga Chlamydomonas reinhardtii:characterization, variability between common laboratory strains and relationship with starch reserves[J]. BMC Biotechnol,2011,11(1):7.
    [140]Sing S F, Isdepsky A, Borowitzka M A, Moheimani N R. Production of biofuels from microalgae[J]. Mitig Adapt Strateg Glob Change,2013,18(1):47-72.
    [141]Singh R N, Sharma S. Development of suitable photobioreactor for algae production A review[J]. Renew Sustain Energy Revs,2012,16(4):2347-2353.
    [142]Solovchenko A E, Khozin-Goldberg I, Didi-Cohen S, Cohen Z, Merzlyak M N. Effects of light intensity and nitrogen starvation on growth, total fatty acids and arachidonic acid in the green microalga Parietochloris incisa[J].J Appl Phycol,2008,20(3):245-251.
    [143]Solovchenko A E. Physiological role of neutral lipid accumulation in eukaryotic microalgae under stresses[J]. Russ J Plant Physiol,2012,59(2):167-176.
    [144]Solovchenko A, Merzlyak M N, Khozin-Goldberg I. Coordinated carotenoid and lipid syntheses induced in Parietochloris incisa (Chlorophyta, Trebouxiophyceae) mutant deficient in A5Desaturase by nitrogen starvation and high light[J]. J Phycol,2010,46(4):763-772.
    [145]Spoehr H A, Milner H W. The chemical composition of Chlorella effect of environmental conditions[J]. Plant Physiol.1949.24:120-149.
    [146]Stansell G R, Gray V M, Sym S D. Microalgal fatty acid composition:implications for biodiesel quality [J]. J Appl Phycol,2012,24(4):791-801.
    [147]Stephenson A L, Dennis J S, Howe C J. Influence of nitrogen-limitation regime on the production by Chlorella vulgaris of lipids for biodiesel feedstocks[J]. Biofuels,2010,1(1):47-58.
    [148]Su C H, Chi en L J, Gomes J, Lin Y S, Yu Y K, Liou J S, Syu R J. Factors affecting lipid accumulation by Nannochloropsis oculata in a two-stage cultivation process[J]. J Appl Phycol,2011,23(5):903-908.
    [149]Sukenik A, Carmeli Y, Berner T. Regulation of fatty acid composition by irradiance level in the Eustigmatophyte Nannochloropsis sp.[J]. J Phycol,1989,25(4):686-692.
    [150]Sushchik N N, Kalacheva G S, Zhila N O, Gladyshev M I, Volova T G. A temperature dependence of the intra-and extracellular fatty-acid composition of green algae and cyanobacterium[J]. Russ J Plant Physiol,2003,50(3):374-380.
    [151]Syrett P J, Leftley J W. Nitrogen assimilation in Physiology and Biochemistry of Algae[J]. New York:Academic Press,1976,171-188.
    [152]Takagi M, Karseno, Yoshida T. Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells[J]. J Biosci Bioeng,2006,101(3):223-226.
    [153]Tang H, Abunasser N, Garcia M E D, Chen M, Ng K Y S, Salley S O. Potential of microalgae oil from Dunaliella tertiolectaas a feedstock for biodiesel[J]. Appl Energy,2011,88:3324-3330.
    [154]Tatsuzawa H, Takizawa E, Wada M, Yamamoto Y. Fatty acid and lipid composition of the acidophilic green alga Chlamydomonassp.[J]. J Phycol,1996,32(4):598-601.
    [155]Thomas W H, Seibert D L R, Alden M, et al. Yields, photosynthetic efficiencies and proximate composition of dense marine microalgal cultures. Ⅱ. Dunaliella primolecta and Tetraselmis suecica experiments [J]. Biomass,1984,5(3):211-225.
    [156]Tong D, Hu C, Jiang K, Li Y. Cetane number prediction of biodiesel from the composition of the fatty acid methyl esters[J]. J Am Oil Chem Soc,2011,88(3):415-423.
    [157]Tsuzuki M, Ohnuma E, Sato N. Effects of CO2concentration during growth on fatty acid composition in microalgae[J]. Plant Physiol,1990,93:851-856.
    [158]Turpin D H and Bruce D. Regulation of photosynthetic light harvesting by nitrogen assimilation in the green alga Selenastrum minutum[J].FEBS,1990,263:99-103.
    [159]Turpin D H. Effects of inorganic N availability on algal photosynthesis and carbon metabolism[J]. J Phycol,1991,27(1):14-20.
    [160]Ugwu C U, Aoyagi H, Uchiyama H. Photobioreactors for mass cultivation of algae[J]. Bioresource Technol,2008,99(10):4021-4028.
    [161]Van den Hoek C, Mann D G, Jahns H M. Algae:An Introduction to Phycology[M]. Cambridge, Cambridge University Press,1995.
    [162]Vassiliev I R, Kolber Z, Wyman K D, et al. Effects of iron limitation on photosystem II composition and light utilization in Dunaliella tertiolecta[J].Plant physiol,1995,109(3):963-972.
    [163]Vigeolas H, Waldeck P, Zank T, Geigenberger P. Increasing seed oil content in oil-seed rape(Brassica napus L.) by over-expression of a yeast glycerol-3-phosphate dehydrogenase under the control of a seed-specific promoter[J]. Plant Biotechnol J,2007,5(3):431-441.
    [164]Wagner H, Jakob T, Wilhelm C. Balancing the energy flow from captured light to biomass under fluctuating light conditions[J]. New Phytologist,2006,169:95-108.
    [165]Wang B, Zarka A, Trebst A, Boussiba S. Astaxanthin accumulation in Haematococcus pluvialis (Chlorophyceae) as an active photoprotective process under high irradiance[J]. J Phycol,2003,39:1116-1124.
    [166]Wang Z T, Ullrich N, Joo S, et al. Algal lipid bodies:stress induction, purification, and biochemical characterization in wild-type and starchless Chlamydomonas reinhardtii[J]. Eukaryotic Cell,2009,8(12):1856-1868.
    [167]Wijffels R H, Barbosa M J. An Outlook on Microalgal Biofuels[J]. Sci,2010,329:796-799.
    [168]Wilhelm C, Jakob T. From photons to biomass and biofuels:evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances[J]. Appl Microbiol Biotechnol,2011,92(5):909-919.
    [169]Wilhelm C, Selmar D. Energy dissipation is an essential mechanism to sustain the viability of plants:the physiological limits of improved photosynthesis [J]. J Plant Physiol,2011,168(2):79-87.
    [170]Woertz I, Feffer A, Lundquist T, Nelson Y. Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock[J]. J Environ Eng,2009,135(11):1115-1122.
    [171]Work V H, D'Adamo S, Radakovits R, et al. Improving photosynthesis and metabolic networks for the competitive production of phototroph-derived biofuels[J]. Curr opin in biotechnol,2012,23(3):290-297.
    [172]Yamaberi K, Takagi M, and Yoshida T. Nitrogen depletion for intracellular triglyceride accumulation to enhance liquefaction yield of marine microalgal cells into a fuel oil[J]. J Mar Biotechnol,1998,6:44-48.
    [173]Yoon K, Han D, Li Y, Sommerfeld M, Hu Q. Phospholipid: Diacylglycerolacyltransferase is a multifunctional enzyme involved in membrane lipid turnover and degradation while synthesizing triacylglycerol in the unicellular green microalga Chlamydomonas reinhardtii[J].Plant Cell,2012,24(9):3708-3724.
    [174]Young E B, and Beardall J. Photosynthetic function in Dunaliella tertiolecta (Chlorophyta) during a nitrogen starvation and recovery cycle[J]. J Phycol,2003,39: 897-905.
    [175]Yu G, Li Y, Shen G, et al. A novel method using CFD to optimize the inner structure parameters of flat photobioreactors[J]. J Appl Phycol,2009,21(6):719-727.
    [176]Zhang J J, Wan L L, Xia S, Li A F, Zhang C W. Morphological and spectrometric analyses of lipids accumulation in a novel oleaginous microalga, Eustigmatos cf. polyphem (Eustigmatophyceae)[J]. Bioprocess Biosys Eng,2012.
    [177]Zhila N O, Kalacheva G S, Volova T G. Effect of nitrogen limitation on the growth and lipid composition of the green alga Botryococcus braunii Kutz WPAS H-252[J]. Russ J Plant Physiol,2005,52(3):311-319.
    [178]Zhou X, Xia L, Ge H, Zhang D, Hu C. Feasibility of biodiesel production by microalgae Chlorella sp.(FACHB-1748) under outdoor conditions[J]. Bioresource Technol,2013,238:131-135.
    [179]Zittelli G C, Rodolfi L, Bassi N, Biondi N, Tredici M R. Photobioreactors for Microalgal Biofuel Production[J]. Algae for Biofuels and Energy,2013,5:115-131.
    [180]Zou N, Richmond A. Effect of light-path length in outdoor flat plate reactors on output rate of cell mass and of EPA in Nannochloropsissp.[J]. J Biotechnol,1999,70(1):351-356.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700