土壤酞酸酯污染的微生态效应和真菌—植物联合修复技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以3种国控酞酸酯为研究对象,研究了酞酸酯复合污染的微生态效应,探讨了真菌、植物联合修复酞酸酯复合污染土壤的可行性。研究方法及结果如下:
     (1)在实验室模拟条件下,通过测定土壤基础呼吸、PAEs含量、RAPD-PCR条带数,研究了邻苯二甲酸二甲酯(DMP)、邻苯二甲酸二乙酯(DEP)和邻苯二甲酸二辛酯(DOP)3种PAEs复合污染对农田土壤基础呼吸、微生物多样性的影响。结果表明:PAEs污染初期的土壤基础呼吸被激活,但这种激活作用随着培养时间的延长而减弱,400 mg/kg组土壤基础呼吸最高。土著微生物对PAEs有一定的降解能力,DEP降解最快,其次为DMP,不同浓度的PAEs对微生物的降解能力有影响。不同处理组土壤微生物群落DNA序列Shannon-Weaver指数顺序为0 mg/kg>50 mg/kg>100 mg/kg>200 mg/kg>400 mg/kg。可见,PAEs复合污染提高了土壤基础呼吸,但降低了土壤微生物多样性。
     (2)采用3种PAEs复合物梯度驯化,从PAEs污染的农田土壤中筛选出土著降解真菌;通过测定PAEs含量,研究其最佳降解条件和在液体培养基、灭菌土壤中的降解效果。结果表明:筛选出的真菌F2为尖孢镰刀菌(Fusarium oxysporm), F3为棒束梗霉属(Isaria sp.)。正交试验筛选出最佳试验条件为C:N 20:1和pH 7.0,同时,降解菌在pH 5.0-7.0范围内均可较好的存活。F3可在7天内将液体培养基中300 mg/L PAEs降解66.20%;30天内将灭菌土壤中300 mg/kg PAEs降解69.02%。可见,所选菌株对PAEs复合污染物有较好的降解效果。
     (3)采用3种PAEs复合污染土壤接种真菌后种植不同根型植物,通过测定植物株高、干重,土壤和植物PAEs含量和土壤DGGE,研究了PAEs对植物生长的影响和土壤、植物中PAEs含量的变化,探讨了建立真菌-植物联合修复模式的可行性。结果表明:PAEs对番茄、大豆的生长均有抑制作用,且对番茄的抑制作用高于大豆,但对香根草生长无影响。添加PAEs、种植植物和接种真菌使土壤基础呼吸和真菌群落发生变化。从DGGE图谱无法判断F3是否存在。土壤PAEs降解是降解菌、土著微生物和植物协同作用的结果。接种F3后可使盆栽土壤中PAEs含量较未接种组平均下降20.67%,植物中PAEs含量平均下降28.86%。可见,接种F3后提高了土壤中复合PAEs的降解效率,同时也降低了PAEs在植物内的积累。最后,综合试验结果提出了三种PAEs污染农田土壤的修复模式。
The impacts of combined phthalate acid ester (PAE) contamination, including dimethyl phthalate (DMP), diethyl phthalate (DEP), and dioctyl phthalate (DOP), on soil microbial diversity were studied. The fungi-plant mode of PAEs bioremediation was also discussed. Research methods and results are as follows:
     (1) The impacts of combined PAEs contamination, including DMP, DEP and DOP, on farmland soil basal respiration and microbial diversity were studied by monitoring soil respiration, soil PAEs concentration and random amplified polymorphic DNA (RAPD) marker under laboratory simulation testing. The results showed that the soil basal respiration was activated by PAEs at an early stage, reaching a maximum value at 400 mg/kg PAEs treatment. However, this type of activation effect decreased with prolonged PAEs exposure time. In addition, the concentration of PAEs in the soil decreased, especially the DEP concentration. The Shannon-Weaver index of soil microbial community DNA sequence in all treatments was:0 mg/kg> 50 mg/kg> 100 mg/kg> 200 mg/kg> 400 mg/kg. Overall, the results indicated that the combined PAEs contamination in soil may stimulate soil basal respiration, but decrease soil microbial diversity.
     (2) Two PAEs degradation strains F2 and F3 were isolated from PAEs contaminated farmland soils, and DMP, DEP and DOP could be degraded at the same time by those two strains. The strains were identified as Fusarium oxysporm and Isaria sp. respectively. The optimum C:N of those strains was 20:1, and optimum pH was 7.0. The pH 5.0-7.0 was available for their survival. The biodegradation of PAEs in liquid and soil were studied by monitoring PAEs concentration and mycelium weight. The results showed that the concentration of PAEs in liquid culture medium decreased 66.20% in 7days (initial concentrations 300 mg/kg). The concentration of PAEs in the soils decreased 69.02% in 30days (initial concentrations 300 mg/kg). It is clearly that, those two strains were qualified for the biodegrading of combined PAEs contamination.
     (3) The degradation of PAEs in farmland soil was tested by monitoring plant biomass and height, PAEs concentration and DGGE. The fungi-plant mode of PAEs bioremediation was also discussed. The results showed that the growth of tomato and soybean was inhibited by PAEs, but no effect on vetiver. The soil basal respiration and fungi community were influence by adding PAEs, plants and inoculate fungi. Bands of F3 were no found in DGGE maps at the end of experiment in F3 inoculate soil. Synergistic effect on PAEs degradation was found between F3, indigenous microorganisms and plants. Compare of non-inoculate treatments, the average concentration of PAEs in pot soil was decreased 20.67% in inoculate treatments, and the average concentration of PAEs in plants was decreased 28.86% in inoculate treatments. It is clearly that, inoculate F3 enhance the biodegradation of PAEs in soil, and decline the accumulation of PAEs in plants. Three types of PAEs bioremediation mode were suggested.
引文
[1]史海娃,宋卫国,赵志辉.我国农业土壤污染现状及其成因[J].上海农业学报,2008,24(2):122-126.
    [2]董元华,张桃林.基于农产品质量安全的土壤资源管理与可持续利用[J].土壤,2003,35(3):182-186.
    [3]金朝晖,李红亮,柴英涛.酞酸酯对人与环境的危害[J].上海环境科学,1997,16(12):39-42.
    [4]张天永,崔新安,费学宁.环境激素酞酸酯类化合物的净化技术进展[J].环境科学与技术,2005,28(1):103-105.
    [5]Liang W, Deng JQ, Zhan FC, et al. Effects of constructed wetland system on the removal of dibutyl phthalate(DBP)[J]. Microbiological Research,2009,164:206-211.
    [6]王绪强.植物累积有机污染物DEHP能力及其特异性研究[D].浙江工商大学,杭州,2009:4-6.
    [7]何文清,严昌荣,赵彩霞,等.我国地膜应用污染现状及其防治途径研究[J].农业环境科学学报,2009,28(3):533-538.
    [8]吴杰民.聚烯烃类农膜及酞酸酯类(PAEs)在环境中的残留及生物降解前景[J].环境科学,1994,15(2):77-80.
    [9]秦华,林先贵,陈瑞蕊,等.DEHP对土壤脱氢酶活性及微生物功能多样性的影响[J].土壤学报,2005,42(5):829-834.
    [10]赵胜利,杨国义,张天彬,等.珠三角城市群典型城市土壤邻苯二甲酸酯污染特征[J].生态环境学报,2009,18(1):128-133.
    [11]杨国义,张天彬,高淑涛,等.广东省典型区域农业土壤中邻苯二甲酸酯含量的分布特征[J].应用生态学报,2007,18(10):2308-2312.
    [12]蔡全英,莫测辉,李云辉,等.广州、深圳地区蔬菜生产基地土壤中邻苯二甲酸酯(PAEs)研究[J].生态学报,2005,25(2):283-288.
    [13]滕应,黄昌勇.重金属污染对土壤的微生物生态效应及其修复研究进展[J].上壤与环境,2002,11(1):85-89.
    [14]谢慧君,石义静,滕少香,等.邻苯二甲酸酯对土壤微生物群落多样性的影响[J].环境科学,2009,30(5):1286-1291.
    [15]Liang DW, Fang HHP, Zhang T. Microbial characterization and quantification of an anaerobic sludge degrading dimethyl phthalate[J]. Journal of Applied Microbiology,2009,106:296-305.
    [16]苗静,祝惠,王鑫宏,等.DOP与Pb单一及复合污染对土壤酶活性的影响[J].环境科学研究,2009,22(7):856-861.
    [17]陈强,孙红文,王兵,等.邻苯二甲酸二异辛酯(DEHP)对土壤中微生物和动物的影响[J].农业环境科学学报,2004,23(6):1156-1159.
    [18]高军,陈伯清.酞酸酯污染土壤微生物效应与过氧化氢酶活性的变化特征[J].水土保持学报,2008,22(6):166-169.
    [19]Kapanen A, Stephen JR, Bruggemann J, et al. Diethyl phthalate in compost: Ecotoxicological effects and response of the microbial community[J]. Chemosphere,2007,67:2201-2209.
    [20]Cartwright CD, Thompson IP, Burns RG. Degradation and impact of phthalate plasticizers on soil microbial communities[J]. Environmental Toxicology and Chemistry,2000,19(5):1253-1261.
    [21]安琼,靳伟,李勇,等.酞酸酯类增塑剂对土壤-作物系统的影响[J].土壤学报,1999,36(1):118-126.
    [22]刘小秧,程桂荪.酞酸二丁酯对作物及微生物的影响[J].中国环境科学,1992,12(2):158-160.
    [23]Di Bella G, Saitta M, Pellegrino M, et al. Contamination of Italian citrus essential oils: presence of phthalate esters[J]. Journal of Agricultural and Food Chemistry,1999,47(3):1009-1012.
    [24]王曙光,林先贵,尹睿.接种丛枝菌根(AM)真菌对植物DBP污染的影响[J].应用生态学报,2003,14(4):589-592.
    [25]秦华,林先贵,尹睿,等.丛枝菌根真菌和两株细菌对土壤中DEHP降解及绿豆生长的影响[J]环境科学学报,2006,26(10):1651-1657.
    [26]周东美,郝秀珍,薛艳,等.污染土壤的修复技术研究进展[J].生态环境,2004,13(2):234-242.
    [27]王曙光,林先贵,尹睿.土壤中酞酸酯(PAEs)对丛枝菌根化植物生长的影响[J].农村生态环境,2003,19(1):31-35.
    [28]赵振华.酞酸酯对人与环境潜在危害的研究概况[J].环境化学,1991,10(3):64-68.
    [29]刘慧杰,舒为群.邻苯二甲酸酯类化合物的毒理学效应及对人群健康的危害[J].第三军医大学学报,2004,26(19):1778-1781.
    [30]高丽芳,李勇,苏忆兰.邻苯二甲酸二-(2-乙基己基)酯对小鼠胚胎致畸作用和心肌细胞的毒性[J].毒理学杂志,2005,19(2):123-124.
    [31]Agarwal DK, Eustis S, Lamb JC Ⅳ, et al. Effects of di(2-ethylhexyl) phthalate on the gonadal pathophysiology, sperm morphology, and reproductive performance of male rats[J]. Environmental Health Perspectives,1986,65:343-350.
    [32]Gray LE Jr, Wolf C, Lambright C, et al. Administration of potentially antiandrogenic pesticides (procymidone, linuron, iprodione, chlozolinate, p,p'-DDE, and ketoconazole) and toxic substances (dibutyl- and diethylhexyl phthalate, PCB 169, and ethane dimethane sulphonate) during sexual differentiation produces diverse profiles of reproductive malformations in the male rat[J]. Toxicology and industrial health,1999,15(1-2):94-118.
    [33]Kurata Y, Kidachi F, Yokoyama M, et al. Subchronic Toxicity of Di(2-ethylhexyl)phthalate in Common Marmosets:Lack of Hepatic Peroxisome Proliferation, Testicular Atrophy, or Pancreatic Acinar Cell Hyperplasia[J]. Toxicological Sciences,1998,42(1):49-56.
    [34]邱东茹,吴振斌,贺锋.内分泌扰乱化学品对动物的影响和作用机制[J].环境科学研究,2000,13(6):52-55.
    [35]Zhou QH, Wu ZB, Cheng SP, et al. Enzymatic activities in constructed wetlands and di-n-butyl phthalate (DBP) biodegradation[J]. Soil Biology & Biochemistry,2005,37:1454-1459.
    [36]聂湘平,李桂英,吴志辉,等.4种酞酸酯在龙须菜-篮子鱼食物链中的积累放大研究[J].海洋科学,2008,32(1):19-23.
    [37]张蕴晖,林玲,阚海东,等.邻苯二甲酸二丁酯的人群综合暴露评估[J].中国环境科学,2007,27(5):651-656.
    [38]靳秋梅,孙增荣.邻苯二甲酸酯类化合物的生殖发育毒性[J].天津医科大学学报,2004,S1:15-18.
    [39]Jaeger RJ, Rubin RJ. Migration of a phthalate ester plasticizer from polyvinyl chloride blood bags into stored human blood and its localization in human tissues[J]. The New England Journal of Medicine,1972,278(22):1114-1118.
    [40]王丽霞.保护地邻苯二甲酸酯污染的研究[D].山东农业大学,泰安,2007:6-9.
    [41]Whittaker KF, Moore AT. Pilot scale investigations in the removal of volatile organics and phthalates from electronics manufacturing wastewater[J]. Proceedings Industrial Waste Conference, 1983,38:579-589.
    [42]Wang XL, Grady CPL Jr. Comparison of biosorption isotherms for di-n-butyl phthalate by live and dead bacteria[J]. Water Research,1994,28(5):1247-1251.
    [43]施银桃,李海燕,曾庆福,等.臭氧氧化法去除水中邻苯二甲酸二甲酯的初步研究[J].环境化学,2002,21(5):500-504.
    [44]刘芃岩,冯关涛,刘金巍,等.邻苯二甲酸酯的光降解研究[J].环境科学学报,2009,29(5):1049-1055.
    [45]费学宁,吕岩,张天永.几种环境激素酞酸酯的光催化降解研究[J].环境化学,2006,25(5):567-571.
    [46]骆祝华,黄翔玲,叶德赞.环境内分泌干扰物:邻苯二甲酸酯的生物降解研究进展[J].应用与环境生物学报,2008,14(6):890-897.
    [47]Chang BV, Lu YS, Yuan SY, et al. Biodegradation of phthalate esters in compost-amended soil[J]. Chemosphere,2009,74:873-877.
    [48]Chang BV, Wang TH, Yuan SY. Biodegradation of four phthalate esters in sludge[J]. Chemosphere, 2007,69,1116-1123.
    [49]Xu XR, Li HB, Gu JD. Biodegradation of an endocrine-disrupting chemical di-n-butyl phthalate ester by Pseudomonas fluorescens B-1[J]. International Biodeterioration & Biodegradation,2005, 55:9-15.
    [50]Wang JL, Liu P, Shi HC, et al. Biodegradation of phthalic acid ester in soil by indigenous and introduced microorganisms[J]. Chemosphere,1997,35(8):1747-1754.
    [51]Lu Y, Tang F, Wang Y, et al. Biodegradation of dimethyl phthalate, diethyl phthalate and di-n-butyl phthalate by Rhodococcus sp. L4 isolated from activated sludge[J]. Journal of Hazardous Materials, 2009,168:938-943.
    [52]Li JX, Gu JD, Yao JH. Degradation of dimethyl terephthalate by Pasteurella multocida Sa and Sphingomonas paucimobilis Sy isolated from mangrove sediment[J]. International Biodeterioration & Biodegradation,2005,56:158-165.
    [53]秦华,林先贵,尹睿,等.一株邻苯二甲酸二异辛酯高效降解菌的筛选及其降解特性的初步研究[J].农业环境科学学报,2005,24(6):1171-1175.
    [54]李俊,舒为群,陈济安,等.降解DBP菌株CQ0302的分离鉴定及其降解特性[J].中国环境科学,2005,25(1):47-51.
    [55]张付海,岳永德,花日茂,等.一株邻苯二甲酸酯降解菌降解特性研究[J].农业环境科学学报,2007,26(增刊):79-83.
    [56]段星春,易筱筠,杨晓为,等.两株邻苯二甲酸二丁酯降解菌的分离鉴定及降解特性的研究[J].农业环境科学学报,2007,26(5):1937-1941.
    [57]李魁晓,顾继东.邻苯二甲酸二甲酯的好氧生物降解及生化途径[J].环境科学与技术,2006,29(2):36-37.
    [58]Ganji SH, Karigar CS, Pujar BG. Metabolism of dimethylterephthalate by Aspergillus niger[J]. Biodegradation,1995,6(1):61-66.
    [59]Pour AK, Cooper DG, Mamer OA, et al. Mechanisms of biodegradation of dibenzoate plasticizers[J]. Chemosphere,2009,77:258-263.
    [60]Sivamurthy K, Swamy BM, Pujar BG Transformation of dimethylterephthalate by the fungus Sclerotium rolfsii[J]. FEMS Microbiology Letters,1991,79(1):37-40.
    [61]Pradeepkumar S, Karegoudar TB. Metabolism of dimethylphthalate by Aspergillus niger[J]. Journal of microbiology and biotechnology,2000,10(4):518-521.
    [62]Chai W, Suzuki M, Handa Y, et al. Biodegradation of Di-(2-ethylhexyl) phthalate by Fungi[J]. Report of National Food Research Institute,2008,72:83-87.
    [63]Lee SM, Koo BW, Lee SS, et al. Biodegradation of dibutylphthalate by white rot fungi and evaluation on its estrogenic activity[J]. Enzyme and Microbial Technology,2004,35:417-423.
    [64]Cai QY, Mo CH, Zeng QY, et al. Potential of Ipomoea aquatica cultivars in phytoremediation of soils contaminated with di-n-butyl phthalate[J]. Environmental and Experimental Botany,2008, 62:205-211.
    [65]王发园,林先贵.丛枝菌根真菌对污染土壤中农产品质量安全的影响[J].土壤学报,2008,45(6):1142-1147.
    [66]王曙光,林先贵,尹睿.VA菌根对土壤中DEHP降解的影响[J].环境科学学报,2002,22(3):369-373.
    [67]Chen RR, Yin R, Lin XG, et al. Effect of arbuscular mycorrhizal inoculation on plant growth and phthalie ester degradation in two contaminated soils[J].Pedosphere,2005,15(2):263-269.
    [68]陈瑞蕊,林先贵,尹睿,等.有机污染土壤中菌根的作用[J].生态学杂志,2005,24(2):176-180.
    [69]周桔,雷霆.土壤微生物多样性影响因素及研究方法的现状与展望[J].生物多样性,2007,15(3):306-311.
    [70]Chao WL, Cheng CY. Effect of introduced phthalate-degrading bacteria on the diversity of indigenous bacterial communities during di-(2-ethylhexyl) phthalate (DEHP) degradation in a soil microcosm[J]. Chemosphere,2007,67:482-488.
    [71]Polo M, Llompart M, Garcia-Jares C, et al. Multivariate optimization of a solid-phase microextraction method for the analysis of phthalate esters in environmental waters[J]. Journal of Chromatography A,2005,1072:63-72.
    [72]Graham PR. Phthalate ester plasticizers: why and how they are used[J]. Environmental Health Perspectives,1973,3:3-12.
    [73]Niazi JH, Prasad DT, Karegoudar TB. Initial degradation of dimethylphthalate by esterases from Bacillus species[J]. FEMS Microbiology Letters,2001,196:201-205.
    [74]Foster PMD, Cattley RC, Mylchreest E. Effects of di-n-butyl phthalate(DBP) on male reproductive development in the rat: implications for human risk assessmen[J]. Food and Chemical Toxicology, 2000,38(supplement 1):97-99.
    [75]尹睿,张华勇,王曙光,等.邻苯二甲酸二异辛酯在番茄根际土壤中的持留动态[J].环境科学学报,2004,24(3):444-449.
    [76]蔡信德.土壤镍污染植物修复的生态效应和微生物强化作用研究[D].广州:中山大学,2005:43-45.
    [77]隆兴兴,牛军峰,史姝琼.邻苯二甲酸酯类化合物正辛醇-水分配系数的QSPR研究[J].环境科学,2006,27(11):2318-2322.
    [78]姚健,杨永华,沈晓蓉,等.农用化学品污染对土壤微生物群落DNA序列多样性影响研究[J].生态学报,2000,20(6):1021-1027.
    [79]环境保护部.国家污染物环境健康风险名录:化学(第一分册)[M].北京:中国环境科学出版社,2009:287-301.
    [80]程国玲,李培军,王凤友,等.几种纯培养外生菌根真菌对矿物油的降解效果[J].中国环境科学,2003,23(1):74-76.
    [81]李慧.多环芳烃污染土壤的生物修复技术研究[D].长沙:湖南农业大学,2009:18-20.
    [82]陈静,王学军,胡俊栋,等.表面活性剂对白腐真菌降解多环芳烃的影响[J].环境科学,2006,27(1):154-159.
    [83]孙海波.多环芳烃降解菌的筛选、鉴定,降解特性及邻苯二酚-2,3-双加氧酶的初步研究[D].济南:山东大学,2009:70-71.
    [84]李宝赫.氯嘧磺隆高效降解菌株的分离、鉴定及降解特性的研究[D].哈尔滨:东北林业大学,2009:32-33.
    [85]夏凤毅,郑平,周琪,等.邻苯二甲酸酯的摇瓶生物降解规律研究[J].环境科学学报,2002,22(3):379-384.
    [86]李晓军,李培军,蔺昕,等.土壤中有机污染物的老化概念探讨[J].应用生态学报,2007,18(8):1891-1896.
    [87]崔学慧,李炳华,陈鸿汉,等.中国土壤与沉积物中邻苯二甲酸酯污染水平及其吸附研究进展[J].生态环境学报,2010,19(2):472-479.
    [88]李晓军,李培军,蔺昕.土壤中难降解有机污染物锁定机理研究进展[J].应用生态学报,2007,18(7):1624-1630.
    [89]Alexander M. Aging, Bioavailability, and Overestimation of Risk from Environmental Pollutants[J]. Environmental Science & Technology,2000,34(20):4259-4265.
    [90]White JC, Hunter M, Nam K, et al. Correlation between biological and physical availabilities of phenanthrene in soils and soil humin in aging experiments[J]. Environmental Toxicology and Chemistry,1999,18(8):1720-1727.
    [91]宋广宇,代静玉,胡锋.邻苯二甲酸酯在不同类型土壤-植物系统中的累积特征研究[J].农业环境科学学报,2010,29(8):1502-1508.
    [92]尹睿,林先贵,王曙光,等.土壤中DBP/DEHP污染对几种蔬菜品质的影响[J].农业环境科学学报,2004,23(1):1-5.
    [93]蔡玉祺,汤国才,王珊龄,等.邻苯二甲酸酯对蔬菜幼苗的影响[J].农业环境保护,1994,13(4):163-166.
    [94]Yin R, Lin XG, Wang SG, et al. Effect of DBP/DEHP in vegetable planted soil on the quality of capsicum fruit[J]. Chemosphere,2003,50:801-805.
    [95]秦华,林先贵,尹睿,等.接种降解菌对土壤中邻苯二甲酸二异辛酯降解的影响[J].应用与环境生物学报,2006,12(6):842-845.
    [96]曾巧云,莫测辉,文荣联,等.2种基因型菜心根系分泌物对水稻土中DEHP解吸效应的初步研究[J].农业环境科学学报,2010,29(8):1466-1470.
    [97]曾巧云,莫测辉,蔡全英.PAEs污染下2种基因型菜心根际土壤微生物特征及差异性[J].中国环境科学,2011,31(3):466-473.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700