葡萄糖苷酶催化机理及几类新型药物作用机制的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
低聚糖是各种有机体的主要能源物质,它可以由地球上最丰富的聚合物—维素的分解转化而得到,也可以由单糖的聚合而得到。这两种转化都要靠糖苷酶的催化作用来实现。在纤维素水解过程中起催化作用的酶称为糖苷水解酶,而在单糖聚合过程中起催化作用的酶称为糖基合成酶。目前实验上已经得到了许多糖苷水解酶和糖基合成酶的晶体结构,并且通过突变实验得到了活性口袋处起催化作用的残基,另外,人们从理论上也对一些糖苷酶的催化机理进行了研究。但是总的来说,仍然有很多糖苷酶的反应机理尚不十分明确。本论文利用量子力学和分子力学相结合的方法(QM/MM)对几种糖苷酶的催化机理进行了研究。
     关于药物作用机制及生物大分子的分子模拟也是化学研究的一个热点领域,深入探索药物分子和受体蛋白之间的作用机制对于药物的筛选和设计具有重要的指导意义。维生素D受体、孕酮受体、人的EP3受体等均是重要的靶点,可用于治疗骨质疏松、乳腺痛、动脉硬化等一系列疾病,本论文用多种,理论化学方法(分子模拟、QM/MM和3D-QSAR)深入探索了几类新型药物分子与这些药物靶点的作用模式、生物大分子在药物作用下的构象变化以及在此研究基础上的药物设计。
     本论文主要工作描述如下:
     (1)水稻p-型葡萄糖苷酶催化机理研究。
     ◆糖基化和去糖基化机理研究。从微生物酶进化而来的水稻p-型葡萄糖苷酶(BGlul,即3Os3bglu7)比其它植物酶的同源性更好,在水解低聚糖方面更有效。水稻BGlul葡萄糖苷酶的催化水解过程遵循的是双取代机理,主要包括糖基化和去糖基化两个步骤。为了探索这种酶的催化机理,我们用联合的量子力学/分子力学(QM/MM)方法对水稻BGlul葡萄糖苷酶催化昆布二糖水解的糖基化机理进行了研究。计算结果表明,此反应的糖基化是一个协同反应,即作为酸碱催化剂(acid/base)的E176进攻糖基氧和作为亲核试剂的E386进攻异头碳是同步的;反应形成的过渡态具有阳离子特性,反应能垒为15.7kcal/mol;在过渡中端基糖环向椅式构象转化,平面化趋势加强。
     本文对去糖基化过程也进行了研究。研究表明,此反应也经历一个协同过程到达最终的产物,反应能垒为21.4kcal/mol;反应形成的过渡态同样具有碳正离子特性;在过渡态中,E386与底物的C2-OH之间仍有氢桥相互作用。这种氢键相互作用有利于糖环由椅式构象变成半椅式构象,并且可以稳定过渡态的碳正离子,与实验结果相符。
     至此,我们已经系统地研究了水稻葡萄糖苷酶催化昆布二糖水解的糖基化和去糖基化两个过程,反应物构型与传统的量子化学方法有相似之处,但是反应的能垒更低。希望我们的研究结果可以为今后人们更好地研究糖苷酶提供理论性的指导作用。
     ◆E386突变体催化寡糖合成机理研究。作为高效率的糖苷合成酶,β-型葡萄糖苷酶的亲核残基突变体可以用来合成低聚糖。我们采用QM/MM组合方法进一步研究了水稻BGlul葡萄糖苷酶亲核残基E386突变体(E386G、E386S和E386A)合成低聚糖的催化机理。研究结果表明,此合成机理是单步反应,即E176夺取氢质子和糖苷键的形成是一个协同过程;反应能垒受突变残基侧链空间位阻的影响比较大,突变体E386G、E386S和E386A的催化反应能垒分别为22.4、25.7和28.2kcal/mol,很好的解释了相关的突变实验活性的递变结果。
     (2)多形拟杆菌α-型葡萄糖苷酶水解机理研究。作为重要的革兰氏阳性菌种,多形拟杆菌(B. thetaiotaomicron)是一种主要寄生在人的内脏器官的寄生菌。作为糖苷酶GH97家族中的一员,BtGH97a是一种α-型葡萄糖苷酶。这种酶可以把碳水化合物分解成可供寄主吸收的物质。因此,我们采用QM/MM组合方法对BtGH97a催化底物pNP-Glc水解的机理进行了研究,主要分析了两种可能的分步反应路径:亲核进攻优先路径和质子进攻优先路径。在第一种路径中,首先一个水分子被亲核碱残基(E439或E508)去质子化再进攻底物pNP-Glc的异头碳完成亲核进攻过程,然后酸性氨基酸残基E532进攻糖苷氧完成质子进攻过程。在第二条反应路径中,首先是E532进攻糖苷氧完成质子进攻过程,然后去质子化的水(亲核碱为E439或E508)进攻底物的异头碳完成亲核进攻过程。计算结果表明,亲核进攻优先路径是有利的反应路径,而其亲核进攻过程是速率决定步骤(能垒为15.4kcal/mol,E508作为亲核碱)。在这个决速步中,水分子去质子化和糖苷氧的质子化过程是协同的;在质子进攻优先路径中,质子进攻糖苷氧是速率决定步骤,能垒为24.1kcal/mol。所以,通过比较我们发现此水解反应遵循的是亲核进攻优先路径。本次研究工作主要回答了哪一个氨基酸残基是最可能的辅助亲核碱以及最可能的反应路径。
     (3)维生素D受体构象变化和相关抑制剂的3D-QSAR研究。
     ◆维生素D受体配体结合区的构象变化研究。维生素D受体(VDR)是一种核激素受体。VDR需要结合一定的配体(天然激素或类似物)才能实现其功能表达。我们用分子动力学(MD)模拟方法研究了人类维生素D受体(hVDR)在与1α,25(OH)2D3(天然激素配体)及其两种类似物(在文章中用b和c表示)结合时配体结合区(LBD)的构象变化情况。MD模拟结果显示,这些配体可以引起LBD的不同构象变化:1α,25(OH)2D3只引起很小的的变化,这表明VDR结合天然配体时采取典型的活性构象;而b和c则会导致LBD结构的明显重排,这种结构重排现象明显地扩大了配体结合口袋,与实验测定结果一致。本文的计算结果可以帮助人们更好地认识VDR对于不同抑制剂分子的识别,并可以对人们设计低钙活性的VDR抑制剂提供参考信息。
     ◆维生素D326,23-内酯类抑制剂的3D-QSAR研究。三维定量构效关系(3D-QSAR)方法是药物设计领域一种非常有效的药物设计方法,基于它我们可以设计出具有更高预测活性的抑制剂分子。利用这种方法本文对82个25-脱氢-1α-羟基维生素D3-26,23-内酯类抑制剂进行了研究,并由此构建了比较分子场分析(CoMFA)(?)(?)比较分子相似性指数分析(CoMSIA)模型。CoMFA模型给出的交叉验证(q2)和非交叉验证(r2ncv)的参数值分别为0.516和0.667,而CoMSIA模型给出的q2和r2ncv值分别为0.517和0.632。这两个模型给出的预测性参数rpred2值分别为0.639和0.619。总体上来说,CoMFA模型的预测能力在这里要优于CoMSIA模型。所以,基于CoMFA模型,我们设计了一些高预测活性的维生素D3类抑制剂,并通过自由能围绕(FEP)模拟揭示了这些所设计分子的合理性。
     (4)孕酮受体抑制剂的3D-QSAR研究。对于54种孕酮受体(PR)抑制剂,我们构建了基于受体的CoMFA和CoMSIA模型。CoMFA模型统计出的结果为:交叉验证系数q2=0.534,非交叉验证系数r2ncv=0.947。CoMSIA模型统计结果为:q2=0.615,r2ncv=0.954。这两个模型给出的预测相关系数r2pred分别为0681(CoMFA)和0.677(CoMSIA)。基于预测性较好的CoMFA模型,我们设计了两类PR抑制剂,均表现出较高的预测活性。对于两种典型的PR抑制剂,我们用QM/MM组合方法给出了其在活性位点处可能的结合模式。这将为PR类抑制剂分子的药物设计提供有用的理论信息。
     (5)EP3受体抑制剂的3D-QSAR研究。本文对57个人的EP3受体抑制剂进行了3D-QSAR研究,并构建了CoMFA和CoMSIA模型。这两个模型统计出的交叉验证系数q2分别为0.505和0.492,非交叉验证系数r2ncv分别为0.937和0.921,这两个模型得到的预测相关系数分别为0.549和0.540。通过比较我们发现CoMFA模型的预测能力较好。所以,基于CoMFA模型,对相关EP3抑制剂的主要结构参数进行了确认,并设计了一些具有较高预测活性的抑制剂。这将为EP3类抑制剂的设计和开发提供有用的理论信息。
     本研究论文的主要创新点如下:
     ◆用QM/MM组合方法系统地研究了水稻BGlul葡萄糖苷酶的保持型催化机理及其突变体催化低聚糖合成的机理。计算中充分考虑了蛋白质环境和活性中心残基对反应的影响,可以提供更加接近实验事实的结构和能垒数据,能够更好地揭示水稻BGlul葡萄糖苷酶催化作用的实质,并且可以得到一些单从晶体结构无法得到的信息(如对E386G、E386S (?)口E386A突变体催化低聚糖合成机理的研究,我们成功地解释三种突变体活性顺次减弱的原因),在分子水平上阐明了水稻葡萄糖苷酶的催化机制。
     ◆用QM/MM方法系统研究了多形拟杆菌α-型葡萄糖苷酶翻转型催化机理,在研究中我们设计了两种可能的反应路径,通过对对比四种可能进行的反应情况研究,得到了最可能的反应路径和对催化反应起关键作用的残基。
     ◆系统研究了几种重要靶蛋白如维生素D、孕酮受体和前列腺素受体与相应药物分子作用机制,应用3D-QSAR模型得到了这些药物分子的结构一活性关系并构建了具有高度预测性的构效关系模型,设计了药物活性更好的药物分子,引入QM/MM组合方法精确地给出了新设计抑制剂的结合模式,同时结合自由能围绕方法(FEP)来评价新设计抑制剂的合理性。这为今后相关的药物筛选和设计提供了有价值的理论指导信息。
As the main energy sources of a variety of organisms, the oligosaccharides may be converted from the most abundant biopolymers-cellulose on earth, or be obtained by the monosaccharide polymerization. The relizations of the two transformations are depended on the the catalytic effects of the glycosidases. The enzymes to hydrolyze the cellulose are called as glycohydrolase, and the monosaccharide polymerizations are catalyzed by glycosynthases. At present, various kinds of crystals for the glycohydrolases and glycosynthases have been crystallized and the catalytic residues in the active sites have been identifized by one point mutations. Though people have paied much attention to the catalytic reactions of glycosidases in theory, many reaction mechanisms of glycosidase are still not very clear. In this research, we used the combined quantum mechanics and the molecular mechanics (QM/MM) methods to study several kinds of glycosidases catalytic mechanisms.
     Biomacromolecules, such as vitamin D receptor, progesterone receptor, human EP3receptor and so on, are served as the targets for drugs design and synthesis, which are mainly used to treat human major diseases, such as osteoporosis, Paget's disease of bone, mastalgia, peripheral arterial disease and so on. The investigations of interactions between drugs and biomacromolecules are thought to be important in treatment of major diseases and the foundation for drugs design and synthesis. In order to explore the binding modes and inhibition mechanisms of several inhibitors that interact with vitamin D receptor, progesterone receptor, human EP3receptor from molecular prespective, we use the theoretical chemistry methods (molecular simulations, QM/MM and3D-QSAR) to study the binding modes, conformational changes and3D-QSAR based drug designs. Many valuable results have been got, which are described as follows:
     (1) The catalytic mechanism studies of the rice BGlu1β-glucosidase.
     The glycosylation and deglycosylation mechanisms of the rice BGlu1β-glucosidase. The rice BGlu1(namely Os3bglu7), which evolves from the microbial enzymes, is more closely related to plant enzymes and more efficiently to hydrolyze cello-oligosaccharides. In order to explore the catalysis mechanism of this enzyme, the QM/MM method was used to study the glycosylation mechanism of rice BGlu1 P-glucosidase in complex with laminaribiose. The calculation results reveal that the glycosylation step experiences a concerted process from the reactant to the glycosyl-enzyme complex with an activation barrier of15.7kcal/mol, in which an oxocarbenium cation-like transition state (TS) is formed. At the TS, the terminal saccharide residue planarizes toward the half-chair conformation, and the glycosidic bond cleavage is promoted by the attacks of proton donor (E176) on glycosidic oxygen and nucleophilic residue (E386) on the anomeric carbon of laminaribiose. Both the nucleophilic glutamate (E386) and acid/base catalyst (E176) establish shorter hydrogen bridges with the C2-hydroxyl groups of sugar ring, which play an important role in the catalytic reaction of rice BGlul β-glucosidase. This study determines the pathway of the catalytic mechanism and achieves a better description of the glycosylation process.
     It is proposed that the catalysis of BGlul follows a double-displacement mechanism involving a glycosylation and a deglycosylation steps. The deglycosylation step of the substrate laminaribiose catalyzed by rice BGlul β-glucosidase. by using QM/MM approach. The calculation results reveal that the nucleophilic water (Watl) attacks to the anomeric C1, and the deglycosylation step experiences a barrier of21.4kcal/mol from the glycosyl-enzyme intermediate to the hydrolysis product, in which an oxocarbenium cation-like TS is formed. At the TS, the covalent glycosyl-enzyme bond is almost broken (distance of2.45A), and the new covalent bond between the attacking oxygen of the water molecule and C1is basically established (length of2.14A). In addition, a short hydrogen bridge is observed between the nucleophilic E386and the C2-OH of sugar ring (distance of1.94A) at the TS, which facilitates the ring changing from a chair form to half-chair form, and stabilizes the oxocarbenium cation-like TS.
     So far, we have studied the whole mechanism of the substrate laminaribiose catalyzed by rice BGlul β-glucosidase. We hope our studies could give a better understanding of the hydrolysis mechanism of β-glucosidase in future.
     ? The synthesis mechanism of the rice BGlul β-glucosidase E386mutants. The mutant of a β-glycosidase could act as the glycosynthase to efficiently synthesize oligosaccharides with high yields. In this study, the mechanisms of oligosaccharide synthesis promoted by rice BGlul E386mutants (E386G, E386S and E386A) have been studied by using QM/MM approach. This mechanism is a single step, in which the abstract of the proton by the acid/base E176, the formation of the glycosidic bond and the departure of the leaving group are concerted. The energy barriers are sensitive to sterically hindered interactions of the mutated residues. The energy barriers of E386Q E386S and E386A are calculated to be22.4,25.7and28.2kcal/mol, where the sequence is consistent with the experimental results. Besides, the role of the incoming crystal water Watl in the active site is also explored. Our results gives a good explanation of why the activity of Gly is better than Ser, and Ser than Ala, which cannot be explained from the crystal structure alone.
     (2) The hydrolysis mechanism of Bacteroides thetaiotaomicron a-glucosidase BtGH97a. Bacteroides thetaiotaomicron (B. thetaiotaomicron), a Gram-negative anaerobe, is a bacterial symbiont. It is a dominant member of the intestinal microbiota of human gut. BtGH97a is one member of glycoside hydrolases (GHs) families GH97. This kind of enzyme plays a major role in the breakdown of polysaccharides ingested in the diet into a form that could be absorbed and utilized by the host. In this paper, the hydrolysis mechanism of pNP-Glc catalyzed by BtGH97a was firstly studied by using QM/MM approach. Two possible reaction pathways were considered. In the first pathway, a water molecule deprotonated by a nucleophilic base (here E439or E508) attacks firstly on the anomeric carbon of pNP-Glc, then a proton from an acid residue (E532) attacks on the glycosidic oxygen to finish the hydrolysis reaction (named as nucleophilic attack-first pathway). In the second pathway, the proton from E532attacks firstly on the glycosidic oxygen, then the water deprotonated by the nucleophilic base attacks on the anomeric carbon of pNP-Glc (named as proton attack-first pathway). Our calculation results indicate that the nucleophilic attack-first pathway is favourable in energy, in which the nucleophilic attack process is the rate-determining step with an energy barrier of15.4kcal/mol in the case of residue E508as nucleophilic base. In this rate-determining step, the deprotonation of water and the attack on the anomeric carbon are concerted. In the proton attack-first pathway, the proton attack on the glycosidic oxygen is the rate-determining step, and the energy barrier is24.1kcal/mol. We conclude that the hydrolysis mechanism would follow nucleophilic attack-first pathway. Our present work has answered some meaningful questions, such as which residue is the most favorable nucleophilic base to assist the hydrolysis reaction, and which pathway is the most possible.
     (3) The Structural Rearrangement of vitamin D receptor and3D-QSAR study of its inhibitors.
     The structural rearrangement of vitamin D receptor ligand binding domain. Vitamin D receptor (VDR) is a member of nuclear hormone receptor super family. The activity of VDR is induced by the natural hormone and its analogues. The structural rearrangement of the ligand binding domain (LBD) of human Vitamin D receptor (hVDR) complex ed with1α,25-dihydroxyvitamin D3(natural ligand) and its analogues (denoted as b and c) was studied by molecular dynamics (MD) simulations. MD simulations revealed that these ligands could induce different structural changes of LBD, in which la,25-dihydroxyvitamin D3only led to a minute change, suggesting that LBD adopted its canonical active conformation upon binding the natural ligand, while b and c could provoke a clear structural rearrangement of the LBD. In complex of hVDR-LBD/b, it is found that helix6(H6) and subsequent loop6-7shift outwards and the last turn of H11shifts away from H12, which generate a new cavity at the bottom of the binding pocket in order to accommodate the extra butyl group on the side chain of ligand b. As for hVDR-LBD/c, the steric exclusion of the second side chain of ligand c makes the N-terminal of H7move outsides and C-terminal of H11close to H12, expanding the bottom of the pocket. These calculation results agree well with the experimental observations. The results provide the train of thought for the understanding of the interactions between the inhibitors and VDR and further for the design of new VDR inhibitors with reducing the calcemic side effects.
     3D-QSAR study of a series of vitamin D3-26,23-lactone analogs.3D-QSAR approach is one of the most useful tool for drug design. It can design potential molecules with high predictive activities. The ligand-based3D-QSAR for82inhibitors of25-dehydro-la-hydroxyvitamin D3-26,23-lactone analogs has been studied by using comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) models. The established CoMFA model in training set gives the cross-validated q2value of0.516and non-cross-validated r2ncv value of0.667, while the CoMSIA model represents a q2of0.517and r2ncv of0.632. In general, the predictive ability of CoMFA model is superior to CoMSIA model, in which the r2pred of CoMFA is0.639and that of CoMSIA is0.619. Based on the CoMFA contour maps, some key structural characters of vitamin D3analogs responsible for inhibitory activity are identified, and some new C2a-modified24-alkylvitamin D3lactone analogs with high predicted values are designed. The ligand functional group mutations by FEP simulation and docking studies reveal the rationality of the molecular design. In this study, we design some newly designed inhibitors not only possess higher predicted pIC50values but also with better binding model. We expect to give some targeted lead compounds for the drug design and discovery research.
     (4)3D-QSAR study of progesterone receptor (PR) inhibitors. The receptor-based CoMFA and CoMSIA were performed on a series of54PR inhibitors. The established CoMFA model in training set gives statistically significant results with the cross-validated q2of0.534and non-cross-validated r2ncv of0.947. The best CoMSIA model was derived by the combination use of steric and hydrophobic fields with a q2of0.615and r2ncv of0.954. A test set of18compounds were utilized to validate the predictive abilities of the two models. The values of predicted correlation coefficient r2pred are0.681and0.677for CoMFA and CoMSIA, respectively. Based on the CoMFA maps, the key structural characters of PR inhibitors are identified. Two binding models of oxindoles and benzimidazol-2-ones are given by the QM/MM calculations. This may provide useful theoretical information for drug design of PR inhibitors.
     (5)3D-QSAR study of human EP3receptor antagonists. Prostanoids generated in vivo act with EP3receptor, and play a key role in vascular homeostasis, such as platelet function regulation. In this study, the ligand-based CoMFA and CoMSIA methods were performed on a series of57selective human EP3receptor antagonists. The best CoMFA and CoMSIA models in training set derive statistically significant results with the cross-validated q2values of0.505and0.492, non-cross-validated r2ncv values of0.937and0.921, respectively. A test set of20compounds was utilized to validate the predictive abilities of the two models. The values of predicted correlation coefficient r2pred are0.549and0.540for CoMFA and CoMSIA, respectively. Based on the CoMFA maps, the key structural characters of human EP3inhibitors are identified. This may provide useful information for drug design.
     The primary innovations are as follows:
     ? We systematically investigated the remaining hydrolysis mechanisms of the remaining glucosidase (rice BGlul β-glucosidase) as well as oligosaccharide synthesis mechanism catalyzed by the corresponding mutants by the combined QM/MM methods. Comparing to the traditional quantum chemistry methods, our research methods consider fully the interactions of the active center residues and the corresponding protonated states of the catalytic residues, which could provide much accurate data of the structures and energy barriers closer to the experimental fact. This could give better explanations of the catalysis essence of rice BGlul glucosidase, which could not be explained from the crystal structure alone (such as the order of the catalyzed oligosaccharide synthesis mechanisms of E386G, E386S and E386A mutant).
     We systematically investigated the inverting hydrolysis mechanism of Bacteroides thetaiotaomicron a-glucosidase BtGH97a. Two possible reaction pathways were designed. The transition states and energy barriers for each pathway were investigated. The work resolved which residue was the most favorable nucleophilic base to assist the hydrolysis reaction, and which pathway was the most possible.
     For a series of new drug molecules (vitamin D3inhibitors, progesterone receptor inhibitors and human EP3receptor inhibitors), the binding modes and highly predictive structure-activity relationship modes were constructed by the molecular docking and3D-QSAR methods, and some new inhibitors of vitamin D3inhibitors, progesterone receptor inhibitors and human EP3receptor inhibitors with higher predictive activities were designed. According the newly designed molecules, we introduce the combined QM/MM method to predict their binding modes, which may provide theoretical guidances for drug design and synthesis in the future.
引文
[1]Jones, M. E., Pyrimidine nucleotide biosynthesis in animals:genes, enzymes, and regulation of UMP biosynthesis, [J] Annu. Rev. Biochem.1980,49, 253-279.
    [2]Ketudat Cairns, J. R.; Esen, A., Beta-Glucosidases, [J] Cell Mol. Life Sci.2010, 67,3389-3405.
    [3]Cleghon, V.; Klessig, D., Characterization of the nucleic acid binding region of adenovirus DNA binding protein by partial proteolysis and photochemical cross-linking, [J] J. Biol. Chem.1992,267,17872.
    [4]Rhodes, D.; Burley, S. K., Protein-nucleic acid interactions, [J] Curr. Opin. Struct. Biol.1997,7,73-75.
    [5]Steen, H.; Jensen, O. N., Analysis of protein-nucleic acid interactions by photochemical cross-linking and mass spectrometry, [J] Mass spectrom. Rev. 2002,27,163-182.
    [6]Steiner, T.; Kaiser, J. T.; Marinkovic, S.; Huber, R.; Wahl, M. C., Crystal structures of transcription factor NusG in light of its nucleic acid-and protein-binding activities, [J] EMBO J.2002,21,4641-4653.
    [7]Liszewski, M.; Atkinson, J., Membrane cofactor protein, [J] Curr. Top. Microbiol.1992,178,45-49.
    [8]Srinivasan, N.; Golbeck, J. H., Protein-cofactor interactions in bioenergetic complexes:The role of the A1A and A1B phylloquinones in Photosystem I, [J] BBA-Bioenergetics 2009,1757,1057-1088.
    [9]Hunger, H. D.; Schmidt, G.; Flachmeier, C.; Behrendt, G.; Coutelle, C., High-sensitivity protein detection by a new "contact-copy" method using a protein A-neomycin phosphotransferase Ⅱ fusion protein, [J] Anal. Biochem. 1990,186,159-164.
    [10]Schuttpelz, M.; Muller, C.; Neuweiler, H.; Sauer, M., UV fluorescence lifetime imaging microscopy:A label-free method for detection and quantification of protein interactions, [J] Anal. Chem.2006,75,663-669.
    [11]Du, Q. S.; Huang, R. B.; Chou, K. C., Recent advances in QSAR and their applications in predicting the activities of chemical molecules, peptides and proteins for drug design, [J] Curr. Protein Pept. Sc.2008,9,248-259.
    [12]Hansch, C.; Steward, A. R., The use of substituent constants in the analysis of the structure-activity relationship in penicillin derivatives, [J] J. Med. Chem. 1964,7,691-694.
    [13]Free, S. M.; Wilson, J. W., A mathematical contribution to structure-activity studies, [J] J. Med. Chem.1964,7,395-399.
    [14]Raghavan, K.; Buolamwini, J. K.; Fesen, M. R.; Pommier, Y.; Kohn, K. W.; Weinstein, J. N., Three-dimensional quantitative structure-activity relationship (QSAR) of HIV integrase inhibitors:a comparative molecular field analysis (CoMFA) study, [J] J. Med. Chem.1995,35,890-897.
    [15]Klebe, G; Abraham, U.; Mietzner, T., Molecular similarity indices in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, [J] J. Med. Chem.1994,37,4130-4146.
    [16]Karlsson, K. A., Animal glycosphingolipids as membrane attachment sites for bacteria, [J] Annu. Rev Biochem.1989,55,309-350.
    [17]Gunata, Z.; Vallier, M.; Sapis, J.; Baumes, R.; Bayonove, C., Enzymatic synthesis of monoterpenyl [beta]-d-glucosides by various [beta]-glucosidases, [J] Enzyme Microb. Tech.1994,16,1055-1058.
    [18]Crout, D. H. G.; Vic, G., Glycosidases and glycosyl transferases in glycoside and oligosaccharide synthesis, [J] Curr. Opin. Chem. Biol.1998,2,98-111.
    [19]Scigelova, M.; Singh, S.; Crout, D. H. G., Glycosidases--a great synthetic tool, [J] J. Mol. Catal. B-Enzym.1999,6,483-494.
    [20]Moracci, M.; Trincone, A.; Rossi, M., Glycosynthases:new enzymes for oligosaccharide synthesis, [J] J. Mol. Catal. B-Enzym.2001,11,155-163.
    [21]Williams, S. J.; Withers, S. G, Glycosynthases:mutant glycosidases for glycoside synthesis, [J] Aust. J. Chem.2002,55,3-12.
    [22]Perugino, G.; Cobucci-Ponzano, B.; Rossi, M.; Moracci, M., Recent advances in the oligosaccharide synthesis promoted by catalytically engineered glycosidases, [J] Adv. Synth. Catal.2005,347,941-950.
    [23]Williams, S. J.; Withers, S. G, Glycosyl fluorides in enzymatic reactions, [J] Carbohyd. Res.2000,327,27-46.
    [24]Mangelsdorf, D. J.; Thummel, C.; Beato, M.; Herrlich, P.; Schuetz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M., The Nuclear Receptor Superfamily:The Second Decade [J] Cell 1995,53,835-839.
    [25]Kamei, Y.; Kawada, T.; Fukuwatari, T.; Ono, T.; Kato, S.; Sugimoto, E., Cloning and sequencing of the gene encoding the mouse vitamin D receptor, [J] Gene 1995,152,281-282.
    [26]Lu, Z.; Hanson, K.; DeLuca, H. F., Cloning and origin of the two forms of chicken vitamin D receptor, [J] Arch. Biochem. Biophys.1997,339,99-106.
    [27]Li, Y. C.; Bergwitz, C.; Juppner, H.; Demay, M. B., Cloning and characterization of the vitamin D receptor from Xenopus laevis, [J] Endocrinology 1997,138,2347-2353.
    [28]Suzuki, T.; Suzuki, N.; Srivastava, A. S.; Kurokawa, T., Identification of cDNAs encoding two subtypes of vitamin D receptor in flounder, Paralichthys olivaceus, [J] Biochem. Bioph. Res. Co.2000,270,40-45.
    [29]Whitfield, G. K.; Dang, H. T. L.; Schluter, S. F.; Bernstein, R. M.; Bunag, T.; Manzon, L. A.; Hsieh, G.; Dominguez, C. E.; Youson, J. H.; Haussler, M. R.; Marchalonis, J. J., Cloning of a functional vitamin D receptor from the lamprey (Petromyzon marinus), an ancient vertebrate lacking a calcified skeleton and teeth, [J] Endocrinology 2003,144,2704-2716.
    [30]Abe, E.; Miyaura, C.; Sakayami, H.; Takeda, M.; Konno, K.; Yamazaki, T. Yoshiki, S.; Suda, T., Differentiation of mouse myeloid leukemia cells induced by 1-alpha,25-dihydroxyvitamin D3, [J] P. Natl. Acad. Sci. USA 1981,78, 4990-4994.
    [31]Stein, M. S.; Wark, J. D., An update on the therapeutic potential of vitamin D analogues, [J] Expert. Opin. Inv. Drug 2003,12,825-840.
    [32]Duffy, D.; Stouffer, R., Progesterone receptor messenger ribonucleic acid in the primate corpus luteum during the menstrual cycle:possible regulation by progesterone, [J] Endocrinology 1995,136,1869-1872.
    [33]Kawahara, K.; Shimazu, A., Expression and intracellular localization of progesterone receptors in cultured human gingival fibroblasts, [J] J. Periodontal Res.2003,38,242-246.
    [34]MacNamara, P.; O'Shaughnessy, C.; Manduca, P.; Loughrey, H., Progesterone receptors are expressed in human osteoblast-like cell lines and in primary human osteoblast cultures, [J] Calcified Tissue Int.1995,57,436-441.
    [35]Gorski, J.; Toft, D.; Shyamala, G.; Smith, D.; Notides, A., Hormone receptors: studies on the interaction of estrogen with the uterus, [J] Recent Prog Horm. Res.1968,24,45.
    [36]Collins, D. C., Sex hormone receptor binding, progestin selectivity, and the new oral contraceptives, [J] Am J. Obstet.Gynecol.1994,170,1508.
    [37]Sugawara, Y.; Kubota, K.; Ogura, T.; Esumi, H.; Inoue, K.; Takayama, T.; Makuuchi, M., Protective effect of prostaglandin El against ischemia/reperfusion-induced liver injury:results of a prospective, randomized study in cirrhotic patients undergoing subsegmentectomy, [J] J. Hepatol.1998, 29,969-976.
    [38]Takahashi, H.; Imamura, M.; Mikami, Y.; Yamauchi, H., Exacerbation of acute pancreatitis in the presence of chronic liver injury in rats, with special reference to therapeutic efficacy of prostaglandin E1, [J] Pancreas 1999,19, 199.
    [39]Hanazaki, K.; Kajikawa, S.; Fujimori, Y.; Nakata, S.; Shimozawa, N.; Koide, N.; Adachi, W.; Amano, J., Effects of prostaglandin E1 administration during hepatectomy for cirrhotic hepatocellular carcinoma, [J] Hepato-gastroenterol. 2000,47,461-464.
    [40]Koshland, D. E.; Stein, S. S., Structural determinants of substrate specificity in family 1 beta-glucosidases - Novel insights from the crystal structure of sorghum dhurrinase-1, a plant beta-glucosidase with strict specificity, in complex with its natural substrate, [J] J. Biol. Chem.1954,208,139-148.
    [41]Bras, N. F.; Moura-Tamames, S. A.; Fernandes, P. A.; Ramos, M. J., Mechanistic Studies on the Formation of Glycosidase-Substrate and Glycosidase-Inhibitor Covalent Intermediates, [J] J. Comput. Chem.2008,29, 2565-2574.
    [42]Bras, N. F.; Ramos, M. J.; Fernandes, P. A., DFT studies on the (3-glycosidase catalytic mechanism:The deglycosylation step, [J] J. Mol. Struc-Theochem. 2010,946,125-133.
    [43]Bras, N. F.; Fernandes, P. A.; Ramos, M. J., QM/MM Studies on the beta-Galactosidase Catalytic Mechanism:Hydrolysis and Transglycosylation Reactions, [J] J. Chem. Theory Comput.2010,6,421-433.
    [44]Li, J. H.; Du, L. K.; Wang, L. S., Glycosidic-Bond Hydrolysis Mechanism Catalyzed by Cellulase Cel7A from Trichoderma reesei:A Comprehensive Theoretical Study by Performing MD, QM, and QM/MM Calculations, [J] J. Phys. Chem. B 2010,114,15261-15268.
    [45]Petersen, L.; Ardevol, A.; Rovira, C.; Reilly, P. J., Molecular Mechanism of the Glycosylation Step Catalyzed by Golgi alpha-Mannosidase Ⅱ:A QM/MM Metadynamics Investigation, [J] J. Am. Chem. Soc.2010,132,8291-8300.
    [46]Gloster, T. M.; Turkenburg, J. P.; Potts, J. R.; Henrissat, B.; Davies, G. J., Divergence of Catalytic Mechanism within a Glycosidase Family Provides Insight into Evolution of Carbohydrate Metabolism by Human Gut Flora, [J] Chem. Biol.2008,75,1058-1067.
    [47]Smith, K. A.; Salyers, A. A., Characterization of a neopullulanase and an alpha-glucosidase from Bacteroides thetaiotaomicron 95-1, [J] J. Bacteriol. 1991,773,2962-2968.
    [48]Mackenzie, L. F.; Wang, Q.; Warren, R. A. J.; Withers, S. G., Glycosynthases: mutant glycosidases for oligosaccharide synthesis, [J] J. Am. Chem. Soc.1998, 120,5583-5584.
    [49]Okuyama, M.; Mori, H.; Watanabe, K.; Kimura, A.; Chiba, S., a-Glucosidase Mutant Catalyzes "a-Glycosynthase"-type Reaction, [J] Biosci. Biotech. Biochem.2002,66,928-933.
    [50]Honda, Y.; Kitaoka, M., The first glycosynthase derived from an inverting glycoside hydrolase, [J] J. Biol. Chem.2006,281,1426.
    [51]Kim, Y. W.; Lee, S. S.; Warren, R. A. J.; Withers, S. G., Directed evolution of a glycosynthase from Agrobacterium sp. increases its catalytic activity dramatically and expands its substrate repertoire, [J] J. Biol. Chem.2004,279, 42787-42793.
    [52]Kim, Y. W.; Chen, H.; Withers, S. G., Enzymatic transglycosylation of xylose using a glycosynthase, [J] Carbohyd. Res.2005,340,2735-2741.
    [53]Hommalai, G.; Withers, S. G.; Chuenchor, W.; Cairns, J. R. K.; Svasti, J., Enzymatic synthesis of cello-oligosaccharides by rice BGlul β-glucosidase glycosynthase mutants, [J] Glycobiology 2007,17,744-753.
    [54]Rochel, N.; Wurtz, J. M.; Mitschler, A.; Klaholz, B.; Moras, D., The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand, [J] Mol. Cell.2000,5,173-179.
    [55]Tocchini-Valentini, G.; Rochel, N.; Wurtz, J. M.; Mitschler, A.; Moras, D., Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands, [J] P. Natl. Acad. Sci. USA 2001,98,5491-5496.
    [56]Vanhooke, J. L.; Benning, M. M.; Bauer, C. B.; Pike, J. W.; DeLuca, H. F., Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D-3 hormone analogues and a LXXLL-containing coactivator peptide, [J] Biochemistry-Us 2004,43, 4101-4110.
    [57]Ciesielski, F.; Rochel, N.; Mitschler, A.; Kouzmenko, A.; Moras, D., Structural investigation of the ligand binding domain of the zebrafish VDR in complexes with 1 alpha,25(OH)(2)D-3 and Gemini:purification, crystallization and preliminary X-ray diffraction analysis, [J] J. Steroid. Biochem.2004,89-90, 55-59.
    [58]Eelen, G.; Verlinden, L.; Rochel, N.; Claessens, F.; De Clercq, P.; Vandewalle, M.; Tocchini-Valentini, G.; Moras, D.; Bouillon, R.; Verstuyf, A., Superagonistic action of 14-epi-analogs of 1,25-dihydroxyvitamin D explained by vitamin D receptor-coactivator interaction, [J] Mol. Pharmacol.2005,67, 1566-1573.
    [59]Ciesielski, F.; Rochel, N.; Moras, D., Adaptability of the Vitamin D nuclear receptor to the synthetic ligand Gemini:Remodelling the LBP with one side chain rotation, [J] J. Steroid. Biochem.2007,103,235-242.
    [60]Hourai, S.; Rodrigues, L. C.; Antony, P.; Reina-San-Martin, B.; Ciesielski, F.; Magnier, B. C.; Schoonjans, K.; Mourino, A.; Rochel, N.; Moras, D., Structure-based design of a superagonist ligand for the vitamin D nuclear receptor, [J] Chem. Biol.2008,15,383-392.
    [61]Shimizu, M.; Miyamoto, Y.; Takaku, H.; Matsuo, M.; Nakabayashi, M.; Masuno, H.; Udagawa, N.; DeLuca, H. F.; Ikura, T.; Ito, N., 2-Substituted-16-ene-22-thia-1-alpha,25-dihydroxy-26,27-dimethyl-19-norvita min D3 analogs:Synthesis, biological evaluation, and crystal structure, [J] Bioorgan. Med. Chem.2008,16,6949-6964.
    [62]Inaba, Y.; Yoshimoto, N.; Sakamaki, Y.; Nakabayashi, M.; Ikura, T.; Tamamura, H.; Ito, N.; Shimizu, M.; Yamamoto, K., A New Class of Vitamin D Analogues that Induce Structural Rearrangement of the Ligand-Binding Pocket of the Receptor, [J] J. Med. Chem.2009,52,1438-1449.
    [63]Shah, S.; Islam, N.; Dakshanamurthy, S.; Rizvi, I.; Rao, M.; Herrell, R.; Zinser, G; Valrance, M.; Aranda, A.; Moras, D.; Norman, A.; Welsh, J.; Byers, S. W., The molecular basis of vitamin D receptor and beta-catenin crossregulation, [J] Mol.Cell 2006,21,799-809.
    [64]Carlberg,C.;Mourino,A.,New vitamin D receptor ligands,[J]Expert.Opin. Ther.Pat,2003,13,761-772.
    [65]Ishizuka,S.;Ishimoto,S.;Norman,A.W.,Isolation and identification of 1 alpha,25-dihydroxy-24-oxovitamin D3,1 alpha,25-dihydroxyvitamin D3 26,23-lactone,and 1 alpha,24(S),25-trihydroxyvitamin D3:in vivo metabolites of 1 alpha,25-dihydroxyvitamin D3,[J] Biochemistry-Us 1984,23,1473-1478.
    [66]Miura,D.;Manabe,K.;Ozono,K.;Saito,M.;Gao,Q.Z.;Norman,A.W.; Ishizuka, S., Antagonistic action of novel 1 alpha,25-dihydroxyvitamin D-3-26,23-lactone analogs on differentiation of human leukemia cells(HL-60) induced by 1 alpha,25-dihydroxyvitamin D3,[J]J.Biol.Chem.1999,274, 16392-16399.
    [67]Saito,N.;Matsunaga,T.;Saito,H.;Anzai,M.;Takenouchi,K.;Miura,D.; Namekawa,J.;Ishizuka,S.;Kittaka,A.,Further synthetic and biological studies on vitamin D hormone antagonists based on C24-alkylation and C2 alpha-functionalization of 25-dehydro-1-alpha-hydroxyvitamin D-3-26,23-lactones,[J]J.Med.Chem.2006,49,7063-7075.
    [68]Fensome,A.;Bender,R.;Cohen,J.;Collins,M.A.;Mackner,V A.;Miller,L. L.;Ullrich,J.W.;Winneker,R.;Wrobel,J.;Zhang,P..W.;Zhang,Z.M.;Zhu, Y.,New progesterone receptor antagonists:3,3-disubstituted-5-aryloxindoles, [J]Bioorg.Med Chem.Lett.2002,12,3487-3490.
    [69]Fensome,A.;Koko,M.;Wrobel,J.;Zhang,P.W.;Zhang,Z.M.;Cohen,J.; Lundeen, S.; Rudnick, K.;Zhu, Y. A.;Winneker, R., Novel 5-aryl-1,3-dihydro-indole-2-thiones:Potent,orally actiVe progesterone receptor agonists,[J]Bioorg.Med Chem.Lett.2003,,3,1317-1320.
    [70]Terefenko,E.A.;kern,J.;Fensome,A.;Wrobel,J.;Zhu,Y.;Cohen,J.; Winneker, R.; Zhang, Z. M.;Zhang, P. W., SAR studies of 6-aryl-1,3-dihydrobenzimidazol-2-ones as progesterone receptor antagonists, [J]Bioorg.Med. Chem.Lett.2005,15,3600-3603.
    [71]Kern,J.C.;Terefenko?E.A.;Fensome,A.;Unwallla,R.;Wrobel,J.;Zhu,Y.; Cohen,J.;Winneker,R.;Zhang,Z.M.;Zhang,P.W,SAR studies of 6-(arylamino)-4,4-disubstituted-1-methyl-1,4-dihydro-benzo[d][1,3]oxazin-2-ones as progesterone receptor antagonists,[J]Bioorg.Med.Chem.Lett.,2007, 17.189-192.
    [72]Du,Y. L.;Li,Q.Y;Xiong,B.;Hui,X.;Wang,X.;Feng,Y;Meng,T.;Hu,D. Y.;Zhang,D.T.;Wang,M.W.;Shen,J.K.,Aromatic beta-amino-ketone derivatives as novel selective non-steroidal progesterone receptor antagonists, [J]Bioorgan.Med Chem.2010,18,4255-4268.
    [73]Gallant,M.;Belley,M.;Carriere,M.C.;Gareau,Y;Juteau,H.;Lachance,N.; Lacombe,P.;Lamontagne,S.;Metters,K.M.;Sawyer,N.;Slipetz,D.; Tremblay, N.M.;Labelle,M.,Structure activity relationship of triaryl and biaryl carboxylic acid and acylsulfonamide analogs on the human EP3 Prostanoid receptor.,[J]Abstr.Pap.Am.Chem.S. 2001,222,U674-U674.
    [74]Juteau,H.;Gareau,Y;Labelle,M.;Lamontagne,S.;Tremblay,N.;Carriere, M.C.;Sawyer,N.;Denis,D.;Metters,K.M.,Structure-activity relationship on the human EP3 prostanoid receptor by use of solid-support chemistryy,[J] Bioorg,Med. Chem.Lett.2001,11,747-749.
    [75]Belley,M.;Gallant,M.;Roy,B.;Houde,K.;Lachance,N.;Labelle,M.; Trimble,L.A.;Chauret,N.;Li,C.;Sawyer,N.;Tremblay,N.;Lamontagne,S.; Carriere,M.C.;Denis,D.;Greig,G M.;Slipetz,D.;Metters,K.M.;Gordon, R.;Chan,C.C.;Zamboni,R.J.,Structure-activity relationship studies on ortho-substituted cinnamic acids,a new class of selective EP3 antagonists,[J] Bioorg.Med Chem.Lett.2005,15,527-530.
    [76]Zhou,N.;Zeller,w.;Zhang,J.;Onua,E.;Kiselyo V,A.S.;Ramirez,J.; Palsdottir,G.;Halldorsdottir,G;Andresson,P.;Guyrney,M.E.;Singh,J., 3-Acrylamide-4-aryloxyindoles:Synthesis, biological evaluation and metabolic stability of potent and selective EP3 receptor antagonists,[J]Bioorg. Med. Chem.Lett.2009,19,1528-1531.
    [77]zhou,N.;Polozov,A.M.;o'Connell,M.;Burgeson,J.;Yu,P.;Zeller,W.; Zhang,J.;Onua,E.;Ramirez,J.;Palsdottir,G. A.;Halldorsdottir,G V.; Andresson,T.;Kiselyov,A.S.;Gurney,M.;Singh,J.,1,7-Disubstituted oxyindoles are potent and selective EP3 receptor antagonists,[J]Bioorg.Med. Chem.Lett.2010,20,2658-2664.
    [78]Zhou,N.;Zeller,W.;Krohn,M.;Anderson,H.;Zhang,J.;Onua,E.;Kiselyov, A.S.;Ramirez,J.;Halldorsdottir,G.;Andresson,P.;Gurney,M.E.;Singh,J., 3,4-Disubstituted indole acylsulfonamides:A novel series of potent and selective human EP3 receptor antagonists,[J]Bioorg.Med Chem.Lett. 2009, 19,123-126.
    [79]Zdetsis,A.D.,Ab initio phonon quantities of simple metals from Hartree-Fock cluster techniques,[J]Phys.Rev. B 1987,35,5868.
    [80]Lee, C.;Yang,W.; Parr, R. G., Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,[J]Phys. Rev. B 1988,37,785-789.
    [81]Becke,A.D.,Density-Functional themochemistry.Ⅲ.The role of exact exchange,[J] J.Chem.Phys.1993,98,5648-5652.
    [82]Naray-Szabo,G;Nagy,P.,Electrostatic lock-and-key model for the study of biological isosterism:role of structural water in the binding of basic pancreatic trypsin inhibitor to beta-trypsin,[J]Enzyme 1986,36,44.
    [83]Murray,C.W.;Baxter,C.A.;Frenkel,A.D.,The Sensitivity of the results of molecular docking to induced fit effects:application to thrombin,thermolysin and neuraminidase,[J]J.Comput.Aid Mo.l Des.1999,13,547-562.
    [84]Morris,G M.;Goodsell,D.S.;Halliday,R.S.;Huey,R.;Hart,W.E.;Belew, R.K.;Olson,A.J.,Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy funetion,[J]J.Comput.Chem.1998,19, 1639-1662.
    [85]Alder,B.;Wainwright,T.E.,Phase transition for a hard sphere system,[J]J. Chem.Phys.1957,27,1208-1213.
    [86]McCammon,J.A.;Gelin,B.R.;Karplus,M.,Dynamics of folded proteins,[J] Nature 1977,267,585-590.
    [87]Van der Spoel,D.;Lindahl,E.;Hess,B.;Groenhof G.;Mark,A.E.; Berendsen, H. J. C., GROMACS:Fast, flexible, and free, [J] J. Comput. Chem. 2005,26,1701-1718.
    [88]Guvench, O.; Hatcher, E.; Venable, R. M.; Pastor, R. W.; MacKerell Jr, A. D., CHARMM additive all-atom force field for glycosidic linkages between hexopyranoses, [J] J. Chem. Theory Comput.2009,5,2353-2370.
    [89]Yang, L.; Tan, C.; Hsieh, M. J.; Wang, J.; Duan, Y.; Cieplak, P.; Caldwell, J.; Kollman, P. A.; Luo, R., New-generation amber united-atom force field, [J] J. Phys. Chem. B 2006,110,13166-13176.
    [90]SYBYL6.91, T. A. S. H. R., Suite 303, St. Louis,2003, MO 63144-2913.
    [1]Beguin, P., Molecular Biology of Cellulose Degradation, [J] Annu. Rev. Microbiol. 1990,44,219-248.
    [2]Isorna, P.; Polaina, J.; Latorre-Garcia, L.; Canada, F. J.; Gonzalez, B.; Sanz-Aparicio, J., Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate specificity and give new insights into the catalytic machinery of family I Glycosidases, [J] J. Mol. Biol. 2007,371,1204-1218.
    [3]Nijikken, Y.; Tsukada, T.; Igarashi, K.; Samejima, M.; Wakagi, T.; Shoun, H.; Fushinobu, S., Crystal structure of intracellular family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium, [J] Febs. Lett.2007,581, 1514-1520.
    [4]Henrissat, B., A classification of glycosyl hydrolases based on amino acid sequence similarities, [J] Biochem. J.1991,280,309-316.
    [5]Chuenchor, W.; Pengthaisong, S.; Yuvaniyama, J.; Opassiri, R.; Svasti, J.; Cairns, J. R. K., Purification, crystallization and preliminary X-ray analysis of rice BGlul beta-glucosidase with and without 2-deoxy-2-fluoro-beta-D-glucoside, [J] Acta. Crystallogr. Sect. F-Struct. Biol. Cryst. Commun.2006,62,798-801.
    [6]Chuenchor, W.; Pengthaisong, S.; Robinson, R. C.; Yuvaniyama, J.; Oonanant, W.; Bevan, D. R.; Esen, A.; Chen, C. J.; Opassiri, R.; Svasti, J.; Cairns, J. R. K., Structural insights into rice BGlul beta-glucosidase oligosaccharide hydrolysis and transglycosylation, [J] J. Mol. Biol.2008,377,1200-1215.
    [7]Barrett, T.; Suresh, C. G.; Tolley, S. P.; Dodson, E. J.; Hughes, M. A., The crystal structure of a cyanogenic β-glucosidase from white clover, a family 1 glycosyl hydrolase, [J] Structure 1995,3,951-960.
    [8]Burmeister, W. P.; Cottaz, S.; Driguez, H.; Palmieri, S.; Henrissat, B., The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase, [J] Structure 1997,5,663-675.
    [9]Czjzek, M.; Cicek, M.; Zamboni, V.; Bevan, D. R.; Henrissat, B.; Esen, A., The mechanism of substrate (aglycone) specificity in beta-glucosidases is revealed by crystal structures of mutant maize beta-glucosidase-DIMBOA,-DIMBOAGlc, and -dhurrin complexes, [J] P. Natl. Acad. Sci. USA 2000,97,13555-13560.
    [10]Czjzek, M.; Cicek, M.; Zamboni, V.; Burmeister, W. P.; Bevan, D. R.; Henrissat, B.; Esen, A., Crystal structure of a monocotyledon (maize ZMGlul) beta-glucosidase and a model of its complex with p-nitrophenyl beta-D-thioglucoside, [J] Biochem. J.2001,354,37-46.
    [11]Verdoucq, L.; Czjzek, M.; Moriniere, J.; Bevan, D. R.; Esen, A., Mutational and structural analysis of aglycone specificity in maize and sorghum beta-glucosidases, [J] J. Biol. Chem.2003,278,25055-25062.
    [12]Verdoucq, L.; Moriniere, J.; Bevan, D. R.; Esen, A.; Vasella, A.; Henrissat, B.; Czjzek, M., Structural determinants of substrate specificity in family 1 beta-glucosidases - Novel insights from the crystal structure of sorghum dhurrinase-1, a plant beta-glucosidase with strict specificity, in complex with its natural substrate, [J] J. Biol. Chem.2004,279,31796-31803.
    [13]Sue, M.; Yamazaki, K.; Yajima, S.; Nomura, T.; Matsukawa, T.; Iwamura, H.; Miyamoto, T., Molecular and structural characterization of hexameric beta-D-glucosidases in wheat and rye, [J] Plant Physiol.2006,141,1237-1247.
    [14]Barleben, L.; Panjikar, S.; Ruppert, M.; Koepke, J.; Stockigt, J., Molecular architecture of strictosidine glucosidase:The gateway to the biosynthesis of the monoterpenoid indole alkaloid family, [J] Plant Cell 2007,19,2886-2897.
    [15]Seshadri, S.; Akiyama, T.; Opassiri, R.; Kuaprasert, B.; Cairns, J. K., Structural and Enzymatic Characterization of Os3BGlu6, a Rice beta-Glucosidase Hydrolyzing Hydrophobic Glycosides and (1 -> 3)- and (1 -> 2)-Linked Disaccharides, [J] Plant Physiol.2009,151,47-58.
    [16]Chuenchor, W.; Pengthaisong, S.; Robinson, R. C.; Yuvaniyama, J.; Svasti, J.; Cairns, J. R. K., The structural basis of oligosaccharide binding by rice BGlul beta-glucosidase, [J] J. Struct. Biol.2011,173,169-179.
    [17]Opassiri, R.; Cairns, J. R. K.; Akiyama, T.; Wara-Aswapati, O.; Svasti, J.; Esen, A., Characterization of a rice beta-glucosidase highly expressed in flower and germinating shoot, [J] Plant Sci.2003,165,627-638.
    [18]Opassiri, R.; Hua, Y. L.; Wara-Aswapati,O.; Akiyama, T.; Svasti, J.; Esen, A. Cairns, J. R. K., beta-glucosidase, exo-beta-glucanase and pyridoxine transglucosylase activities of rice BGlul, [J] Biochem. J.2004,379,125-131.
    [19]Koshland, D. E.; Stein, S. S., Structural determinants of substrate specificity in family 1 beta-glucosidases-Novel insights from the crystal structure of sorghum dhurrinase-1, a plant beta-glucosidase with strict specificity, in complex with its natural substrate, [J] J. Biol. Chem.1954,208,139-148.
    [20]Bras, N. R; Moura-Tamames, S. A.; Fernandes, P. A.; Ramos, M. J., Mechanistic Studies on the Formation of Glycosidase-Substrate and Glycosidase-Inhibitor Covalent Intermediates, [J] J. Comput. Chem.2008,29,2565-2574.
    [21]Bras, N. F.; Ramos, M. J.; Fernandes, F. A., DFT studies on the p-glycosidase catalytic mechanism:The deglycosylation step, [J] J. Mol. Struc-Theochem.2010, 946,125-133.
    [22]Bras, N. F.; Fernandes, P. A.; Ramos, M. J., QM/MM Studies on the beta-Galactosidase Catalytic Mechanism:Hydrolysis and Transglycosylation Reactions, [J] J. Chem. Theory Comput.2010,6,421-433.
    [23]Warshel, A.; Levitt, M., Theoretical Studies of Enzymatic Reactions:Dielectric Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme, [J] J. Mol. Biol.1976,103,227-249.
    [24]Field, M. J.; Bash, P. A.; Karplus, M., A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations, [J] J. Comput. Chem.1990,11,700-733.
    [25]Gao, J. L.; Truhlar, D. G., Quantum mechanical methods for enzyme kinetics, [J] Annu. Rev. Phys. Chem.2002,53,467-505.
    [26]Senn, H. M.; Thiel, W., QM/MM Methods for Biomolecular Systems, [J] Angew. Chem. Int. Ed.2009,48,1198-1229.
    [27]Humphrey, W.; Dalke, A.; Schulten, K., VMD—Visual Molecular Dynamics, [J] J. Mol. Graphics.1996,14,33-38.
    [28]Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M., CHARMM:a program for macromolecular energy, minimization, and dynamics calculations, [J] J. Comput. Chem.1983,4,187-217.
    [29]MacKerell, A. D. J.; Bashford, D.; Bellot, M.; Dunbrack, R. L., Jr; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D.T.;Prodhom,B.;Reiher,I.,W.i E.;Roux,B.;Schlenkrich,M.;Smith,J.C.; Stote,R.;Straub,J.;Watanabe,M.;Wiorkiewicz-Kuczera,J.;Yin,D.;Karplus,M., All.Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins,[J]J.Phys.Chem.B 1998,102,3586-3616.
    [30]Ahlrichs,R.;Bar,M.;Haser,M.;Horn,H.;Kolmel,C.,Electronic structure calculations on workstation computers:the program system TURBOMOLE,[J] Chem.Phys.Lett.1989,162,165-169.
    [31]Smith,W.;Forester,T.R.,DL_POLY_2.0:A general-purpose parallel molecular dynamics simulation package,[J]J Mol Graph Model,1996,14,136-141.
    [32]Bakowies,D.;Thiel,W.,Hybrid models for combined quantum mechanical and molecular mechanical approaches,[J] J.Phys.Chem.1996,100,10580-10594.
    [33]Sherwood,P.;de Vries,A.H.;Collins,S.J.;Greatbanks,S.P.;Burton,N.A.; Vincent,M.A.;Hillier,I.H.,Computer simulation of zeolite structure and reactivity using embedded cluster methods,[J] Faraday Disscuss.1997,106, 79-92.
    [34]de Vries,A.H.;Sherwood,P.;Collins,S.J.;Rigb y,A.M.;Rigutto,M.;Kramer,G. J.,Zeolite structure and reactivity by Combined quantum-chemical-classical calculations,[J]J.Phys.Chem.B 1999,103,6133-6141.
    [35]Sherwood,P.;de Vries,A.H.;Guest,M.F.;Schreckenbach,G.;Catlow,C.R.A.; French,S.A.;Sokol,A.A.;Btomley,S.T.;Thiel,W.;Turner,A.J.;Billeter,S.; Terstegen,F.;Thiel,S.;Kendrick,J.;Rogers,S.C.;Casci,J.;Watson,M.;King,F.; Karlsen,E.;sjovoll,M.;Fahmi,A.;Schafer,A.;Lennartz,C.,QUASI:A general purpose implementation of the QM/MM approach and its application to problems in catalysis,[J]J.Mol.Struc-Theochem.2003,632,1-28.
    [36]Zechel,D.L.;Withers,S.G,Glycosidase mechanisms:Anatomy of a finely tuned catalyst,[J]Accounts Chem.Res.2000,33,11-18.
    [1]Henrissat,B.,A classification of glycosyl hydrolases based on amino acid sequence similarities,[J]Biochem.J.1991,280,309-316.
    [2]Henrissat,B.;Cantarel,B.L.;Coutinho,P.M.;Rancurel,C.;Bemard,T.; Lombard,V.,The Carbohydrate-Active EnZymes database(CAzy):an expert resource for Glycogenomics,[J]Nucleic Acids Res.2009,37,233-238.
    [3]Carns,J.R.K.;Esen,A.,beta-GluCOSidases,[J] Cell.Mol.Life Sci.2010,67, 3389-3405.
    [4]Cairns,J.R.K.;Opassiri,R.;Pomthong,B.;Onkoksoong,T.;Akiyama,T.;Esen, A.,Analysis of rice glycosyl hydrlase family Ⅰ and expressiOil of Os4bglu12 beta-glucosidase,[J]Bmc Plant Biol.2006,6,33-51.
    [5]Brzobohaty,B.;Moore,I.;Kristofiersen,P.;Bako,L.;Campos,N.;Schell,J.; Palme,K.,Release of active cytokinin by a β-glucosidase localized to the maize root meristem,[J]Scierice 1993,262,1051-1054.
    [6]Mizutani,M.;Nakanishi,H.;Ema,J.;Ma,S.J.;Noguchi,E.;Inohara-Ochiai,M.; FukUChi-Mizutahi,M.;Nakao,M.;Sakata,K.,Cloning of beta-primeverosidase from tea leaves,a key enzyme in tea aroma formation,[J] Plant Physiol.2002, 130,2164-2176.
    [7]Isorna, P.; Polaina, J.; Latorre-Garcia, L.; Canada, F. J.; Gonzalez, B.; Sanz-Aparicio,J.,Crystal structures of Paenibacillus polymyxa beta-glucosidase B complexes reveal the molecular basis of substrate speci6city and give new insights into the catalytic machinery of family Ⅰ Glycosidases,[J]J,Mol.Biol. 2007,371,1204-1218.
    [8]Nijikken,Y.;Tsukada,T.;Igarashi,K.;Samejima,M.;Wakagi,T.;Shoun,H.; Fushinobu,S.,Crystal strtlcture Of intracellular family 1 beta-glucosidase BGL1A from the basidiomycete Phanerochaete chrysosporium,[J]Febs Lett.2007,581, 1514-1520.
    [9]Chuenchor,W.;Pengthaisong,S.;Yuvaniyama,J.;Opassiri,R.;Svasti,J.;Cairns, J.R.K.,Purification,crystallization and preliminary X-ray analysis of rice BGlu1 beta-glucosidase with and without 2-deoxy-2-fluoro-beta-D-glucoside,[J]Acta. Crystallogr. Sect. F Struct. Biol Cryst.Commun.2006,62,798-801.
    [10]Chuenchor, W.; Pengthaisong, S.; Robinson, R. C.; Yuvaniyama, J.; Oonanant, W.; Bevan, D. R.; Esen, A.; Chen, C. J.; Opassiri, R.; Svasti, J.; Caims, J. R. K., Structural insights into rice BGlul beta-glucosidase oligosaccharide hydrolysis and transglycosylation, [J] J. Mol. Biol.2008,377,1200-1215.
    [11]Barrett, T.; Suresh, C. G.; Tolley, S. P.; Dodson, E. J.; Hughes, M. A., The crystal structure of a cyanogenic P-glucosidase from white clover, a family 1 glycosyl hydrolase, [J] Structure 1995,3,951-960.
    [12]Burmeister, W. P.; Cottaz, S.; Driguez, H.; Palmieri, S.; Henrissat, B., The crystal structures of Sinapis alba myrosinase and a covalent glycosyl-enzyme intermediate provide insights into the substrate recognition and active-site machinery of an S-glycosidase, [J] Structure 1997,5,663-675.
    [13]Czjzek, M.; Cicek, M.; Zamboni, V.; Bevan, D. R.; Henrissat, B.; Esen, A., The mechanism of substrate (aglycone) specificity in beta-glucosidases is revealed by crystal structures of mutant maize beta-glucosidase-DIMBOA,-DIMBOAGlc, and -dhurrin complexes, [J] P. Natl. Acad. Sci. USA 2000,97,13555-13560.
    [14]Czjzek, M.; Cicek, M.; Zamboni, V.; Burmeister, W. P.; Bevan, D. R.; Henrissat, B.; Esen, A., Crystal structure of a monocotyledon (maize ZMGlul) beta-glucosidase and a model of its complex with p-nitrophenyl beta-D-thioglucoside, [J] Biochem. J.2001,354,37-46.
    [15]Verdoucq, L.; Czjzek, M.; Moriniere, J.; Bevan, D. R.; Esen, A., Mutational and structural analysis of aglycone specificity in maize and sorghum beta-glucosidases, [J] J. Biol. Chem.2003,278,25055-25062.
    [16]Verdoucq, L.; Moriniere, J.; Bevan, D. R.; Esen, A.; Vasella, A.; Henrissat, B.; Czjzek, M., Structural determinants of substrate specificity in family 1 beta-glucosidases-Novel insights from the crystal structure of sorghum dhurrinase-1, a plant beta-glucosidase with strict specificity, in complex with its natural substrate, [J] J. Biol. Chem.2004,279,31796-31803.
    [17]Sue, M.; Yamazaki, K.; Yajima, S.; Nomura, T.; Matsukawa, T.; Iwamura, H.; Miyamoto, T., Molecular and structural characterization of hexameric beta-D-glucosidases in wheat and rye, [J] Plant Physiol.2006,141,1237-1247.
    [18]Barleben, L.; Panjikar, S.; Ruppert, M.; Koepke, J.; Stockigt, J., Molecular architecture of strictosidine glucosidase:The gateway to the biosynthesis of the monoterpenoid indole alkaloid family, [J] Plant Cell 2007,19,2886-2897.
    [19]Seshadri, S.; Akiyama, T.; Opassiri, R.; Kuaprasert, B.; Cairns, J. K., Structural and Enzymatic Characterization of Os3BGlu6, a Rice beta-Glucosidase Hydrolyzing Hydrophobic Glycosides and (1->3)- and(1 ->2)-Linked Disaccharides,[J]Plant Physiol.2009,151,47-58.
    [20]Opassiri,R.;Caims,J.R.K.;Akiyama,T.;Wara-Aswapati,O.;Svasti,J.;Esen, A.,Characterization of a rice beta-glucosidase highly expressed in flower and germinating shoot,[J]Plant Sci.2003,165,627-638.
    [21]Opassiri,R.;Hua,Y. L.;Wara-Aswapati,O.;Akiyama,T.;Svasti,J.;Esen,A.; Cairns, J. R. K., beta-glucosidase, exo-beta-glucanase and pyridoxine transglucosylase activities of rice BGlul,[J]Biochem.J,2004,379,125-131.
    [22]Chuenchor,W.;Pengthaisong,S.;Robinson,R.C.;Yuvaniyama,J.;Svasti,J.; Cairns,J.R.K.,The structural basis of oligosaccharide binding by rice BGlul beta-glucosidase,[J],Struct.Biol.2011,173,169-179.
    [23]Koshland,D.E.;Stein,S.S.,Structural determinants of substrate specificity in family 1 beta-glucosidases-Novel insights from the crystal structure of sorghum dhurrinase-1,a plant beta-glucosidase with strict specificicy,in Complex with its natural substrate,[J]J.Biol.Chem.1954,208,139-148.
    [24]Bras,N.F.;Moura-Tamames,S.A.;Fernandes,P.A.;Ramos,M.J.,Mechanistic Studies on the Formation of Glycosidase-Substrate and Glycosidase-Inhibitor Covalent Intemediates,[J]J.Comput.Chem.2008,29,2565-2574.
    [25]Bras,N.F.;Ramos,M.J.;Fernandes,P.A.,DFT studies on the β-glycosidase catallytic mechanism:The deglycosylation step,[J],Mol.Struc-Theochem.2010, 946,125-133.
    [26]Xu,D.G.;Liu,J.L.;Wang,X.M.,QM/MM Study on the Catalytic Mechanism of Cellulose Hydrolysis Catalyzed by Cellulase Cel5A from Acidothermus cellulolyticus,[J]J.Phys.Chcm.B 2010,114,1462-1470.
    [27]Wang,J.H.;Hou,Q.Q.;Dong,L.H.;Liu,Y J.;Liu,C.B.,QM/MM studies on the glycosylation mechanism of rice BGlul beta-glucosidase,[J]J.Mol.Graph. Model.2011,30,148-152.
    [28]Warshel,A.;Levitt,M.,Theoretical Studies of Enzymatic Reactions:Dielectric Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of LysoZyme,[J] J.Biol.1976,103,227-249.
    [29]Field,M.J.;Bash,P.A.;Karplus,M.,A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations,[J] J. Conmput.Chem.1990,11,700-733.
    [30]Gao,J.L.;Truhlar,D.G,Quantum mechanical methods for enzyme kinetics,[J] Annu.Rev.Phys.Chem.2002,53,467-505.
    [31]Senn,H.M.;Thiel,W:,QM/MM Methods for Biomolecular Systems,[J]Angew. Chem.Int.Ed.2009,48,1198-1229.
    [32]Humphrey,W.;Dalke,A.;Schulten,K.,VMD—Visual Molecular Dynamics,[J] J.Mol.Graphics.1996,14,33-38.
    [33]Brooks,B.R.;Bruccoleri,R.E.;Olafson,B.D.;States,D.J.;Swaminathan,S.; Karplus,M.,CHARMM:a program for macromolecular energy,minimization, and dynamics calculation8,[J] J.Comput.Chem.1983,4,187-217.
    [34]MacKerell,A.D.J.;Bashford,D.;Bellot,M.;Dunbrack,R.L.,Jr;Evanseck,J. D.;Field,M.J.;Fischer,S.;Gao,J.;Guo,H.;Ha,S.;Joseph-McCarthy,D.; Kuchnir,L.;Kuczera,K.;Lau,F.T. K.;Mattos,C.;Michnick,S.;Ngo,T.;Nguyen, D.T.;Prodhom, B.;Reiher,I.,W.E.;Roux,B.;Schlenkrich,M.;Smith,J.C.; Stote,R.;Straub,J.;Watanabe,M.;Wiorkiewicz-Kuczera, J.;Yin,D.;Karplus,M., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins,[J] J.Phys.Chem.B 1998,102,3586-3616.
    [35]Ahlrichs,R.;Bar,M.;Haser,M.;Horn,H.;Kolmel,C.,Electronic structure calculations on workstation computers:the program system TURBOMOLE,[J] Chem.Phys. Lett.1989,162,165-169.
    [36]Smith,W.;Forester,T.R.,DL_POLY_2.0:A general-purpose parallel molecular dynamics simulation package.,[J] J.Mol.Graph.Model.1996,,4,136-141.
    [37]Bakowies,D.;Thiel,W.,Hybrid models for combined quantum mechanical and molecular mechanical approaches,[J] J. Phys.Chem.1996,100,10580-10594.
    [38]Sherwood,P.;de Vries,A.H.;Collins,S.J.;Greatbanks,S.P.;Burton,N.A.; Vincent,M.A.;Hillier,I.H.,Computer simulation of zeolite structure and reactivity using embedded cluster methods,[J] Faraday Discuss.1997,106, 79.92.
    [39]de Vries,A.H.;Sherwood,P.;Collins,S.J.;Rigb y,A.M.;Rigutto,M.;Kramer,G J.,Zeolite structure and reactivity by combined quantum-chemical-classical calculations,[J] J.Phys.Chem.B 1999,103,6133-6141.
    [40]Sherwood,P.;de Vries,A.H.;Guest,M.F.;Schreckenbach,G.;Catlow,C.R.A.; French,S.A.;Sokol,A.A.;Bromley,S.T.;Thiel,W.;Turner,A.J.;Billeter,S.; Terstegen,F.;Thiel,S.;Kendrick,J.;Rogers,S.C.;Casci,J.;Watson,M.;King,F.; Karlsen,E.;Sjovoll,M.;Fahmi,A.;Schafer,A.;Lennartz,C.,QUASI:A general purpose implementation of the QM/MM approach and its application to problems in catalysis, [J] J. Mol. Struc-Theochem.2003,632,1-28.
    [41]Woodcock, H. L.; Hodoscek, M.; Brooks, B. R., Exploring SCC-DFTB paths for mapping QM/MM reaction mechanisms, [J] J. Phys. Chem. A 2007,111, 5720-5728.
    [42]Zechel, D. L.; Withers, S. G., Glycosidase mechanisms:Anatomy of a finely tuned catalyst, [J] Accounts Chem. Res.2000,33,11-18.
    [1]Sears, P.; Wong, C. H., Toward automated synthesis of oligosaccharides and glycoproteins, [J] Science 2001,291,2344-2350.
    [2]Bertozzi, C. R.; Kiessling, L. L., Chemical glycobiology, [J] Science 2001,291, 2357-2364.
    [3]Koshland Jr, D., Stereochemistry and the mechanism of enzymatic reactions, [J] Biol. Rev.1953,28,416-436.
    [4]Koeller, K. M.; Wong, C. H., Emerging themes in medicinal glycoscience, [J] Nat. Biotechnol.2000,18,835-841.
    [5]Palcic, M. M., Biocatalytic synthesis of oligosaccharides, [J] Cum Opin. Biotechnol.1999,10,616-624.
    [6]Mackenzie, L. F.; Wang, Q.; Warren, R. A. J.; Withers, S. G, Glycosynthases: mutant glycosidases for oligosaccharide synthesis, [J] J. Am. Chem. Soc.1998,120, 5583-5584.
    [7]Moracci, M.; Trincone, A.; Rossi, M., Glycosynthases:new enzymes for oligosaccharide synthesis, [J] J. Mol. Catal. B:Enzym.2001,11,155-163.
    [81 Williams, S. J.; Withers, S. G., Glycosynthases:mutant glycosidases for glycoside synthesis, [J] Aust. J. Chem.2002,55,3-12.
    [9]Perugino, G.; Cobucci-Ponzano, B.; Rossi, M.; Moracci, M., Recent advances in the oligosaccharide synthesis promoted by catalytically engineered glycosidases, [J] Adv. Synth. Catal.2005,347,941-950.
    [10]Williams,S.J.;Withers,S.G,Glycosyl fluorides in enzymatic reactions,[J] Carbohyd. Res.2000,327,27-46.
    [11]Okuyama,M.;Mori,H.;Watanabe,K.;Kimura,A.;Chiba,S.,α-Glucosidase Mutant Catalyzes"α-Glycosynthase"-tyPe Reaction,[J]Biosci.Biotech.Biochem. 2002,66,928-933.
    [12]Honda,Y.;Kitaoka,M.,The first glycosynthase derived from an inverting glycoside hydrolase,[J] J.Biol.Chem.2006,281,1426.
    [13]Stick,R.V.;Stubbs,K.A.;Watts,A.G,Modifying the regioselectivity of glycosynthase reactions through changes in the acceptor,[J] Aust.J.Chem.2004,57, 779-786.
    [14]Kim,Y W.;Lee,S.S.;Warren,R.A.J.;Withers,S.G,Directed evolution of a glycosynthase from Agrobacterium sp.increases its catalytic activity dramatically and expands its substrate repertoire:[J] J. Biol.Chem.2004,279,42787-42793.
    [15]Kim,Y W.;Chen,H.;Withers,S.G,Enzymatic transglycosylation of xylose using a glycosynthase,[J]Carbohydd. Res.2005,340,2735-2741.
    [16]Trincone,A.;Perugiino,G.;Rossi,M.;Moracci,M.,A novel thermophilic glycosynthase that effects branching glycosylation,[J] Bioorg. Med Chem. Lett.2000, 10,365-368.
    [17]Nashiru,O.;Zechel,D.L.;Stoll,D.;Mohammadzadeh,T.;Warren,R.A.J.; Withers,S.G.,β-Mannosynthase; Synthesis of β-mannosides with a Mutant β-man-nosidase,[J] AngeW. Chem.2001,113,431-434.
    [18]Jakeman,D.L.;Withers,S.G,On expanding the repertoire of glycosynthases: Mutant beta-galactosidases forming beta-(1,6)-linkages,[J]Can.J.Chem.2002,80, 866.870.
    [19]Drone,J.;Feng,H.;Tellier,C.;Hoffmann,L.;Tran,V.;Rabiller,C.;Dion,M., Thermus thermophilus Glycosynthases for the Efficient Synthesis of Galactosyl and Glucosyl β-(1,3)一Glycosides,[J]Eur.J.Org.Chem.2005,2005,1977-1983.
    [20]Faijes,M.;Saura-Valls,M.;P6rez,X.;Conti,M.;Planas,A.,Acceptor-dependent regioselectivity of glycosynthase reactions by Streptomyces E383A β-glucosidase,[J] Carbohyd.Res.2006,341,2055-2065.
    [21]Mullegger,J.;Chen,H.M.;Chan,W.Y.;Reid,S.P.;Jahn,M.;Warren,R.A.J.; Salleh,H.M.;Withers,S.G,Thermostable Glycosynthases and Thioglycoligases Derived from Thermotoga maritima β-Glucuronidase,[J]Chem. Bi0.Chem.2006,7, 1028-1030.
    [22]Opassiri,R.;Cairns,J.R.K.;Akiyama,T.;Wara-Aswapati,O.;Svasti,J.;Esen, A.,Characterization of a rice beta-glucosidase highly expressed in flower and germinating shoot,[J] Plant Sci.2003,165,627-638.
    [23]Opassiri,R.;Hua,Y. L.;Wara-Aswapati,O.;Akiyama,T.;Svasti,J.;Esen,A.; Cairns, J. R. K., beta-glucosidase, exo-beta-glucanase and pyridoxine transglucosylase activities of rice BGlul,[J]Biochem. J. 2004,379,125-131.
    [24]Chuencho r,W.;Pengthaisong,S.;Robinson,R.C.;Yuvaniyama,J.;Svasti,J.; Cairns,J.R.K.,The structural basis of oligosaccharide binding by rice BGlul beta-glucosidase,[J] J. Struct.Biol. 2011,173,169-179.
    [25]Wang,J.H.;Hou,Q.Q.;Dong,L.H.;Liu,Y.J.;Liu,C.B.,QM/MM studies on the glycosylation mechanism of rice BGlul beta-glucosidase,[J] J.Mol.Graph. Model.2011,30,148-152.
    [26]Chuenchor,W.;Pengthaisong,S.;Robinson,R.C.;Yuvaniyama,J.;Oonanant,W.; Bevan,D.R.;Esen,A.;Chen,C.J.;Opassiri,R.;Svasti,J.;Cairns,J.R.K.,Structural insights into rice BGlul beta-glucosidase oligosaccharide hydrolysis and transglycosylation,[J] J.Mol.Biol.2008,377,1200-1215.
    [27]Hommalai,G.;Withers,S.G.;Chuellchor,W.;Cairns,J.R.K.;Svasti,J., Enzymatic synthesis of cello-oligosaccharides by rice BGlul β—glucosidase glycosynthasc mutants,[J] Glycobiology 2007,17,744-753.
    [28]Morris,G M.;Goodsell,D.S.;Halliday R.S.;Huey,R.;Hart,W. E.;Belew,R. K.;Olson,A.J.,Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function,[J]J. Comput.Chem.1998,19,1639-1662.
    [29]Frisch,M.J.;Trucks,G.W.;Schlegel,H.B.;Scuseria,G. E.;Robb,M.A.; Cheeseman,J.R.;Montgomery Jr,J.A.;Vreven,T.;Kudin,K.N.;Burant,J.C.; Millam,J.M.;Iyengat,S.S.;Tomasi,J.;Barone,V;Mennucci,B.;Cossi,M.; Scalmani,G.;Rega,N.;Petersson,G. A.;Nakatsuji,H.;Hada,M.;Ehara,M.;Toyota, K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao,O.;Nakai, H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.;Bakken,V.;Adamo, C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.;Austin,A.J.;Cammi,R.; Pomelli,C.;Ochterski,J.W:;Ayala,P.Y.;Morokuma,K.;Voth,G. A.;Salvador P.; Dannenberg,J.J.;Zakrzewski,V.G.;Dapprich,S.;Daniels,A.D.;Strain,M.C.; Farkas,O.;Malick,D.K.;Rabuck,A.D.;Raghavachari,K.;Foresrnan,J.B.;Ortiz,J. V.;Cui,Q.;Baboul,A.G.;Clifford,S.;Cioslowski,J.;Stefanov, B.B.;Liu,G.; Liashenko,A.;Piskorz,P.;Komaaromi,I.:Martin:R.L.;Fox,D.J.;Keith,T. Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; Pople, J. A., [J] Gaussian 03, Revision C.02, Gaussian, Inc., Wallingford CT,2004.
    [30]Gasteiger, J.; Marsili, M., Iterative partial equalization of orbital electronegativity—a rapid access to atomic charges, [J] Tetrahedron.1980,36, 3219-3228.
    [31]Li, H.; Robertson, A. D.; Jensen, J. H., Very fast empirical prediction and rationalization of protein pKa values, [J] Proteins:Struct., Funct., Bioinf.2005,61, 704-721.
    [32]Bas, D. C.; Rogers, D. M.; Jensen, J. H., Very fast prediction and rationalization of pKa values for protein-ligand complexes, [J] Proteins:Struct., Funct., Bioinf.2008, 73,765-783.
    [33]Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M., CHARMM:a program for macromolecular energy, minimization, and dynamics calculations, [J] J. Comput. Chem.1983,4,187-217.
    [34]MacKerell, A. D. J.; Bashford, D.; Bellot, M.; Dunbrack, R. L., Jr; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; Joseph-McCarthy, D.; Kuchnir, L.; Kuczera, K.; Lau, F. T. K.; Mattos, C.; Michnick, S.; Ngo, T.; Nguyen, D. T.; Prodhom, B.; Reiher, I., W. E.; Roux, B.; Schlenkrich, M.; Smith, J. C.; Stote, R.; Straub, J.; Watanabe, M.; Wiorkiewicz-Kuczera, J.; Yin, D.; Karplus, M., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins, [J] J. Phys. Chem. B 1998,102,3586-3616.
    [35]Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C., Electronic structure calculations on workstation computers:the program system TURBOMOLE, [J] Chem. Phys. Lett.1989,162,165-169.
    [36]Smith, W.; Forester, T. R., DL_POLY_2.0:A general-purpose parallel molecular dynamics simulation package., [J] J. Mol. Graph. Model.1996,14,136-141.
    [37]Bakowies, D.; Thiel, W., Hybrid models for combined quantum mechanical and molecular mechanical approaches, [J] J. Phys. Chem.1996,100,10580-10594.
    [38]de Vries, A. H.; Sherwood, P.; Collins, S. J.; Rigby, A. M.; Rigutto, M.; Kramer, G. J., Zeolite structure and reactivity by combined quantum-chemical-classical calculations, [J] J. Phys. Chem. B 1999,103,6133-6141.
    [39]Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafer, A.; Lennartz, C., QUASI:A general purpose implementation of the QM/MM approach and its application to problems in catalysis, [J] J. Mol. Struc-Theochem.2003,632,1-28.
    [40]Billeter, S. R.; Turner, A. J.; Thiel, W., Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates, [J] Phys. Chem. Chem. Phys.2000,2,2177-2186.
    [41]Nocedal, J., Updating quasi-Newton matrices with limited storage, [J] Math. Comput.1980,35,773-782.
    [42]Liu, D. C.; Nocedal, J., On the limited memory BFGS method for large scale optimization, [J] Math. Program.1989,45,503-528.
    [43]Banerjee, A.; Adams, N.; Simons, J.; Shepard, R., Search for stationary points on surfaces, [J] J. Phys. Chem.1985,89,52-57.
    [44]Baker, J., An algorithm for the location of transition states, [J] J. Comput. Chem. 1986,7,385-395.
    [1]Gordon, J. I.; Bjursell, M. K.; Martens, E. C., Functional genomic and metabolic studies of the adaptations of a prominent adult human gut symbiont, Bacteroides thetaiotaomicron, to the suckling period, [J] J. Biol. Chem.2006,281, 36269-36279.
    [2]Gordon, J. I.; Sonnenburg, J. L.; Xu, J.; Leip, D. D.; Chen, C. H.; Westover, B. P.; Weatherford, J.; Buhler, J. D., Glycan foraging in vivo by an intestine-adapted bacterial symbiont, [J] Science,2005,307,1955-1959.
    [3]Gill, S. R.; Pop, M.; DeBoy, R. T.; Eckburg, P. B.; Turnbaugh, P. J.; Samuel, B. S.; Gordon, J. I.; Relman, D. A.; Fraser-Liggett, C. M.; Nelson, K. E., Metagenomic analysis of the human distal gut microbiome, [J] Science 2006,312,1355-1359.
    [4]Henrissat, B.; Bairoch, A., Updating the sequence-based classification of glycosyl hydrolases, [J] Biochem. J.1996,316,695-696.
    [5]Comstock, L. E.; Coyne, M. J., Bacteroiades thetaiotaomicron:a dynamic, niche-adapted human symbiont, [J] Bioessays 2003,25,926-929.
    [6]Gordon, J. I.; Xu, J.; Bjursell, M. K.; Himrod, J.; Deng, S.; Carmichael, L. K.; Chiang, H. C.; Hooper, L. V., A genomic view of the human-Bacteroides thetaiotaomicron symbiosis, [J] Science 2003,299,2074-2076.
    [7]Naumoff, D. G., GH97 is a new family of glycoside hydrolases, which is related to the alpha-galactosidase superfamily, [J] Bmc. Genomics 2005,6,112-123.
    [8]Naumoff, D. G, GH97 is a new family of alpha-glucosidases, [J] Febs. J.2005, 272,94-95.
    [9]Yao, M.; Kitamura, M.; Okuyama, M.; Tanzawa, F.; Mori, H.; Kitago, Y.; Watanabe, N.; Kimura, A.; Tanaka, I., Structural and Functional Analysis of a Glycoside Hydrolase Family 97 Enzyme from Bacteroides thetaiotaomicron, [J] J. Biol. Chem.2008,283,36328-36337.
    [10]Gloster, T. M.; Turkenburg, J. P.; Potts, J. R.; Henrissat, B.; Davies, G. J., Divergence of Catalytic Mechanism within a Glycosidase Family Provides Insight into Evolution of Carbohydrate Metabolism by Human Gut Flora, [J] Chem. Biol. 2008,15,1058-1067.
    [11]Smith, K. A.; Salyers, A. A., Characterization of a neopullulanase and an alpha-glucosidase from Bacteroides thetaiotaomicron 95-1, [J] J. Bacteriol.1991, 773,2962-2968.
    [12]Li, J. H.; Du, L. K.; Wang, L. S., Glycosidic-Bond Hydrolysis Mechanism Catalyzed by Cellulase Ce17A from Trichoderma reesei:A Comprehensive Theoretical Study by Performing MD, QM, and QM/MM Calculations, [J] J. Phys. Chem. B 2010,114,15261-15268.
    [13]Bras, N. F.; Fernandes, P. A.; Ramos, M. J., QM/MM Studies on the beta-Galactosidase Catalytic Mechanism:Hydrolysis and Transglycosylation Reactions, [J] J. Chem. Theory Comput.2010,6,421-433.
    [14]Liu, J. L.; Wang, X. M.; Xu, D. G., QM/MM Study on the Catalytic Mechanism of Cellulose Hydrolysis Catalyzed by Cellulase Cel5A from Acidothermus cellulolyticus, [J] J. Phys. Chem. B 2010,114,1462-1470.
    [15]Huang, W. J.; Llano, J.; Gauld, J. W., Redox Mechanism of Glycosidic Bond Hydrolysis Catalyzed by 6-Phospho-alpha-glucosidase:A DFT Study, [J] J. Phys. Chem. B 2010,114,11196-11206.
    [16]Wang, J. H.; Hou, Q. Q.; Dong, L. H.; Liu, Y. J.; Liu, C. B., QM/MM studies on the glycosylation mechanism of rice BGlul beta-glucosidase, [J] J. Mol. Graph. Model.2011,30,148-152.
    [17]Warshel, A.; Karplus, M., Calculation of ground and excited state potential surfaces of conjugated molecules. I. Formulation and parametrization, [J] J. Am. Chem. Soc.1972,94,5612-5625.
    [18]Warshel, A.; Levitt, M., Theoretical Studies of Enzymatic Reactions:Dielectric Electrostatic and Steric Stabilization of the Carbonium Ion in the Reaction of Lysozyme, [J] J. Mol. Biol.1976,103,227-249.
    [19]Field, M. J.; Bash, P. A.; Karplus, M., A Combined Quantum Mechanical and Molecular Mechanical Potential for Molecular Dynamics Simulations, [J] J. Comput. Chem.1990,11,700-733.
    [20]Gao, J. L.; Truhlar, D. G., Quantum mechanical methods for enzyme kinetics, [J] Annu. Rev. Phys. Chem.2002,53,467-505.
    [21]Senn, H. M.; Thiel, W., QM/MM Methods for Biomolecular Systems, [J] Angew. Chem. Int. Ed 2009,48,1198-1229.
    [22]Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, [J] J. Comput. Chem.1998,19, 1639-1662.
    [23]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels,A.D.;Strain,M.C.;Farkas,O.;Malick,D.K.;Rabuck,A.D.; Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G.;Clifford,S.; Cioslowski,J.;StefanoV,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.;Komaromi,I.; Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.;Nanayakkara, A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.; Gonzalez,C.;Pople,J.A.,[J]Gaussian 03,Revision C.02,Gaussian,Inc., Wallingford CT,2004.
    [24]Gasteiger, J.; Marsili, M., Iterative panial equalization of orbital electronegatiVity—a rapid access to atomic charges,[J] Tetrahedron 1980,36, 3219-3228.
    [25]Fujimoto,Z.;Kaneko,S.;Momma,M.;Kobayashi,H.;Mizuno,H.,Crystal structure of rice alpha-galactosidase complexed with D-galactose,[J] J.Biol. Chem.2003,278,20313-20318.
    [26]Humphrey,W.;Dalke,A.;Schulten,K.,VMD—Visual Molecular Dynamics,[J] J.Mol.Graphics.1996,14,33-38.
    [27]Brooks,B.R.;Bruccoleri,R.E.;Olafson,B.D.;States,D.J.;Swaminathan,S.; Karplus,M.,CHARMM:a program for macromolecular energy,minimization, and dynamics calculations,[J] J, Comput.Chem.1983,4,187-217.
    [28]MacKerell,A.D.J.;Bashford,D.;Bellot,M.;Dunbrack,R.L.,Jr;Evanseck,J. D.;Field,M.J.;Fischer,S.;Gao,J.;Guo,H.;Ha,S.;Joseph-McCarthy,D.; Kuchnir,L.;Kuczera,K.;Lau,F.T.K.;Mattos,C.;Michnick,S.;Ngo,T.;Nguyen, D.T.;Prodhom,B.;Reiher,I.,W.E.;Roux,B.;Schlenkrich,M.;Smith,J.C.; Stote,R.;Straub,J.;Watanabe,M.;Wiorkiewicz-Kuczera,J.;Yin,D.;Karplus,M., All-Atom Empidcal Potential for Molecular Modeling and Dynamics Studies of Proteins,[J] J.Phys. Chem. B 1998,102,3586-3616.
    [29]Ahlrichs,R.;Bar,M.;Haser,M.;Horn,H.;Kolmel,C.,Electronic structure calculations on workstation computers:the program system TURBOMOLE,[J] Chem. Phys. Lett.1989,162,165-169.
    [30]Smith,W.;Forester,T.R.,DL_POLY_2.0:A general-purpose parellel molecular dynanmics simulation package.,[J] J.Mol. Graph. Model.1996,14,136-141.
    [31]Bakowies,D.;Thiel,W.,Hybrid models for combined quantum mechanical and molecular mechanical approaches,[J] J.Phys.Chem.1996,100,10580-10594.
    [32]de Vries,A.H.;Sherwood,P.;Collins,S.J.;Rigby,A.M.;Rigutto,M.;Kramer,G. J.,Zeolite structure and reactivity by combined quantum-chemical-classical calculations, [J] J. Phys. Chem. B 1999,103,6133-6141.
    [33]Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafer, A.; Lennartz, C., QUASI:A general purpose implementation of the QM/MM approach and its application to problems in catalysis, [J] J. Mol. Struc-Theochem.2003,632,1-28.
    [34]Billeter, S. R.; Turner, A. J.; Thiel, W., Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates, [J] Phys. Chem. Chem. Phys.2000,2,2177-2186.
    [35]Nocedal, J., Updating quasi-Newton matrices with limited storage, [J] Math. Comput.1980,35,773-782.
    [36]Liu, D. C.; Nocedal, J., On the limited memory BFGS method for large scale optimization, [J] Math. Prog.1989,45,503-528.
    [37]Banerjee, A.; Adams, N.; Simons, J.; Shepard, R., Search for stationary points on surfaces, [J] J. Phys. Chem.1985,89,52-57.
    [38]Baker, J., An algorithm for the location of transition states, [J] J. Comput. Chem. 1986,7,385-395.
    [1]Mangelsdorf, D. J.; Thummel, C.; Beato, M.; Herrlich, P.; Schuetz, G.; Umesono, K.; Blumberg, B.; Kastner, P.; Mark, M., The Nuclear Receptor Superfamily:The Second Decade [J] Cell 1995,83,835-839.
    [2]Kamei, Y.; Kawada, T.; Fukuwatari, T.; Ono, T.; Kato, S.; Sugimoto, E., Cloning and sequencing of the gene encoding the mouse vitamin D receptor, [J] Gene 1995, 152,281-282.
    [3]Lu, Z.; Hanson, K.; DeLuca, H. F., Cloning and origin of the two forms of chicken vitamin D receptor, [J] Arch. Biochem. Biophys.1997,339,99-106.
    [4]Li, Y. C.; Bergwitz, C.; Juppner, H.; Demay, M. B., Cloning and characterization of the vitamin D receptor from Xenopus laevis, [J] Endocrinology 1997,138, 2347-2353.
    [5]Suzuki, T.; Suzuki, N.; Srivastava, A. S.; Kurokawa, T., Identification of cDNAs encoding two subtypes of vitamin D receptor in flounder, Paralichthys olivaceus, [J] Biochem. Bioph. Res. Co.2000,270,40-45.
    [6]Whitfield, G. K.; Dang, H. T. L.; Schluter, S. F.; Bernstein, R. M.; Bunag, T.; Manzon, L. A.; Hsieh, G.; Dominguez, C. E.; Youson, J. H.; Haussler, M. R.; Marchalonis, J. J., Cloning of a functional vitamin D receptor from the lamprey (Petromyzon marinus), an ancient vertebrate lacking a calcified skeleton and teeth, [J] Endocrinology 2003,144,2704-2716.
    [7]Rochel, N.; Wurtz, J. M.; Mitschler, A.; Klaholz, B.; Moras, D., The crystal structure of the nuclear receptor for vitamin D bound to its natural ligand, [J] Mol. Cell 2000,5,173-179.
    [8]Tocchini-Valentini, G.; Rochel, N.; Wurtz, J. M.; Mitschler, A.; Moras, D., Crystal structures of the vitamin D receptor complexed to superagonist 20-epi ligands, [J] P. Natl. Acad. Sci. USA 2001,98,5491-5496.
    [9]Vanhooke, J. L.; Benning, M. M.; Bauer, C. B.; Pike, J. W.; DeLuca, H. F., Molecular structure of the rat vitamin D receptor ligand binding domain complexed with 2-carbon-substituted vitamin D-3 hormone analogues and a LXXLL-containing coactivator peptide, [J] Biochemistry-Us 2004,43,4101-4110.
    [10]Ciesielski,F.;Rochel,N.;Mitschler,A.;Kouzmenko,A.;Moras,D.,Structural investigation of the ligand binding domain of the zebrafish VDR in complexes with 1 alpha,25(OH)(2)D-3 and Gemini:purification, crystallization and preliminary X-ray diffraction analysis,[J] J.Steroid.Biochem.2004,89-90, 55-59.
    [11]Tocchini-Valentini,G;Rochel,N.;Wurtz,J.M.;Moras,D.,Crystal structures of the vitamin D nuclear receptor liganded with the vitamin D side chain analogues ealcipotriol and seocalcitol,receptor agonists of clinical importance.Insights into a structural basis for the switching of calcipotriol to a receptor antagonist by further side chain modification,[J] J.Med Chem.2004,47,1956-1961.
    [12]Eelen,G.;Verlinden,L.;Rochel,N.;Claessens,F.;De Clercq,P.;Vandewalle,M.; Tocchini-Valentini,G.;Moras,D.;Bouillon,R.;Verstuye A.,Superagonistic action of 14-epi-analogs of 1,25-dihydroxyvitamin D explained by vitamin D receptor-coactivator interaction,[J] Mol.Pharmacol.2005,67,1566-1573.
    [13]Hourai,S.;Fujishima,T.;Kittaka,A.;Suhara,Y.;Takayama,H.;Rochel,N.; Moras,D.,Probing a water channel near the A-ring of receptor-bound 1 alpha,25-dihydroxyvitamin D3 with selected 2 alpha-Substituted analogues,[J] J. Med Chem.2006,49,5199-5205.
    [14]Ciesielski,F.;Rochel,N.;Moras,D.,Adaptability of the Vitamin D nuclear receptor to the synthetic ligand Gemini:Remodelling the LBP with one side chain rotation,[J] J.Steroid. Biochem.2007,103,235-242.
    [15]Rochel,N.;Hourai,S.;Perez-Garcia,X.;Rumbo,A.;Mourino,A.;Moras,D., Crystal structure of the vitamin D nuclear receptor ligand binding domain in complex with a locked side chain analog of calcitriol,[J] Arch. Biochem.Biophys. 2007,460,172-176.
    [16]Vanhooke,J.L.;Tadi,B.P.;Benning,M.M.;Plum,L.A.;DeLuca,H.F.,New analogs of 2-methylene-19-nor-(20S)-1,25-dihydroxyvitamin D-3 with conformationally restricted side chains:Evaluation of biological activity and structural determination of VDR-bound conformations, [J] Arch. Biochem. Biophys.2007,46D,161-165.
    [17]Hourai,S.;Rodrigues,L.C.;Antony,P.;Reina-San-Martin,B.;Ciesielski,F.; Magnier,B. C.;Schoonjans, K.; Mourino, A.;Rochel,N.; Moras, D., Structure-based design of a superagonist ligand for the vitamin D nuclear receptor, [J]Chem.BiDl.2008,15,383-392.
    [18]Shimizu, M.; Miyamoto, Y.; Takaku, H.; Matsuo, M.; Nakabayashi, M.; Masuno, H.; Udagawa, N.; DeLuca, H. F.; Ikura, T.; Ito, N.,2-Substituted-16-ene-22-thia-1 alpha,25-dihydroxy-26,27-dimethyl-19-norvitamin D-3 analogs:Synthesis, biological evaluation, and crystal structure, [J] Bioorgan. Med. Chem.2008,16, 6949-6964.
    [19]Nakabayashi, M.; Yamada, S.; Yoshimoto, N.; Tanaka, T.; Igarashi, M.; Ikura, T.; Ito, N.; Makishima, M.; Tokiwa, H.; DeLuca, H. F.; Shimizu, M., Crystal structures of rat vitamin D receptor bound to adamantyl vitamin D analogs: Structural basis for vitamin D receptor antagonism and partial agonism, [J] J. Med. Chem.2008,51,5320-5329.
    [20]Herdick, M.; Steinmeyer, A.; Carlberg, C., Carboxylic ester antagonists of 1 alpha,25-dihydroxyvitamin D-3 show cell-specific actions, [J] Chem. Biol.2000,7, 885-894.
    [21]Inaba, Y.; Yoshimoto, N.; Sakamaki, Y.; Nakabayashi, M.; Ikura, T.; Tamamura, H.; Ito, N.; Shimizu, M.; Yamamoto, K., A New Class of Vitamin D Analogues that Induce Structural Rearrangement of the Ligand-Binding Pocket of the Receptor, [J] J. Med. Chem.2009,52,1438-1449.
    [22]Bury, Y.; Ruf, D.; Hansen, C. M.; Kissmeyer, A. M.; Binderup, L.; Carlberg, C., Molecular evaluation of vitamin D-3 receptor agonists designed for topical treatment of skin diseases, [J] J. Invest. Dermatol.2001,116,785-792.
    [23]Carlberg, C., Molecular basis of the selective activity of vitamin D analogues, [J] J. CellBiochem.2003,88,274-281.
    [24]Vaisanen, S.; Perakyla, M.; Karkkainen, J. I.; Steinmeyer, A.; Carlberg, C., Critical role of helix 12 of the vitamin D-3 receptor for the partial agonism of carboxylic ester antagonists, [J] J. Mol. Biol.2002,315,229-238.
    [25]Antony, P.; Sigueiro, R.; Huet, T.; Sato, Y.; Ramalanjaona, N.; Rodrigues, L. C.; Mourino, A.; Moras, D.; Rochel, N., Structure-Function Relationships and Crystal Structures of the Vitamin D Receptor Bound 2 alpha-Methyl-(20S,23S)-and 2 alpha-Methyl-(20S,23R)-epoxymethano-1 alpha,25-dihydroxyvitamin D-3, [J] J. Med. Chem.2010,53,1159-1171.
    [26]Eelen, G.; Valle, N.; Sato, Y.; Rochel, N.; Verlinden, L.; De Clercq, P.; Moras, D.; Bouillon, R.; Munoz, A.; Verstuyf, A., Superagonistic Fluorinated Vitamin D-3 Analogs Stabilize Helix 12 of the Vitamin D Receptor, [J] Chem. Biol.2008,59, 1029-1034.
    [27]Jones, G.; Strugnell, S. A.; DeLuca, H. F., Current understanding of the molecular actions of vitamin D, [J] Physiol. Rev.1998,78,1193-1231.
    [28]Abe, E.; Miyaura, C.; Sakayami, H.; Takeda, M.; Konno, K.; Yamazaki, T.; Yoshiki, S.; Suda, T., Differentiation of mouse myeloid leukemia cells induced by 1-alpha,25-dihydroxyvitamin D3, [J] P Natl Acad Sci USA,1981,78,4990-4994.
    [29]Tanaka, H.; Abe, E.; Miyaura, C.; Kuribayashi, T.; Konno, K.; Nishii, Y.; Suda, T., 1 alpha,25-Dihydroxycholecalciferol and a human myeloid leukaemia cell line (HL-60), [J] Biochem. J.1982,204,713-719.
    [30]Hosomi, J.; Hosoi, J.; Abe, E.; Suda, T.; Kuroki, T., Regulation of Terminal Differentiation of Cultured Mouse Epidermal Cells by 1,25-Dihydroxyvitamin D3, [J] Endocrinology.1983,113,1950-1957.
    [31]Smith, E. L.; Walworth, N. C.; Holick, M. F., Effect of 1 a,25-Dihydroxyvitamin D3 on the Morphologic and Biochemical Differentiation of Cultured Human Epidermal Keratinocytes Grown in Serum-Free Conditions, [J] J. Invest. Dermatol. 1986,56,709-714.
    [32]Langner, A.; Stapor, W.; Ambroziak, M.; Fraczykowska, M. B., Vitamin D-3 metabolites and analogues in the treatment of scalp psoriasis, [J] J. Dermatol. Treat.1998,9,41-45.
    [33]Hayes, C. E., Vitamin D:a natural inhibitor of multiple sclerosis, [J] P. Nittr. Soc. 2000,59,531-535.
    [34]Bortman, P.; Folgueira, M. A. A. K.; Katayama, M. L. H.; Snitcovsky, I. M. L.; Brentani, M. M., Antiproliferative effects of 1,25-dihydroxyvitamin D-3 on breast cells-A mini review, [J] Braz. J. Med. Biol. Res.2002,35,1-9.
    [35]Smith, D. C.; Johnson, C. S.; Freeman, C. C.; Muindi, J.; Wilson, J. W.; Trump, D. L., A phase I trial of calcitriol (1,25-dihydroxycholecalciferol) in patients with advanced malignancy, [J] Clin. Cancer Res.1999,5,1339-1345.
    [36]Stein, M. S.; Wark, J. D., An update on the therapeutic potential of vitamin D analogues, [J] Expert. Opin. Inv. Drug.2003,12,825-840.
    [37]Nishii, Y.; Okano, T., History of the development of new vitamin D analogs: studies on 22-oxacalcitriol (OCT) and 2 beta-(3-hydroxypropoxy)calcitriol (ED-71), [J] Steroids 2001,66,137-146.
    [38]Eswar, N.; Eramian, D.; Webb, B.; Shen, M. Y.; Sali, A., [J] Methods Mol. Biol. 2008,426,145-159.
    [39]Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman,J.R.;Montgomery Jr.,J.A.;Vreven,T.;Kudin,K.N.;Burant,J.C.; Millam,J.M.;Iyengar,S.S.;Tomasi,J.;Barone,V.;Mennucci,B.;Cossi,M.; Scalmani,G.;Rega,N.;Petersson,G. A.;Nakatsuji,H.;Hada,M.;Ehara,M.; Toyota,K.;Fukuda,R.;Hasegawa,J.;Ishida,M.;Nakajima,T.;Honda,Y.;Kitao, O.;Nakai,H.;Klene,M.;Li,X.;Knox,J.E.;Hratchian,H.P.;Cross,J.B.; Bakken,V.;Adamo,C.;Jaramillo,J.;Gomperts,R.;Stratmann,R.E.;Yazyev,O.; Austin,A.J.;Cammi,R.;Pomelli,C.;Ochterski,J.W.;Ayala,P.Y.;Morokuma, K.;Voth,G A.;Salvador,P.;Dannenberg,J.J.;Zakrzewski,V G.;Dapprich,S.; Daniels,A.D.;Strain,M.C.;Farkas,O.;Malick,D.K.;Rabuck,A.D.; Raghavachari,K.;Foresman,J.B.;Ortiz,J.V.;Cui,Q.;Baboul,A.G.;Clifford,S.; Cioslowski,J.;Stefanov,B.B.;Liu,G.;Liashenko,A.;Piskorz,P.;Komaromi,I.; Martin,R.L.;Fox,D.J.;Keith,T.;Al-Laham,M.A.;Peng,C.Y.;Nanayakkara, A.;Challacombe,M.;Gill,P.M.W.;Johnson,B.;Chen,W.;Wong,M.W.; Gonzalez,C.;Pople,J.A.,[J] Gaussian 03,Revision C.02,Gaussian,Inc., Wallingford CT,2004.
    [40]Morris,G M.;Goodsell,D.S.;Halliday R.S.;Hyey,R.;Hart,w.E.;Belew,R. K.;Olson,A.J.,Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function,[J] J. Comput.Chem.1998,19, 1639-1662.
    [41]Huey,R.;Morris,G M.;Olson,A.J.;Goodsell,D.S.,A semiempirical free energy force field with charge-based desolvation,[J] J.Comput.Chem.2007,28, 1145-1152.
    [42]Odzak,R.;Calic,M.;Hrenar,T.;Primozic,I.;Kovarik,Z.,Evaluation of monoquaternary pyridinium oximes potency to reactivate tabun-inhibited human acetylcholinesterase,[J]Toxicology 2007,233,85-96.
    [43]Van der Spoel,D.;Lindahl,E.;Hess,B.;Groenhof, G.;Mark,A.E.;Berendsen, H.J.C.,GROMACS:Fast,flexible,and free,[J] J.Comput.Chem.2005,26, 1701-1718.
    [1]Abe,E.;Miyaura,C.;Sakayami,H.;Takeda,M.;Konno,K.;Yamazaki,T.; Yoshiki,S.;Suda,T.,Differentiation of mouse myeloid leukemia cells induced by 1-alpha,25-dihydroxyvitamin D3, [J] P.Natl.Acad. Sci. USA 1981,78, 4990-4994.
    [2]Tanaka,H.;Abe,E.;Miyaura,C.;Kuribayashi,T.;Konno,K.;Nishii,Y.;Suda,T., 1 alpha,25-Dihydroxycholecalciferol and a human myeloid leukaemia cell line (HL-60),[J]Biochem.,1982,204,713-719.
    [3]Hosomi,J.;Hosoi,J.;Abe,E.;Suda,T.;Kuroki,T.,Regulation of Terminal Differentiation of Cultured Mouse Epidermal Cells by 1,25-Dihydroxyvitamin D3, [J]Endocrinology 1983,113,1950-1957.
    [4]Smith,E.L.;Walworth,N.C.;Holick,M.F.,Effect of 1α,25-Dihydroxyvitamin D3 on the Morphologic and Biochemical Differentiation of Cultured Human Epidermal Keratinocytes Grown in Serum-Free Conditions,[J] J.Inest.Dermato. 1986,86,709-714.
    [5]vans,R.M.,The steroid and thyroid hormone receptor superfamily,[J] Science 1988,240,889-895.
    [6]Smith,D.C.;Johnson,C.S.;Freeman,C.C.;Muindi,J.;Wilson,J.W.;Trump,D. L.,A phase Ⅰ trial of calcitriol(1,25-dihydroxycholecalciferol)in patients with advanced malignancy;[J]Clin.Cancer Res.1999,5,1339-1345.
    [7]Shah,S.;Islam,N.;Dakshanamurthy,S.;Rizvi,I.;Rao,M.;Herrell,R.;Zinser,G.; Valrance,M.;Aranda,A.;Moras,D.;Norman,A.;Welsh,J.;Byers,S.W.,The molecular basis of vitamin D receptor and beta-catenin crossregulation,[J] Mol. Cell 2006,2,799-809.
    [8]Ciesielski,F.;Rochel,N.;Moras,D.,Adaptability of the Vitamin D nuclear receptor to the synthetic ligand Gemini:Remodelling the LBP with one side chain rotation,[J] J.Steroid Biochem.2007,103,235-242.
    [9]Carlberg,C.;Mourino,A.,New vitamin D reeeptor ligands,[J] Expert.Opin.Ther. Pat.2003,13,761-772.
    [10]Ishizuka,S.;Ishimoto,S.;Norman,A.W.,Isolation and identification of 1 alpha,25-dihydroxy-24-oxovitamin D3,1 alpha,25-dihydroxyvitalmin D3 26,23-lactone, and 1 alpha,24(S),25-trihydroxyvitamin D3:in vivo metabolites of 1 alpha,25-dihydroxyvitamin D3, [J] Biochemistry Us 1984,23,1473-1478.
    [11]Miura, D.; Manabe, K.; Ozono, K.; Saito, M.; Gao, Q. Z.; Norman, A. W.; Ishizuka, S., Antagonistic action of novel 1 alpha,25-dihydroxyvitamin D-3-26,23-lactone analogs on differentiation of human leukemia cells (HL-60) induced by 1 alpha,25-dihydroxyvitamin D-3, [J] J. Biol. Chem.1999,274, 16392-16399.
    [12]Ozono, K.; Saito, M.; Miura, D.; Michigami, T.; Nakajima, S.; Ishizuka, S., Analysis of the molecular mechanism for the antagonistic action of a novel 1 alpha,25-dihydroxyvitamin D-3 analogue toward vitamin D receptor function, [J] J. Biol. Chem.1999,274,32376-32381.
    [13]Miura, D.; Manabe, K.; Gao, Q. Z.; Norman, A. W.; Ishizuka, S.,1 alpha,25-dihydroxyvitamin D-3-26,23-lactone analogs antagonize differentiation of human leukemia cells (HL-60 cells) but not of human acute promyelocytic leukemia cells (NB4 cells), [J] Febs. Lett.1999,460,297-302.
    [14]Ishizuka, S.; Miura, D.; Eguchi, H.; Ozono, K.; Chokki, M.; Kamimura, T.; Norman, A. W., Antagonistic action of novel 1 alpha,25-dihydroxyvitamin D-3-26,23-lactone analogs on 25-hydroxyvitamin-D-3-24-hydroxylase gene expression induced by 1 alpha,25-dihydroxyvitamin D-3 in human promyelocytic leukemia (HL-60) cells, [J] Arch. Biochem. Biophys.2000,380,92-102.
    [15]Ishizuka, S.; Miura, D.; Ozono, K.; Chokki, M.; Mimura, H.; Norman, A. W., Antagonistic actions in vivo of (23S)-25-dehydro-1 alpha-hydroxyvitamin D-3,26,23-lactone on calcium metabolism induced by 1 alpha,25-dihydroxyvitamin D-3, [J] Endocrinology 2001,142,59-67.
    [16]Ishizuka, S.; Miura, D.; Ozono, K.; Saito, M.; Eguchi, H.; Chokki, M.; Norman, A. W., (23S)-and (23R)-25-dehydro-1 alpha-hydroxyvitamin D-3-26,23-lactone function as antagonists of vitamin D receptor-mediated genomic actions of 1 alpha,25-dihydroxyvitamin D-3, [J] Steroids 2001,66,227-237.
    [17]Herdick, M.; Steinmeyer, A.; Carlberg, C, Antagonistic action of a 25-carboxylic ester analogue of 1 alpha,25-dihydroxyvitamin D-3 is mediated by a lack of ligand-induced vitamin D receptor interaction with coactivators, [J] J. Biol. Chem. 2000,275,16506-16512.
    [18]Bury, Y.; Steinmeyer, A.; Carlberg, C., Structure activity relationship of carboxylic ester antagonists of the vitamin D-3 receptor, [J] Mol. Pharmacol. 2000,58,1067-1074.
    [19]Herdick, M.; Steinmeyer, A.; Carlberg, C., Carboxylic ester antagonists of 1 alpha,25-dihydroxyvitamin D-3 show cell-specific actions, [J] Chem. Biol.2000,7, 885-894.
    [20]Vaisanen, S.; Perakyla, M.; Karkkainen, J. I.; Steinmeyer, A.; Carlberg, C., Critical role of helix 12 of the vitamin D-3 receptor for the partial agonism of carboxylic ester antagonists, [J] J. Mol. Biol.2002,315,229-238.
    [21]Kato, Y.; Nakano, Y.; Sano, H.; Tanatani, A.; Kobayashi, H.; Shimazawa, R.; Koshino, H.; Hashimoto, Y; Nagasawa, K., Synthesis of 1 alpha 25-dihydroxyvitamin D-3-26,23-lactams (DLAMs), a novel series of 1 alpha 25,-dihydroxyvitamin D-3 antagonist, [J] Bioorg. Med. Chem. Lett.2004,14, 2579-2583.
    [22]Carlberg, C., Molecular basis of the selective activity of vitamin D analogues, [J] J. Cell Biochem.2003,88,274-281.
    [23]Saito, N.; Matsunaga, T.; Fujishima, T.; Anzai, M.; Saito, H.; Takenouchi, K.; Miura, D.; Ishizuka, S.; Takayama, H.; Kittaka, A., Remarkable effect of 2 alpha-modification on the VDR antagonistic activity of 1 alpha-hydroxyvitamin D-3-26,23-lactones, [J] Org. Biomol. Chem.2003,1,4396-4402.
    [24]Saito, N.; Masuda, M.; Matsunaga, T.; Saito, H.; Anzai, M.; Takenouchi, K.; Miura, D.; Ishizuka, S.; Takimoto-Kamimura, M.; Kittaka, A., 24,24-dimethylvitamin D-3-26,23-lactones and their 2 alpha-functionalized analogues as highly potent VDR antagonists, [J] Tetrahedron 2004,60, 7951-7961.
    [25]Saito, N.; Masuda, M.; Saito, H.; Takenouchi, K.; Ishizuka, S.; Namekawa, J.; Takimoto-Kamimura, M.; Kittaka, A., Synthesis of 24,24-ethanovitamin D-3 lactones using ruthenium-catalyzed intermolecular enyne metathesis:Potent vitamin D receptor antagonists, [J] Synthesis-Stuttgart 2005,2533-2543.
    [26]Nakano, Y.; Kato, Y.; Imai, K.; Ochiai, E.; Namekawa, J.; Ishizuka, S.; Takenouchi, K.; Tanatani, A.; Hashimoto, Y.; Nagasawa, K., Practical synthesis and evaluation of the biological activities of 1 alpha,25-dihydroxyvitamin D-3 antagonists,1 alpha,25-dihydroxyvitamin D-3-26,23-lactams. Designed on the basis of the helix 12-folding inhibition hypothesis, [J] J. Med. Chem.2006,49, 2398-2406.
    [27]Saito, N.; Matsunaga, T.; Saito, H.; Anzai, M.; Takenouchi, K.; Miura, D.; Namekawa, J.; Ishizuka, S.; Kittaka, A., Further synthetic and biological studies on vitamin D hormone antagonists based on C24-alkylation and C2 alpha-functionalization of 25-dehydro-1 alpha-hydro xyvitamin D-3-26,23-lactones, [J] J. Med. Chem.2006,49,7063-7075.
    [28]Cramer, R. D., Ⅲ; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA).1.Effect of shape on binding of steroids to carrier proteins, [J] J. Am. Chem. Soc.1988,110,5959-5967.
    [29]Klebe, G.; Abraham, U.; Mietzner, T., Molecular similarity in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, [J] J. Med. Chem.1994,37,4130-4146.
    [30]Leo, A.; Hansch, C.; Elkins, D., Partition coefficients and their uses, [J] Chem. Rev.1971,71,525-616.
    [31]Cho, D. H.; Lee, S. K.; Kim, B. T.; No, K. T., Quantitative Structure-Activity Relationship (QS AR) study of new fluorovinyloxyacetamides, [J] B Korean Chem. Soc.2001,22,388-394.
    [32]SYBYL6.91, Tripos Associates.1699 S. Hanley Road, Suite 303, St. Louis, MO 63144-2913,2003.
    [33]Sippl, W., Binding affinity prediction of novel estrogen receptor ligands using receptor-based 3-D QSAR methods, [J] Bioorgan. Med. Chem.2002,10, 3741-3755.
    [34]Sippl, W., Receptor-based 3D QSAR analysis of estrogen receptor ligands-merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods, [J] J. Comput. Aid. Mol. Des.2000,14, 559-572.
    [35]Sippl, W.; Holtje, H. D., Structure-based 3D-QSAR-merging the accuracy of structure-based alignments with the computational efficiency of ligand-based methods, [J] J. Mol. Struc-Theochem.2000,503,31-50.
    [36]Desmond Molecular Dynamics System, v., D. E. Shaw Research, New York, NY, 2009.
    [37]Maestro-Desmond Interoperability Tools, v., Schridinger, New York, NY,2009.
    [38]Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregerson, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, F. D.; Salmon, J. K.; Shan, Y.; Shaw, D. E., Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters; Proceedings of theACM/IEEE Conference on Supercomputing(SC06), [J] Tampa, Florida,2006,11-17.
    [39]Essmann, U.; Perera, L.; Berkowitz, M.; Darden, T.; Lee, H.; Pedersen, L., Differential diagnosis of atypically located single or double hot spots in whole bone scanning, [J] J. Chem. Phys.1995,103,8577-8593.
    [40]Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, [J] J. Comput. Chem.1998,19, 1639-1662.
    [41]Tetko, I. V.; Tanchuk, V. Y.; Villa, A. E. P., Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices, [J] J. Chem. Inf. Comp Sci.2001,41,1407-1421.
    [42]Bringmann, G.; Rummey, C.,3D QSAR investigations on antimalarial naphthylisoquinoline alkaloids by comparative molecular similarity indices analysis (CoMSIA), based on different alignment approaches, [J] J. Chem. Inf. Comp Sci.2003,43,304-316.
    [1]Mangelsdorf,D.J.;Thummel,C.;Beato,M.;Herrlich,P.;Schuetz,G.;Umesono, K.;Blumberg,B.;Kastner,P.;Mark,M.,The Nuclear Receptor Superfamily:The Second Decade[J]Cell1995,83,835-839.
    [2]Rosano,G M.C.;Fini,M.,Comparative cardiovascular effects of different progestins in menopause,[J]Int.Fertil.Womens Med. 2001,46,248-256.
    [3]Karas,R.H.;van Eickels,M.;Lydon,J.P.;Roddy,S.;Kwoun,M.;Aronovitz,M.; Baur. W. E.;Conneel y,O.;O'Malley,B. W.;Mendelsohn,M.E.,A complex role for the progesterone receptor in the response to vascul ar injury,[J] J.Clin.Invest. 2001,108,611-618.
    [4]Wellington,K.;Perry, C.M.,Estradiol valerate/dienogest,[J]Drugs 2002,62, 491-504.
    [5]Brown,A.;Cheng,L.N.:Lin,S.Q.;Baird,D.T.,Daily low-dose mifepristone has contraceptive potential by Suppressing ouulation and menstruation:A double-blind randomized control trial of 2 and 5 mg per day for 120 days,[J] J.Clin. Endocrinol.Metab.2002,87,63-70.
    [6]Kettel,L.M.;Murphy,A.A.;Morales,A.J.;Ulmann,A.;Baulieu,E.E.;Yen,S. S.,Treatment of endometriosis with the antiprogesterone mifepristone(RU486),[J] Fertil.Steril.1996,65,23-28.
    [7]Klijn,J.G M.;Setyono-Han,B.;Foekens,J.A.,Progesterone antagonists and progesterone receptor modulators in the treatment of breast cancer,[J]Steroids 2000,65,825-830.
    [8]Brogden,R.N.;Goa,K.L.;Faulds,D.,Mifepristone.A review of its pharmacodynamic and pharmacokinetic properties,and therapeutic potential,[J] Drugs 1993,48,384-393.
    [9]Fuhrmann,U.;Hess-Stumpp,H.;Cleve,A.N.,G;Schwede,W.;Hoffmann,J.; Fritzemeier,K.-H.;Chwalisz,K.,Synthesis and Biological Activity of a Novel, Highly Potent Progesterone Receptor Antagnist,[J] J.Med Chem.2000,43, 5010-5016.
    [10]Kloosterboer, H. J.; Deckers, G. H.; Schoonen, W. G. E.J.; Hanssen, R. G. J. M.; Rose, U. M.; Verbost, P. M.; Hsiu, J. G.; Williams, R. F.; Hodgen, G. D., Preclinical experience with two selective progesterone receptor modulators on breast and endometrium, [J] Steroids 2000,65,733-740.
    [11]Tabata, Y.; Iizuka, Y.; Kashiwa, J.; Masuda, N. T.; Shinei, R.; Kurihara, K.; Okonogi, T.; Hoshiko, S.; Kurata, Y, Fungal metabolites, PF1092 compounds and their derivatives, are nonsteroidal and selective progesterone receptor modulators, [J] Eur. J. Pharmacol.2001,430,159-165.
    [12]Palmer, S.; Campen, C. A.; Allan, G. F.; Rybczynski, P.; Haynes-Johnson, D.; Hutchins, A.; Kraft, P.; Kiddoe, M.; Lai, M. T.; Lombardi, E.; Pedersen, P.; Hodgen, G.; Combs, D. W., Nonsteroidal progesterone receptor ligands with unprecedented receptor selectivity, [J] J. Steroid Biochem.2000,75,33-42.
    [13]Hamann, L. G.; Winn, D. T.; Pooley, C. L. F.; Tegley, C. M.; West, S. J.; Farmer, L. J.; Zhi, L.; Edwards, J. P.; Marschke, K. B.; Mais, D. E.; Goldman, M. E.; Jones, T. K., Nonsteroidal progesterone receptor antagonists based on a conformationally-restricted subseries of 6-aryl- 1,2-dihydro-2,2,4-trimethylquinolines, [J] Bioorg. Med. Chem. Lett.,1998,8,2731-2736.
    [14]Zhi, L.; Tegley, C. M.; Pio, B.; West, S. J.; Marschke, K. B.; Mais, D. E.; Jones, T. K., Nonsteroidal progesterone receptor antagonists based on 6-thiophenehydroquinolines, [J] Bioorg. Med. Chem. Lett.2000,10,415-418.
    [15]Pooley, C. L. F.; Edwards, J. P.; Goldman, M. E.; Wang, M. W.; Marschke, K. B.; Crombie, D. L.; Jones, T. K., Discovery and preliminary SAR studies of a novel, nonsteroidal progesterone receptor antagonist pharmacophore, [J] J. Med. Chem. 1998,47,3461-3466.
    [16]Zhang, P.; Terefenko, E. A.; Wrobel, J.; Zhang, Z.; Zhu, Y.; Cohen, J.; Marschke, K. B.; Mais, D., Synthesis and progesterone receptor antagonist activities of 6-aryl benzimidazolones and benzothiazolones, [J] Bioorg. Med. Chem. Lett.2001,11, 2747-2750.
    [17]Zhang, P.; Terefenko, E. A.; Fensome, A.; Zhang, Z.; Zhu, Y.; Cohen, J.; Winneker, R.; Wrobel, J.; Yardley, J., Potent nonsteroidal progesterone receptor agonists:Synthesis and SAR study of 6-aryl benzoxazines, [J] Bioorg. Med. Chem. Lett.2002,12,787-790.
    [18]Zhi, L.; Tegley, C. M.; Pio, B.; Edwards, J. P.; Motamedi, M.; Jones, T. K. Marschke, K. B.; Mais, D. E.; Risek, B.; Schrader, W. T., 5-benzylidene-1,2-dihydrochromeno[3,4-f]quinolines as selective progesterone receptor modulators, [J] J. Med. Chem.2003,46,4104-4112.
    [19]Jain, N.; Allan, G.; Linton, O.; Tannenbaum, P.; Chen, X.; Xu, J.; Zhu, P. F.; Gunnet, J.; Demarest, K.; Lundeen, S.; Murray, W.; Sui, Z. H., Synthesis and SAR study of novel pseudo-steroids as potent and selective progesterone receptor antagonists, [J] Bioorg. Med. Chem. Lett.2009,19,3977-3980.
    [20]Kern, J. C.; Terefenko, E.; Trybulski, E.; Berrodin, T. J.; Cohen, J.; Winneker, R. C; Yudt, M. R.; Zhang, Z. M.; Zhu, Y. A.; Zhang, P. W., 1-Methyl-1H-pyrrole-2-carbonitrile containing tetrahydronaphthalene derivatives as non-steroidal progesterone receptor antagonists, [J] Bioorg. Med. Chem. Lett. 2010,20,4816-4818.
    [21]Fensome, A.; Bender, R.; Cohen, J.; Collins, M. A.; Mackner, V. A.; Miller, L. L. Ullrich, J. W.; Winneker, R.; Wrobel, J.; Zhang, P. W.; Zhang, Z. M.; Zhu, Y, New progesterone receptor antagonists:3,3-disubstituted-5-aryloxindoles, [J] Bioorg. Med. Chem. Lett.2002,12,3487-3490.
    [22]Fensome, A.; Koko, M.; Wrobel, J.; Zhang, P. W.; Zhang, Z. M.; Cohen, J.; Lundeen, S.; Rudnick, K.; Zhu, Y. A.; Winneker, R., Novel 5-aryl-1,3-dihydro-indole-2-thiones:Potent, orally active progesterone receptor agonists, [J] Bioorg. Med. Chem. Lett.2003,13,1317-1320.
    [23]Terefenko, E. A.; Kern, J.; Fensome, A.; Wrobel, J.; Zhu, Y.; Cohen, J.; Winneker, R.; Zhang, Z. M.; Zhang, P. W., SAR studies of 6-aryl-1,3-dihydrobenzimidazol-2-ones as progesterone receptor antagonists, [J] Bioorg. Med. Chem. Lett.2005,15,3600-3603.
    [24]Kern, J. C.; Terefenko, E.; Trybulski, E.; Berrodin, T. J.; Cohen, J.; Winneker, R. C; Yudt, M. R.; Zhang, Z. M.; Zhu, Y.; Zhang, P. W.,5-Aryl indanones and derivatives as non-steroidal progesterone receptor modulators, [J] Bioorg. Med. Chem. Lett.2009,19,6666-6669.
    [25]Collins, M. A.; Hudak, V.; Bender, R.; Fensome, A.; Zhang, P. W.; Miller, L.; Winneker, R. C.; Zhang, Z. M.; Zhu, Y.; Cohen, J.; Unwalla, R. J.; Wrobel, J., Novel pyrrole-containing progesterone receptor modulators, [J] Bioorg. Med. Chem. Lett.2004,14,2185-2189.
    [26]Sippl, W., Receptor-based 3D QSAR analysis of estrogen receptor ligands merging the accuracy of receptor-based alignments with the computational efficiency of ligand-based methods, [J] J. Comput. Aid. Mol. Des.2000,14, 559-572.
    [27]Sippl, W.; Holtje, H. D., Structure-based 3D-QSAR - merging the accuracy of structure-based alignments with the computational efficiency of ligand-based methods, [J] J. Mol. Struc-Theochem.2000,503,31-50.
    [28]Costanzi, S.; Tikhonova, I. G.; Harden, T. K.; Jacobson, K. A.. Ligand and structure-based methodologies for the prediction of the activity of G protein-coupled receptor ligands, [J] J. Comput. Aid. Mol. Des.2009,23,747-754.
    [29]Ul-Haq, Z.; Mahmood, U.; Reza, S.; Uddin, R.; Aleem, M., Ligand-Based 3D-QSAR Studies of Diaryl Acyl sulfonamide Analogues as Human Umbilical Vein Endothelial Cells Inhibitors Stimulated by VEGF, [J] Chem. Biol. Drug Des. 2011,77,288-294.
    [30]Du, J.; Xi, L. L.; Lei, B. L.; Liu, H. X.; Yao, X. J., Structural Requirements of Isoquinolones as Novel Selective c-Jun N-terminal Kinase 1 Inhibitors:2D and 3D QSAR Analyses, [J] Chem. Biol. Drug Des.2011,77,248-254.
    [31]Wang, J. H.; Tang, K.; Hou, Q. Q.; Cheng, X. L.; Dong, L. H.; Liu, Y. J.; Liu, C. B.,3D-QSAR Studies on C24-Monoalkylated Vitamin D326,23-Lactones and their C2a-Modified Derivatives with Inhibitory Activity to Vitamin D Receptor, [J] Mol. Inf.2010,29,621-632.
    [32]Cramer Ⅲ, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA).1. Effect of shape on binding of steroids to carrier proteins, [J] J. Am. Chem. Soc.1988,110,5959-5967.
    [33]Klebe, G.; Abraham, U.; Mietzner, T., Molecular similarity in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, [J] J. Med. Chem.1994,37,4130-4146.
    [34]Leo, A.; Hansch, C.; Elkins, D., Partition coefficients and their uses, [J] Chem. Rev.1971,77,525-616.
    [35]Cho, D. H.; Lee, S. K.; Kim, B. T.; No, K. T., Quantitative Structure-Activity Relationship (QSAR) study of new fluorovinyloxyacetamides, [J] B Korean Chem. Soc.2001,22,388-394.
    [36]SYBYL6.91, T. A. S. H. R., Suite 303, St. Louis,2003, MO 63144-2913, [J].
    [37]Trott, O.; Olson, A. J., Software News and Update AutoDock Vina:Improving the Speed and Accuracy of Docking with a New Scoring Function, Efficient Optimization, and Multithreading, [J] J. Comput. Chem.2010,31,455-461.
    [38]Morris, G. M.; Goodsell, D. S.; Halliday, R. S.; Huey, R.; Hart, W. E.; Belew, R. K.; Olson, A. J., Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function, [J] J Comput Chem,1998,19,1639-1662.
    [39]Madauss, K. P.; Grygielko, E. T.; Deng, S. J.; Sulpizio, A. C.; Stanley, T. B.; Wu, C.; Short, S. A.; Thompson, S. K.; Stewart, E. L.; Laping, N. J.; Williams, S. P.; Bray, J. D., A structural and in vitro characterization of asoprisnil:A selective progesterone receptor modulator, [J] Mol. Endocrinol.2007,21,1066-1081.
    [40]Tetko, I. V; Tanchuk, V. Y.; Villa, A. E. P., Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices, [J] J. Chem. Inf. Comp. Sci.2001,41,1407-1421.
    [41]Richmond, N. J.; Abrams, C. A.; Wolohan, P. R. N.; Abrahamian, E.; Willett, P.; Clark, R. D., GALAHAD:1. Pharmacophore identification by hypermolecular alignment of ligands in 3D, [J] J. Comput. Aid. Mol. Des.2006,20,567-587.
    [42]Shepphird, J. K.; Clark, R. D., A marriage made in torsional space:using GALAHAD models to drive pharmacophore multiplet searches, [J] J. Comput. Aid. Mol. Des.2006,20,763-771.
    [43]Andrade, C. H.; Salum, L. D.; Pasqualoto, K. F. M.; Ferreira, E. I.; Andricopulo, A. D., Three-dimensional quantitative structure-activity relationships for a large series of potent antitubercular agents,[J] Lett. Drug Des.Discov.2008,5, 377-387.
    [44]Desmond Molecular Dynamics System,v.,D.E.Shaw Research,New York,NY, 2009.
    [45]Maestro-Desmond Interoperability Tools,v.,Schridinger,New York,NY, 2009.
    [46]Bowers,K.J.;Chow,E.;Xu,H.;Dro r,R.O.;Eastwood,M.P.;Gregerson,B.A.; Klepeis,J.L.;Kolossvary,I.;Moraes,M.A.;Sacerdoti,F.D.;Salmon,J.K.;Shan, Y;Shaw,D.E.,Scalable Algorithms for Molecullar Dynamics Simulations on Commodity Clusters; Proceedings of theACM/IEEE Conference on Supercomputing(SC06),[J] Tampa,Florida,2006,11-17.
    [47]Essmann,U.;Perera,L.;Berkoxitz,M.;Darden,T.;Lee,H.;Pedersen,L. Differential diagnosis of atypically located single or double hot spots in whole bone scanning,[J] J.Chem.Phys.1995,103,8577-8593.
    [48]Brooks,B.R.;Bruccoleri,R.E.;Olafson,B.D.;States,D.J.;Swaminathan,S.; Karplus,M.,CHARMM:a program for macromolecular energy minimization, and dynamics calculations,[J] J.Comput.Chem.1983,4,187-217.
    [49]MacKerell,A.D.J.;Bashford,D.;Bellot,M.;Dunbrack,R.L.,Jr;Evanseck,J. D.;Field,M.J.;Fischer,S.;Gao,J.;Guo,H.;Ha,S.:Joseph-McCarthy, D.; Kuchnir, L.;Kuczera,K.;Lau,F.T.K.;Mattos,C.;Michnick,S.;Ngo,T.;Nguyen, D.T.;Prodhom,B.;Reiher,I.,W.E.;Roux,B.;Schlenkrich,M.;Smith,J.C.; Stote,R.;Straub,J.;Watanabe,M.;Wiorkiewicz-Kuczera,J.;Yin,D.;Karplus,M., All-Atom Empirical Potential for Molecular Modeling and Dynamics Studies of Proteins,[J] J.Phys.Chem. B 1998,102,3586-3616.
    [50]Bakowies,D.;Thiel,W.,Hybrid models for combined quantum mechanical and molecular mechanical approaches,[J] J. Phys.Chem.1996,100,10580-10594.
    [51]Sherwood,P.;de Vries,A.H.;Collins,S.J.;Greatbanks,S.P.;Burton,N.A; Vincent,M.A.;Hillier,I.H.,Computer simulation of zeolite structure and reactivity using embedded cluster methods,[J] Faraday Discuss.1997,106, 79-92.
    [52]de Vries,A.H.;Sherwood,P.;Collins,S.J.;Rigby A.M.;Rigutto,M.;Kramer, G. J., Zeolite structure and reactivity by combined quantum-chemical-classical calculations, [J] J. Phys. Chem. B 1999,103,6133-6141.
    [53]Sherwood, P.; de Vries, A. H.; Guest, M. F.; Schreckenbach, G.; Catlow, C. R. A.; French, S. A.; Sokol, A. A.; Bromley, S. T.; Thiel, W.; Turner, A. J.; Billeter, S.; Terstegen, F.; Thiel, S.; Kendrick, J.; Rogers, S. C.; Casci, J.; Watson, M.; King, F.; Karlsen, E.; Sjovoll, M.; Fahmi, A.; Schafer, A.; Lennartz, C., QUASI:A general purpose implementation of the QM/MM approach and its application to problems in catalysis, [J] J. Mol. Struc-Theochem.2003,632,1-28.
    [54]Ahlrichs, R.; Bar, M.; Haser, M.; Horn, H.; Kolmel, C., Electronic structure calculations on workstation computers:the program system TURBOMOLE, [J] Chem. Phys. Lett.1989,162,165-169.
    [55]Smith, W.; Forester, T. R., DL_POLY_2.0:A general-purpose parallel molecular dynamics simulation package., [J] J. Mol. Graph. Model.1996,14,136-141.
    [56]Bringmann, G.; Rummey, C.,3D QSAR investigations on antimalarial naphthylisoquinoline alkaloids by comparative molecular similarity indices analysis (CoMSIA), based on different alignment approaches, [J] J. Chem. Inf. Comp. Sci.2003,43,304-316.
    [1]Abramovitz, M.; Adam, M.; Boie, Y.; Carriere, M. C.; Denis, D.; Godbout, C.; Lamontagne, S.; Rochette, C.; Sawyer, N.; Tremblay, N. M.; Belley, M.; Gallant, M.; Dufresne, C.; Gareau, Y.; Ruel, R.; Juteau, H.; Labelle, M.; Ouimet, N.; Metters, K. M., The utilization of recombinant prostanoid receptors to determine the affinities and selectivities of prostaglandins and related analogs, [J] BBA-Mol. Cell Biol. Lipids 2000,1483,285-293.
    [2]Mao, G. F.; Jin, J.-G.; Bastepe, M.; Ortiz-Vega, S.; Ashby, B., Prostaglandin E2 both stimulates and inhibits adenyl cyclase on platelets:Comparison of effects on cloned EP4 and EP3 prostaglandin receptor subtypes [J] Prostaglandins 1996,52, 175-185.
    [3]Chen, M. C. Y.; Amirian, D. A.; Toomey, M.; Sanders, M. J.; Soil, A. H., Prostanoid inhibition of canine parietal cells:mediation by the inhibitory guanosine triphosphate-binding protein of adenylate cyclase., [J] Gastroenterology 1988,94,1121-1129.
    [4]Krall, J. F.; Barrett, J. D.; Jamgotchian, N.; Korenman, S. G, Interaction of prostaglandin E2 and β-adrenergic catecholamines in the regulation of uterine smooth muscle motility and adenylate cyclase in the rat, [J] J. Endocrinol.1984, 102,329-336.
    [5]Garcia-erez, A.; Smith, W. L., Apical-basolateral membrane asymmetry in canine cortical collecting tubule cells. Bradykinin, arginine vasopressin, prostaglandin E2 interrelationships, [J] J. Clin. Invest.1984,74,63-74.
    [6]Xin, L.; Geller, E. B.; Bastepe, M.; Raffa, R. B.; Mao, G. F.; Ashby, B.; Adler, M. W., Suppression of fever and hyperalgesic responses to the EP3-receptor agonist GR 63799X by EP3-receptor antisense in rats, [J] J. Therm. Biol.2000,25,77-79.
    [7]Gudmundsson, G; Matthiasson, S. E.; Arason, H.; Johannsson, H.; Runarsson, F.; Bjarnason, H.; Helgadottir, K.; Thorisdottir, S.; Ingadottir, G.; Lindpaintner, K.; Sainz, J.; Gudnason, V.; Frigge, M. L.; Kong, A.; Gulcher, J. R.; Stefansson, K., Localization of a gene for peripheral arterial occlusive disease to chromosome 1p31, [J] Am. J. Hum. Genet.2002,70,586-592.
    [8]Fabre, J.; Nguyen, M.; Athirakul, K.; Coggins, K.; McNeish, J. D.; Austin, S.; Parise, L. K.; FitzGerald, G. A.; Coffman, T. M.; Koller, B. H., Activation of the murine EP3 receptor for PGE2 inhibits cAMP production and promotes platelet aggregation, [J] J. Clin. Invest.2001,107,603-610.
    [9]Juteau, H.; Gareau, Y.; Labelle, M.; Lamontagne, S.; Tremblay, N.; Carriere, M. C.; Sawyer, N.; Denis, D.; Metters, K. M., Structure-activity relationship on the human EP3 prostanoid receptor by use of solid-support chemistry, [J] Bioorg. Med. Chem. Lett.2001,11,747-749.
    [10]Belley, M.; Gallant, M.; Roy, B.; Houde, K.; Lachance, N.; Labelle, M.; Trimble, L. A.; Chauret, N.; Li, C.; Sawyer, N.; Tremblay, N.; Lamontagne, S.; Carriere, M. C.; Denis, D.; Greig, G. M.; Slipetz, D.; Metters, K. M.; Gordon, R.; Chan, C. C.; Zamboni, R. J., Structure-activity relationship studies on ortho-substituted cinnamic acids, a new class of selective EP3 antagonists, [J] Bioorg. Med. Chem. Lett.2005,15,527-530.
    [11]Gallant, M.; Belley, M.; Carriere, M. C.; Gareau, Y.; Juteau, H.; Lachance, N.; Lacombe, P.; Lamontagne, S.; Metters, K. M.; Sawyer, N.; Slipetz, D.; Tremblay, N.M.;Labelle,M.,structure activity relationship of triaryl and biaryl carboxylic acid and acylsulfonamide analogs on the human EP3 Prostanoid receptor.,[J] Abstr. Pap.Am.Chem.S.2001,222,U674-U674.
    [12]Belley,M.;Chan,C.C.;Gareau,Y.;Gallant,M.;Juteau,H.;Houde,K.;Lachance, N.;Labelle,M.;Sawyer,N.;Tremblay,N.;Lamontagne,S.;Carriere,M.C.; Denis,D.;Greig,G M.;Slipetz,D.;Gordon,R.;Chauret,N.;Li,C.;Zamboni,R. J.;Metters,K.M.,Comparison between two classes of selective EP3 antagonists and their biological activities,[J] Bioorg.Med. Chem.Lett.2006,16,5639-5642.
    [13]Zegar,S.;Tokar,C.;Enache,L.A.;Rajagopol,V;Zeller,W.; O'Connell,M.; Singh,J.;Muellner,F.W.;Zembower,D.E.,Development of a scalable process for DG-041,a potent EP3 receptor antagonist,via tandem Heck reactions,[J] Org. Process.Res.Dev.2007,11,747.753.
    [14]Zhou,N.;zeller,.W.;Zhang,J.;Onua,E.;Kiselyov,A.S.;Ramirez,J.;Palsdottir, G.; Halldorsdottir, G.; Andresson, P.; Guyrney, M. E.; Singh, J., 3-Acrylamide-4-aryloxyindoles: Synthesis,biological evaluation and metabolic stability of potent and selective EP3 receptor antagonists,[J] Bioorg.Med.Chem. Lett.2009,19,1528-1531.
    [15]Zhou,N.;Polozov,A.M.;O'Connell,M.;Burgeson,J.;Yu,P.;Zeller,W.;Zhang, J.;Onua,E.;Ramirez,J.;Palsdottir,G A.;Halldorsdottir,G. V.;Andresson,T.; Kiselyov,A.S.;Gurney,M.;Singh,J.,1,7-Disubstituted oxyindoles are potent and selective EP3 receptot antagonists,[J]Bioorg.Med. Chem.Lett.2010,20, 2658-2664.
    [16]Zhou,N.;Zeller,W.;Krohn,M.;Anderson,H.;Zhang,J.;Onua-E.;Kiselyov,A. S.;Ramirez,J.;Halldorsdottir,G.;Andresson,P.;Gurney,M.E.;Singh,J., 3,4.Disubstituted indole acylsulfonamides:A novel seties of potent and selective human EP3 receptor antagonists,[J]Bioorg.Med.Chem.Lett. 2009,19,123-126.
    [17]Hasegawa,K.;Arakawa,M.;Funatsu,K.,3D—QSAR study of insecticidal neonicotinoid compounds based on 3-way partial least squares model,[J] Chemometr.Intell.Syst.1999,47,33-40.
    [18]Si,H.Z.;Yuan,S.P.;K.J.;Fu,A.P.;Duan,Y. B.;Hue,Z.D., Quantitative structure activity relationship study on EC5.0 of anti-HIV drugs,[J] Chemometr.Intell.Lab.Syst.2008,90,15-24.
    [19]Kraim,K.;Khatmi,D.;Saihi,Y.;Ferkous,F.;Brahimi,M.,Quantitative structure activity relationship for the computational prediction of alpha-glucosidase inhibitory, [J] Chemometr. Intell. Lab. Syst.2009,97,118-126.
    [20]Le-Thi-Thu, H.; Cardoso, G. C.; Casanola-Martin, G. M.; Marrero-Ponce, Y.; Puris, A.; Torrens, F.; Rescigno, A.; Abad, C., QSAR models for tyrosinase inhibitory activity description applying modern statistical classification techniques: A comparative study, [J] Chemometr. Intell. Lab. Syst.2010,104,249-259.
    [21]Wang, J. H.; Tang, K.; Hou, Q. Q.; Cheng, X. L.; Dong, L. H.; Liu, Y. J.; Liu, C. B.,3D-QSAR Studies on C24-Monoalkylated Vitamin D326,23-Lactones and their C2a-Modified Derivatives with Inhibitory Activity to Vitamin D Receptor, [J] Mol.Inf.2010,29,621-632.
    [22]Cramer Ⅲ, R. D.; Patterson, D. E.; Bunce, J. D., Comparative molecular field analysis (CoMFA).1.Effect of shape on binding of steroids to carrier proteins, [J] J. Am. Chem. Soc.1988,110,5959-5967.
    [23]Klebe, G.; Abraham, U.; Mietzner, T., Molecular similarity in a comparative analysis (CoMSIA) of drug molecules to correlate and predict their biological activity, [J] J. Med. Chem.1994,37,4130-4146.
    [24]Richmond, N. J.; Abrams, C. A.; Wolohan, P. R. N.; Abrahamian, E.; Willett, P.; Clark, R. D., GALAHAD:1. Pharmacophore identification by hypermolecular alignment of ligands in 3D, [J] J. Comput. Aid. Mol. Des.2006,20,567-587.
    [25]Shepphird, J. K.; Clark, R. D., A marriage made in torsional space:using GALAHAD models to drive pharmacophore multiplet searches, [J] J. Comput. Aid. Mol. Des.2006,20,163-771.
    [26]Andrade, C. H.; Salum, L. D.; Pasqualoto, K. F. M.; Ferreira, E. I.; Andricopulo, A. D., Three-dimensional quantitative structure-activity relationships for a large series of potent antitubercular agents, [J] Lett. Drug. Des. Discov.2008,5, 377-387.
    [27]Leo, A.; Hansch, C.; Elkins, D., Partition coefficients and their uses, [J] Chem. Rev.1971,71,525-616.
    [28]Cho, D. H.; Lee, S. K.; Kim, B. T.; No, K. T., Quantitative Structure-Activity Relationship (QSAR) study of new fiuorovinyloxyacetamides, [J] B. Korean Chem. Soc.2001,22,388-394.
    [29]SYBYL6.91 (2003), T. A. S. H. R., Suite 303, St. Louis, MO 63144-2913, [J].
    [30]Tetko, I. V.; Tanchuk, V. Y.; Villa, A. E. P., Prediction of n-octanol/water partition coefficients from PHYSPROP database using artificial neural networks and E-state indices, [J] J. Chem. Inf. Comp. Sci.2001,41,1407-1421.
    [31]Desmond Molecular Dynamics System, v., D. E. Shaw Research, New York, NY, 2009.
    [32]Maestro-Desmond Interoperability Tools, v., Schridinger, New York, NY,2009.
    [33]Bowers, K. J.; Chow, E.; Xu, H.; Dror, R. O.; Eastwood, M. P.; Gregerson, B. A.; Klepeis, J. L.; Kolossvary, I.; Moraes, M. A.; Sacerdoti, F. D.; Salmon, J. K.; Shan, Y.; Shaw, D. E., Scalable Algorithms for Molecular Dynamics Simulations on Commodity Clusters; Proceedings of theACM/IEEE Conference on Supercomputing(SC06), [J] Tampa, Florida,2006,11-17.
    [34]Bringmann, G.; Rummey, C.,3D QSAR investigations on antimalarial naphthylisoquinoline alkaloids by comparative molecular similarity indices analysis (CoMSIA), based on different alignment approaches, [J] J. Chem. Inf. Comp. Sci.2003,43,304-316.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700