温度响应与分子识别型智能核孔膜的制备与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
温度响应膜和分子识别膜在控制释放、物质分离、手性拆分等方面具有广阔的应用前景。迄今,有关同时具有温度响应和分子识别特性的智能开关膜研究的报道非常少,而将此类开关膜用于手性拆分的研究尚未见到报道。因此,深入研究该类型智能膜的制备方法、构效关系以及响应机理,从而进一步构造具有良好性能的特异分子识别分离膜具有十分重要的意义。本文在不同类型的修饰环糊精单体制备、聚(N-异丙基丙烯酰胺)(PNIPAM)和修饰环糊精共聚高分子以及PNIPAM开关膜制备与性能的研究基础上,设计并成功制备了一种温敏型分子识别智能膜,探明了其制备方法与工艺,研究了其微观结构可控性及其与分离性能之间的关系,考察了其温度控制的分子识别能力和手性拆分能力,取得了一些创新性研究成果。
     PNIPAM是一类具有低临界溶解温度(LCST)的温度响应型聚合物,其均聚物相变温度在30~34℃之间,且具有较快的响应速度,因此成为温敏开关膜研究中最常采用的温敏材料。β-环糊精(CD)是由7个α-D-吡喃葡萄糖单元通过α-1,4糖苷键首尾相连形成的截锥状的大环化合物,它具有疏水的内部空腔和亲水的外表面,空腔尺寸与萘环的尺寸相匹配,因此能与多种无机、有机小分子和手性客体分子形成主-客体或超分子配合物。核孔膜具有窄孔径分布的标准圆柱形直通孔,是用于研究智能膜微观结构形态以及智能膜响应机理的理想多孔基材膜。本研究采用等离子体诱导接枝聚合法,或等离子体诱导接枝聚合法与化学反应法相结合的方法在聚对苯二甲酸乙二酯(PET)核孔膜上接枝PNIPAM和修饰环糊精,从而得到同时具有温度敏感和分子识别性能的智能膜。
     由于天然CD不具有与NIPAM发生共聚反应或化合反应的基团,因此需对其进行改性。本研究采用不同的合成方法制备了三种具有不同取代基长度的6位单取代含双键的修饰环糊精单体,它们分别是6位单取代脱氧N-烯丙酰基乙二胺代β-环糊精(AACD)、6位单取代脱氧N-烯丙胺代β-环糊精(ACD)和6位单取代脱氧甲基丙烯酸-2-羟丙基己二胺代环糊精(GMA-HAD-CD)。其中,由于ACD合成步骤较少,合成的产率与纯度均较高。另外,AACD的第二步中间体乙二胺代环糊精(EDA-CD)可用作PNIPAM共聚高分子化合反应的修饰环糊精单体。
     由于很难对接枝膜上高分子链的成分、链长度和LCST等性质进行表征,本研究制备了聚(N-异丙基丙烯酰胺共聚甲基丙烯酸-2-羟丙基乙二胺基环糊精)(P(NIPAM-co-GMA/CD))共聚高分子,并对其温度响应特性和分子识别能力进行考察。当高分子中GMA含量较小时(NIPAM与GMA投料摩尔比为19.5 : 1),P(NIPAM-co-GMA)高分子溶液的温度响应特性与PNIPAM高分子相似,但是LCST有所减小。然而,固定CD的P(NIPAM-co-GMA/CD)高分子的温度响应性比P(NIPAM-co-GMA)高分子有所降低,但仍然具有分子识别能力。在水溶液中P(NIPAM-co-GMA/CD)的LCST较P(NIPAM-co-GMA)水溶液有所升高,而在ANS溶液中的LCST较在水溶液中有所减小,但仍高于P(NIPAM-co-GMA)在水溶液中的LCST。
     采用等离子体诱导接枝聚合法在聚碳酸酯(PC)核孔膜上接枝了PNIPAM,确定PNIPAM接枝膜制备工艺条件(包括单体浓度、聚合温度、聚合时间等接枝工艺条件和照射功率、照射时间等等离子体处理工艺条件)。得到的PNIPAM接枝膜的膜表面和膜孔内覆盖一层均匀的接枝层。随着填孔率逐渐增大,膜孔中填充的PNIPAM接枝层逐渐增厚。当填孔率小于44.2%时,接枝膜具有温度感应特性,此时25℃的水通量小于40℃的水通量,并且随着填孔率的增大,水通量有减小的趋势;当填孔率大于44.2%以后,无论是25℃还是40℃,水通量都变为零,此时接枝膜不再具有温度感应特性。填孔率为23.9%的接枝膜表现出较好的温度感应特性,它的孔径在LCST附近(28℃~34℃)发生突变(34℃的孔径为28℃的近两倍),而在T<28℃和T>34℃时保持不变。空白膜的表面接触角随温度的升高而略有减小,而接枝膜的接触角随着温度的升高而增大,水通量的开关特性主要取决于孔径的变化而不是膜表面亲疏水性的改变。
     分别采用等离子体诱导过氧化自由基接枝聚合法和等离子体诱导自由基接枝聚合法成功地制备了聚(N-异丙基丙烯酰胺共聚N-烯丙胺代β-环糊精)(P(NIPAM-co-ACD)-g-PET)接枝膜。向单体溶液中加入十二烷基硫酸钠、二甲亚砜和N,N-二甲基甲酰胺,有利于提高聚合反应温度,从而增大接枝率。采用等离子诱导自由基接枝聚合法与化学反应法相结合的方法成功地制备聚(N-异丙基丙烯酰胺共聚甲基丙烯酸-2-羟丙基乙二胺基β-环糊精)接枝PET膜(P(NIPAM-co-GMA/CD)-g-PET)。采用适当的单体投料比得到的具有适当接枝率的P(NIPAM-co-GMA)-g-PET膜(NIPAM和GMA投料摩尔比为2.9: 1,Y=1.47%),表现出较好的温度响应特性。它在高温时(34~40℃)的孔径是低温时(25~28℃)的1.15倍左右,PNIPAM接枝膜(Y=1.42%的)为1.29倍。当单体NIPAM和GMA的投料摩尔比为1.6: 1时,接枝率为2.67%时P(NIPAM-co-GMA)-g-PET膜才具有温敏性,但由于通量很小,温度开关作用也不明显。随着接枝链中GMA的比例增大,P(NIPAM-co-GMA)接枝膜的温度响应性越差,欲得到较好的温度响应特性,需在一定程度上提高接枝率。得到的具有温敏特性的P(NIPAM-co-GMA)接枝膜的开关温度仍在32℃附近。P(NIPAM-co-GMA/CD)-g-PET接枝膜的表面接触角表现出温度响应特性,当温度从25℃上升到45℃,接触角增大,而此时PET空白膜的表面接触角减小,说明P(NIPAM-co-GMA)-g-PET接枝膜的水通量主要依赖于孔径的变化而不是膜表面亲疏水性的变化。
     固载CD的PGMA/CD-g-PET和P(NIPAM-co-GMA/CD)-g-PET膜对D,L-色氨酸(D,L-Trp)具有一定手性拆分能力,其手性拆分过程属于阻碍传输机理。室温下的拆分实验中,PGMA/CD接枝膜(Y=3.08%,CD的含量为11.0μg/cm2)的拆分能力比PGMA-g-PET膜(Y=2.53%)大,对映体过量值(e.e.%)先增大后减小(最大e.e.%约为7%),优先透过D-Trp。P(NIPAM-co-GMA/CD)接枝膜的e.e.%也是先增大后减小。CD固载量较小的P(NIPAM-co-GMA/CD)接枝膜的e.e.%也较小,含量为2.6μg/cm2的接枝膜的最大e.e.%接近7%,而CD含量为11.5μg/cm2的接枝膜最大e.e.%为10%。由于CD的促进传输作用,无论25℃还是40℃,ANS在PGMA/CD-g-PET膜(Y=3.07%,CD含量为5.6μg/cm2)中的扩散都比在PGMA-g-PET膜(Y=3.27%)中快。由于高温时CD与ANS的包结配位常数较小,因此CD对ANS的促进传输作用就更强。40℃时ANS通过PGMA/CD接枝膜的扩散系数与25℃的差值,比通过PGMA接枝膜的扩散系数在40℃和25℃差值更大,40℃时ANS在PGMA/CD接枝膜的扩散系数比在空白膜中的略高。ANS吸附实验表明,P(NIPAM-co-GMA/CD)-g-PET膜对ANS的吸附主要是CD的包结作用,PET基材和P(NIPAM-co-GMA)接枝膜对ANS的吸附作用较小。ANS在P(NIPAM-co-GMA/CD)-g-PET膜上表现出“低温吸附-高温解吸”的现象,并且具有良好的重复性,这主要是由于P(NIPAM-co-GMA)链的“伸展-收缩”构象变化和主体分子CD对ANS较强的包结能力共同作用的结果。CD对ANS包结配合时,ANS分子的萘环进入CD空腔,苯环部分留在CD空腔之外。在温度较低时(TLCST),P(NIPAM-co-GMA)链收缩,CD-ANS配合物周围比较拥挤,造成CD-ANS的包结配合稳定系数下降,ANS容易从CD空腔中脱落出来。随着CD含量增加,P(NIPAM-co-GMA/CD)-g-PET膜对ANS单位吸附量在低温和高温的差值越大。荧光光谱分析表明,吸附在P(NIPAM-co-GMA/CD)-g-PET膜上客体分子ANS可以通过高温水洗进行洗脱,实现客体分子的再利用和接枝膜的再生。
     综上所述,本研究成功地设计并制备了具有温度敏感的分子识别开关膜,通过温敏性通量实验、手性分子拆分实验、客体分子识别的吸附实验,证明所制备的开关膜具有手性分子拆分能力和客体分子识别能力,并且通过改变环境温度可以较好的实现客体分子的再利用以及开关膜的再生。
Thermo-responsive gating membranes and molecular recognizable gating membranes have wide potential applications in the fields of controlled release, substance separation, and chiral resolution, etc. Up to now, few literatures have been reported on intelligent gating membranes possessing both thermo-responsive and molecular recognizable characteristics simultaneously. Moreover, investigations on chiral resolution employing such membranes are still lacking. Therefore, it has substantial significances to systematically investigate the preparation technology, the relationship between structure and performance, and stimuli-responsive mechanism of such thermo-responsive and molecular recognizable gating membranes, which are the key fundaments for designing and fabricating membranes with good performance for the separation of special molecules. In this study, a new type of thermo-responsive and molecular recognizable intelligent membranes was designed and successfully prepared based on the successful preparation of different modified cyclodextrin, copolymer of poly(N-isopropylacrylamide) (PNIPAM) and modified cyclodextrin, and PNIPAM grafted gating membranes. The preparation technology, the controllable property of microstructure, and the relationship between microstructure and separation performance of such membranes were investigated systematically. The molecular recognizable capability controlled by temperature and the chiral resolution capability of such membranes were also experimentally studied.
     PNIPAM is a thermo-responsive polymer which has lower critical solution temperature (LCST) around 30~34 oC and its responsiveness is fast. Therefore, PNIPAM is a widely-used thermo-sensitive material in the study of thermo- responsive gating membranes.β-Cyclodextrins (CDs) with seven glucose residues, are torus-shaped molecules composed of cyclicα-1,4-oligoglucopyranosides. Because of their structure of hydrophobic cavities with size suitable for naphthalene ring and of hydrophilic external surfaces, CDs can recognize many inorganic, organic and chiral compounds and selectively include them in their cavities to form host-guest or supramolecular complexes. Track-etched (TE) membrane with straight cylindrical pores perpendicular to the surface and narrow pore size distribution is a favorable porous substrate membrane used to study microstructure morphology and stimuli-responsive mechanism of smart membranes. In this study, smart membranes with both thermo-responsive and molecular recognizable characteristics were prepared by grafting both NIPAM and modified CD monomers onto polyethylene terephthalate (PET) TE membrane by employing plasma-induced grafting polymerization or the combined method of plasma-induced grafting polymerization and chemical reaction.
     Natural CDs do not have active groups to react with NIPAM, so they need to be modified before polymerization. Three modified CDs, mono-6-deoxy-6-(N-acryl- oxyethylenediamino)-β-cyclodextrin (AACD), mono-6-deoxy-6-(N-allylamino)-β- cyclodextrin (ACD) and mono-6-deoxy-6-(2-hydroxypropyl methacrylate-hexane- diamino)-β-cyclodextrin (GMA-HAD-CD), which have double bond and different length of substituted group, were synthesized. Compared with AACD and GMA- HAD-CD, ACD has less synthesis step and therefore its yield and purity were higher.
     The intermediate product ethylenediamino-β-cyclodextrin (EDA-CD) in the second step of preparing AACD could also be used as monomer to react with PNIPAM. Because it is difficult to analyze the properties such as composition, chain length and the LCST of polymer grafted on the substrate membrane, poly(N-isopropylacrylamide-co-2-hydroxypropyl methacrylate ethylenediamino-β- cyclodextrin) P(NIPAM-co-GMA/CD) polymer was synthesized, and thermo- responsive characteristics and molecular recognizable capability of such a polymer were experimentally studied. When GMA content in the copolymer was small (feeding molar ratio of NIPAM and GMA was 19.5: 1), P(NIPAM-co-GMA) copolymer had thermo-responsive characteristics similar to homopolymer PNIPAM, but its LCST became smaller than that of PNIPAM. The thermo-responsive characteristics of CD-immobilized copolymer P(NIPAM-co-GMA/CD) became a little worse, however, their molecular recognizable capability was still remained. The LCST of P(NIPAM-co-GMA/CD) copolymer was higher than that of P(NIPAM-co-GMA) copolymer in aqueous solution. When P(NIPAM-co-GMA/CD) copolymer was dissolved in ANS aqueous solution, its LCST became lower than that in aqueous solution but still higher than that of P(NIPAM-co-GMA) copolymer in aqueous solution.
     PNIPAM was successfully grafted on the surface and in the pores of the polycarbonate (PC) TE porous membrane by plasma-induced grafting polymerization, and the preparation technical conditions, including grafting technical conditions such as monomer concentration, polymerization temperature and time, and plasma treating technical conditions such as treating power and time, were experimentally investigated. The grafted PNIPAM polymers were formed onto the membrane surface and inside the pores throughout the entire membrane thickness, and the PNIPAM polymers were filled in the membrane pores gradually with the increase of the pore-filling ratio (F). For the PNIPAM-g-PCTE membranes with F is smaller than 44.2%, the water flux at 40 oC was always larger than that at 25 oC. With the F increasing, the water flux of PNIPAM-grafted membranes decreased at 25 oC as well as at 40 oC. However, when F was too large (> 44.2%), the water flux of PNIPAM grafted membranes became zero no matter what the environmental temperature was. The pore diameter of the PNIPAM-g-PCTE membrane with F = 23.9% increased dramatically when the temperature changed from 28 to 34 oC, but kept unvaried at the temperatures lower than 28 oC and/or higher than 34 oC (pore size at 34 oC was nearly two times as that at 28 oC). The contact angle of PNIPAM-g-PCTE membrane increased largely when the temperature increased, while that of substrate membrane became a little smaller at the same environmental temperature. The thermo-responsive gating characteristics of the water flux of PNIPAM-g-PCTE membranes were mainly dependent on the pore size change rather than the variation of membrane surface hydrophilicity.
     Poly(N-isopropylacrylamide-co-N-allylamino-β-cyclodextrin)-g-PET (P(NIPAM-co-ACD)-g-PET) membranes were successfully prepared by employing plasma-induced peroxide radical grafting polymerization method and plasma-induced free radical grafting polymerization method, respectively. The addition of sodium dodecyl sulfate, dimethylsulfoxide and N,N-dimethylformamide into monomer solution, was helpful to improve the reaction temperature and consequently obtain higher grafting yields (Y). Poly(N-isopropylacrylamide-co- 2-hydroxypropyl methacrylate ethylenediamino-β-cyclodextrin)-g-PET (P(NIPAM-co-GMA/CD)-g-PET) membranes were successfully prepared by the combined method of plasma-induced free radical grafting polymerization and chemical reaction. P(NIPAM-co-GMA/CD)-g-PET membranes with appropriate grafting yield (Y=1.47%) prepared by appropriate feeding molar ratio of monomers (e.g. feeding molar ratio of NIPAM and GMA was 2.9 : 1) showed good thermo-responsive characteristics, whose pore diameter at higher temperature (34~40 oC) was about 1.15 times as that at lower temperature (25~28 oC) compared with 1.29 times of PNIPAM-g-PET membrane (Y=1.42%). When feeding molar ratio of NIPAM and GMA was 1.6 : 1, P(NIPAM-co-GMA)-g-PET membrane with Y=2.67% showed thermo-responsive characteristics. However, because the water flux was small, the thermo-responsive gating effect was not significant. With the ratio of GMA in grafted polymer increasing, the thermo-responsive characteristics of P(NIPAM-co-GMA)-g-PET membranes became worse. To obtain better thermo- responsive characteristics, it is necessary to increase grafting yield to some extent. The gating temperatures of resultant thermo-responsive P(NIPAM-co-GMA)-g-PET membranes were still around 32 oC. The contact angle of P(NIPAM-co-GMA/CD)- g-PET membrane also showed thermo-responsive characteristics. When the temperature increased, the contact angle of P(NIPAM-co-GMA/CD)-g-PET membrane increased largely, whereas that of substrate membrane became smaller at the same time. The thermo-responsive characteristics of the water flux of P(NIPAM-co-GMA)-g-PET membranes were mainly dependent on the pore size change rather than the variation of membrane surface hydrophilicity.
     CD-immobilized PGMA/CD-g-PET and P(NIPAM-co-GMA/CD)-g-PET membranes could discriminate D,L-tryptophan (D,L-Trp), and the chiral resolution process was based on redarded transport methanism. PGMA/CD-g-PET membrane (Y=3.08%,CD content is 11.0μg/cm2) has better chiral resolution capability toward D-Trp than PGMA-g-PET (Y=2.53%) at 25 oC. The enantiomeric excess (e.e.%) firstly increased and then decreased as time increased, and the maximal e.e.% of PGMA/CD-g-PET membrane was 7 %. The e.e.% of P(NIPAM-co-GMA/CD)-g- PET membrane was also increased first and then decreased. The less the CD content was, the smaller the e.e.% of P(NIPAM-co-GMA/CD)-g-PET membrane. When CD content was 2.6μg/cm2, the maximal e.e.% was nearly 7%; while the maximal e.e.% was 10% for 11.5μg/cm2. ANS diffused faster through PGMA/CD-g-PET membrane (Y=3.07%, CD content was 5.6μg/cm2) than through PGMA-g-PET membrane (Y=3.27%) at both 25 oC and 40 oC, because of the facilitated transport function of CD. Because of the association constant of ANS with CD was smaller at higher temperature, the facilitated transport of CD toward ANS was enhanced at higher temperature. The difference between diffusion coefficient of ANS through PGMA/CD grafted membrane at 40 oC and that at 25 oC was larger than that through PGMA grafted membrane. The diffusion coefficient of ANS through PGMA/CD-g- PET membrane at 40 oC was even larger than that through substrate membrane. The adsorption of ANS onto P(NIPAM-co-GMA/CD)-g-PET membrane was mainly due to stronger recognition capability of CD toward ANS, while the adsorption of the substrate and P(NIPAM-co-GMA)-g-PET membrane toward ANS was weaker. ANS adsorbed onto P(NIPAM-co-GMA/CD)-g-PET membrane at lower temperature (i.e. 25 oC) and desorbed from P(NIPAM-co-GMA/CD)-g-PET membrane at higher temperature (i.e. 40 oC) with good repeatability. The reason mainly existed in both the“swollen-shrunken”configuration change of P(NIPAM-co-GMA) grafted chains around LCST and the stronger recognition of CD toward ANS. ANS was partially captured in the CD cavity with naphthalene group enclosed in the cavity and benzene ring residing outside the cavity. At lower temperature (T < LCST), the P(NIPAM-co-GMA) copolymer swells, and steric hindrance from the polymer near the cavities is small, guest molecules can easily enclose into the cavity, so that the associated constant is higher. However, at higher temperature (T > LCST), the P(NIPAM-co-GMA) copolymer shrinks, and the polymer chains agglomerate around the cavity, increasing the steric hindrance, which leads to a smaller binding constant. As CD content increased, the difference between adsorption amount of ANS onto P(NIPAM-co-GMA/CD)-g-PET membrane at 25 oC and that at 40 oC became larger. ANS adsorbed on the P(NIPAM-co-GMA/CD)-g-PET membrane could be washed away by water at higher temperature, and the membrane could be regenerated.
     In summary, a novel thermo-responsive and molecular recognizable gating membrane was designed and successfully prepared. The guest-molecule recognition and chiral-molecule discrimination capability were experimentally studied by thermo-responsive flux experiment, chiral resolution experiment and guest-molecule adsorption experiment. The results showed that guest molecules can be separated and the membrane can be regenerated simply by changing the environmental temperature.
引文
[1] Ulbricht M. Advanced functional polymer membranes. Polymer. 2006,47(7):2217-2262.
    [2] Mulder M著,李琳译. 膜技术基本原理. 北京:清华大学出版社,1999.
    [3] 姚康德,成国祥. 智能膜材. 化工进展. 2002,21(8):611-616.
    [4] 时钧,袁权,高从堦. 膜技术手册. 北京:化学工业出版社,2001.
    [5] 陈向荣,苏志国,马光辉,万印华. 智能型分离膜研究. 化工进展. 2006,18(9):1218-1226.
    [6] Maier N M,Franco P,Lindner W. Separation of enantiomers: needs, challenges, perspectives. Journal of Chromatography A. 2001,906(1-2):3-33.
    [7] 徐又一,徐志康. 高分子膜材料. 北京:化学工业出版社,2005.
    [8] 曾振辉,董声雄,龚琦. 环境敏感性聚合物膜的制备及应用进展. 高分子通报. 2004,(4):89-95.
    [9] 王海东,李艳,褚良银,陈文梅. pH值与温度感应型智能开关膜的研究. 过滤与分离. 2003,13(3):1-4.
    [10] 杨大智. 智能材料与智能系统. 天津:天津大学出版社,2000.
    [11] 高德川,王依民,邹黎明. 智能材料及其应用. 化工新型材料. 2000,28 (4):17-19.
    [12] 姚康德,许美萱,成国祥,彭涛,胡文华. 智能材料——21世纪的新材料. 天津:天津大学出版社,1996.
    [13] 高洁,王香梅,李青山. 功能纤维与智能材料. 北京:中国纺织出版社,2004.
    [14] 魏凤春,张恒,张晓,贺跃进. 智能材料的开发与应用. 材料导报. 2006,20(F5):375-378.
    [15] 王守德,刘福田,程新. 智能材料及其应用进展. 济南大学学报(自然科学版). 2002,16(1):97-100.
    [16] 武龙,林淑萍. 智能材料研究进展及其在高分子领域的应用. 天津化工. 2000,(5):4-6.
    [17] 辛晓晶. 智能高分子材料的应用现状及研究进展. 甘肃石油和化工. 2006,20(2):6-9.
    [18] 王闻宇,陈莉,于晓. N-异丙基丙烯酰胺水凝胶对聚偏氟乙烯中空纤维膜的智能改性研究. 化工新型材料. 2006,34(6):15-17.
    [19] Galaev I Y,Mattiasson B. Smart polymers and what they could do in biotechnology and medicine. Trends in Biotechnology. 1999,17(8):335-340.
    [20] Jeong B,Kim S W,Bae Y H. Thermosensitive sol-gel reversible hydrogels. Advanced Drug Delivery Reviews. 2002,54(1):37-51.
    [21] Jeong B,Gutowska A. Lessons from nature: stimuli-responsive polymers and their biomedical applications. Trends in Biotechnology. 2002,20(7):305-311.
    [22] Schmaljohann D. Thermo- and pH-responsive polymers in drug delivery. Advanced Drug Delivery Reviews. 2006,58(15):1655-1670.
    [23] Roy I,Gupta M N. Smart Polymeric Materials: Emerging Biochemical Applications. Chemistry & Biology. 2003,10(12):1161-1171.
    [24] Hoffman A S. Bioconjugates of intelligent polymers and recognition proteins for use in diagnostics and affinity separations. Clinical Chemistry. 2000,46(9):1478-1486.
    [25] 李明春,陈国华,姚康德. 智能型高分子分离膜. 化工进展. 1997,(6):6-11.
    [26] 方东宇,李伟,陈欢林. 敏感性高分子功能膜的研究进展. 功能高分子学报. 2000,13(4):442-446.
    [27] Wang Y,Liu Z M,Han B X,Dong Z X,Wang J Q,Sun D H,Huang Y,Chen G W. pH Sensitive polypropylene porous membrane prepared by grafting acrylic acid in supercritical carbon dioxide. Polymer. 2004,45 (3):855-860.
    [28] Chu L Y,Li Y,Zhu J H,Wang H D,Liang Y J. Control of pore size and permeability of a glucose-responsive gating membrane for insulin delivery. Journal of Controlled Release. 2004,97(1):43-53.
    [29] Lee Y M,Shim J K. Preparation of pH/temperature responsive polymer membrane by plasma polymerization and its riboflavin permeation. Polymer. 1997,38(5):1227-1232.
    [30] Chu L Y,Niitsuma T,Yamaguchi T,Nakao S I. Thermo-responsive transport through porous membranes with grafted PNIPAM gates. AIChE Journal. 2003,49(4):896-909.
    [31] Li Y,Chu L Y,Zhu J H,Wang H D,Xia S L,Chen W M. Thermo-responsive gating characteristics of poly(N-isopropylacrylamide)-grafted porous poly(vinylidenefluoride) membranes. Industrial & Engineering Chemistry Research. 2004,43(11):2643-2649.
    [32] Wang X L,Huang J,Chen X Z,Yu X H. Graft polymerization of N-isopropylacrylamideinto a microporous polyethylene membrane by the plasma method: technique and morphology. Desalination. 2002,146(1-3):337-343.
    [33] Choi Y J,Yamaguchi T,Nakao S I. A novel separation system using porous thermosensitive membranes. Industrial & Engineering Chemistry Research. 2000,39(7):2491-2495.
    [34] Gupta B,Plummer C,Bisson I,Frey P,Hilborn J. Plasma-induced graft polymerization of acrylic acid onto poly(ethylene terephthalate) films: characterization and human smooth muscle cell growth on grafted films. Biomaterials. 2002,23(3):863-871.
    [35] Price W E,Too C O,Wallace G G,Zhou D. Development of membrane systems based on conducting polymers. Synthetic Metals. 1999,102(1-2):1338-1341.
    [36] 杨彪. 聚合物分离膜接枝改性技术及应用. 中国塑料. 2004,18(6):8-16.
    [37] 杨万泰,尹梅贞,邓建元,杜久明. 表面光接枝原理、方法及应用前景. 高分子通报. 1999,(1):60-65,84.
    [38] 邓建平,杨万泰. 表面光接枝技术合成分离膜的研究进展. 膜科学与技术. 2000,20(4):33-37.
    [39] Zhang K,Huang H Y,Yang G C,Shaw J,Yip C,Wu X Y. Characterization of nanostructure of stimuli-responsive polymeric composite membranes. Biomacromolecules. 2004,5(4):1248-1255.
    [40] Zhang K,Wu X Y. Temperature and pH-responsive polymeric composite membranes for controlled delivery of proteins and peptides. Biomaterials. 2004,25(22):5281-5291.
    [41] 成宏,杨昌正. 壳聚糖-聚乙烯基恶唑啉半互穿聚合物网络(semi-IPN)膜对pH的刺激响应性. 离子交换与吸附. 2000,16(6):553-557.
    [42] 刘根起,赵晓鹏. 明胶-海藻酸钠半互穿聚合物网络膜及其电刺激响应行为的研究. 功能材料. 2003,34(4):473-475,478.
    [43] Ying L , Kang E T , Neoh K G. Synthesis and characterization of poly(N-isopropylacrylamide)-graft-poly(vinylidene fluoride) copolymers and temperature-sensitive membranes. Langmuir. 2002,18(16):6416-6423.
    [44] Ying L,Kang E T,Neoh K G,Kato K,Iwata H. Novel poly(N-isopropylacrylamide)-graft poly(vinylidene fluoride) copolymers for temperature-sensitive microfiltrationmembranes. Macromolecular Materials and Engineering. 2003,288(1):11-16.
    [45] Ying L,Wang P,Kang E T,Neoh K G. Synthesis and characterization of poly(acrylic acid)-graft-poly(vinylidene fluoride) copolymers and pH-sensitive membranes. Macromolecules. 2002,35(3):673-679.
    [46] Zhai G Q,Ying L,Kang E T,Neoh K G. Surface and interface characterization of smart membranes. Surface and Interface Analysis. 2004,36(8):1048-1051.
    [47] Andreopoulos F M,Beckman E J,Russell A J. Light-induced tailoring of PEG-hydrogel properties. Biomaterials. 1998,19(15):1343-1352.
    [48] Weh K,Noack M,Ruhmann R,Hoffmann K,Toussaint P,Caro J. Modification of the transport properties of a polymethacrylate-azobenzene membrane by photochemical switching. Chemical Engineering & Technology. 1998,21(5):408-412.
    [49] Li P F,Ju X J,Chu L Y,Xie R. Thermo-responsive membranes with crosslinked poly (N-isopropylacrylamide) hydrogels inside porous substrates. Chemical Engineering & Technology. 2006,29(11):1333-1339.
    [50] 王闻宇,陈莉,莫毅,董晶. 新型PVDF中空纤维智能凝胶膜的制备及其性能的研究. 天津工业大学学报. 2005,24(5):17-21.
    [51] Smuleac V,Butterfield D A,Bhattacharyya D. Permeability and separation characteristics of polypeptide-functionalized polycarbonate track-etched membranes. Chemical Materials. 2004,16(14):2762-2771.
    [52] Chu L Y,Li Y,Zhu J H,Chen W M. Negatively thermoresponsive membranes with functional gates driven by zipper-type hydrogen-bonding interactions. Angewandte Chemie International Edition. 2005,44(14):2124-2127.
    [53] Qu J B,Chu L Y,Yang M,Xie R.,Hu L,Chen W M. A pH-responsive gating membrane system with pumping effects for improved controlled-release. Advanced Functional Materials. 2006,16(14):1865-1872.
    [54] Xie R,Li Y,Chu L Y. Preparation of thermo-responsive gating membranes with controllable response temperature. Journal of Membrane Science. 2007,289(1-2):76-85.
    [55] Yang M,Chu L Y,Li Y,Zhao X J,Song H,Chen W M. Thermo-responsive gating characteristics of poly(N-isopropylacrylamide)-grafted membranes. ChemicalEngineering & Technology. 2006,29(5):631-636.
    [56] 巨晓洁,褚良银,李艳. 温敏型智能化靶向式药物载体研究(I)——具有温敏开关的多孔膜. 生物医学工程学杂志. 2004,21 (5):791-794.
    [57] 李鹏飞,褚良银,陈文梅,谢锐,曲剑波,杨眉. 多孔膜基材对等离子体接枝膜微观结构的影响. 过滤与分离. 2005, 15(4): 1-4.
    [58] Chu L Y,Zhu J H,Chen W M. Effect of graft yield on the thermo-responsive permeability through porous membranes with plasma-grafted poly(N-isopropylacrylamide) gates. Chinese Journal of Chemical Engineering. 2003,11(3):269-275.
    [59] Lee Y M , Ihm S Y , Shim J K , Kim J H. Preparation of surface-modified stimuli-responsive polymeric membranes by plasma and ultraviolet grafting methods and their riboflavin permeation. Polymer. 1995,36(1):81-85.
    [60] Lee Y M,Shim J K. Plasma surface graft of acrylic acid onto a porous poly(viny1idene fluoride) membrane and its riboflavin permeation. Journal of Applied Polymer Science. 1996,61(8):1245-1250.
    [61] Ito T,Hioki T,Yamaguchi T,Shinbo T,Nakao S I,Kimura S. Development of a molecular recognition ion gating membrane and estimation of its pore size control. Journal of the American Chemical Society. 2002,124(26):7840-7846.
    [62] Yamaguchi T,Ito T,Sato T,Shinbo T,Nakao S I. Development of a fast response molecular recognition ion gating membrane. Journal of the American Chemical Society. 1999,121(16):4078-4079.
    [63] Ito T,Yamaguchi T. Osmotic pressure control in response to a specific ion signal at physiological temperature using a molecular recognition ion gating membrane. Journal of the American Chemical Society. 2004,126(20):6202-6203.
    [64] Ito T,Sato Y,Yamaguchi T,Nakao S I. Response mechanism of a molecular recognition ion gating membrane. Macromolecules. 2004,37(9),3407-3414.
    [65] Yang B,Yang W T. Thermo-sensitive switching membranes regulated by pore-covering polymer brushes. Journal of Membrane Science. 2003,218(1-2):247-255.
    [66] Shim J K,Lee Y B,Lee Y M. pH-dependent permeation through polysulfone ultrafiltration membranes prepared by ultraviolet polymerization technique. Journal ofApplied Polymer Science. 1999,74(1):75-82.
    [67] Peng T,Cheng Y L. pH-responsive permeability of PE-g-PMAA membranes. Journal of Applied Polymer Science. 2000,76(6):778-786.
    [68] Peng T,Cheng Y L. PNIPAAm and PMAA co-grafted porous PE membranes: living radical co-grafting mechanism and multi-stimuli responsive permeability. Polymer. 2001,42 (5):2091-2100.
    [69] Mika A M,Childs R F,Dickson J M. Salt separation and hydrodynamic permeability of a porous membrane filled with pH-sensitive gel. Journal of Membrane Science. 2002,206(1-2):19-30.
    [70] Irwan G S,Kuroda S I,Kubota H,Kondo T. Effect of monomer concentration on characteristics of methacrylic acid-grafted polyethylene film prepared by photografting. European Polymer Journal. 2002,38(6):1145-1150.
    [71] Irwan G S,Kuroda S I,Kubota H,Kondo T. Photografting of methacrylic acid on polyethylene film: effect of mixed solvents consisting of water and organic solvent. Journal of Applied Polymer Science. 2002,83(11):2454-2461.
    [72] Shtanko N I,Kabanov V Y,Apel P Y,Yoshida M,Vilenskii A I. Preparation of permeability-controlled track membranes on the basis of ‘smart’ polymers. Journal of Membrane Science. 2000,179(1-2):155-161.
    [73] ?kerman S,Viinikka P,Svarfvar B,Putkonen K,J?rvinen K,Kontturi K,N?sman J,Urtti A , Paronen P. Drug permeation through a temperature-sensitive poly(N-isopropylacrylamide) grafted poly(vinylidene fluoride) membrane. International Journal of Pharmaceutics. 1998,164(1-2):29-36.
    [74] Kato K,Uchida E,Kang E T,Uyama Y,Ikada Y. Polymer surface with graft chains. Progress in Polymer Science. 2003,28(2):209-259.
    [75] Peng T,Cheng Y L. Temperature-responsive permeability of porous PNIPAAm-g-PE membranes. Journal of Applied Polymer Science. 1998,70(11):2133-2142.
    [76] Zhao B,Brittain W J. Polymer brushes: surface-immobilized macromolecules. Progress in Polymer Science. 2000,25(5):677-710.
    [77] Boyes S G,Granville A M,Baum M,Akgun B,Mirous B K,Brittain W J. Polymerbrushes-surface immobilized polymers. Surface Science. 2004,570(1-2):1-12.
    [78] 杨彪,杨万泰. 光接枝法制备新型pH开关核孔膜. 高分子学报. 2003,(2):272-277.
    [79] 杨彪,杨万泰. 本体光接枝制备温敏核孔膜. 北京化工大学学报. 2003,30(2):35-39.
    [80] 杨彪,杨万泰. 光接枝制备功能性核孔膜. 膜科学与技术. 2003,23(4):38-44.
    [81] 杨彪,杨万泰. SEM研究PET核孔膜的光接枝聚合. 高分子学报. 2004,(6):864-870.
    [82] 张玉翠,王斌,李维民,庄善学. 智能给药系统研究进展——物理刺激响应性药物释放系统. 甘肃联合大学学报(自然科学版). 2006,20(6):61-64.
    [83] 张玉翠,王斌,庄善学,张伏龙. 智能给药系统研究进展——化学刺激响应性药物释放系统. 甘肃联合大学学报(自然科学版). 2006,20(4):9-11.
    [84] Scarpa J S,Mueller D D,Klotz I M. Slow hydrogen-deuterium exchange in a non-α-helical polyamide. Journal of the American Chemical Society. 1967,89 (24):6024-2030.
    [85] Katayama S,Hirokawa Y,Tanaka T. Reentrant phase transition in acrylamide-derivative copolymer gels. Macromolecules. 1984,17(12):2641-2643.
    [86] 黄健. N-异丙基丙烯酰胺的微孔接枝膜及水凝胶膜的合成、形态和性质. 南京大学博士学位论文. 2002.
    [87] 胡晖. 聚N-异丙基丙烯酰胺类聚合物的合成与表征. 西北工业大学硕士学位论文. 2001.张侃,张黎明. 环境敏感水凝胶的研究进展. 广州化学. 2001,26(4):46-54.
    [88] 齐旺顺. N-异丙基丙烯酰胺接枝聚乙烯微孔膜的形态结构、动电现象及溶质截留性能的研究. 南京工业大学硕士学位论文. 2002.
    [89] 李艳. 正相与反相感温型开关膜的制备及其感温特性的研究. 四川大学博士学位论文. 2004.
    [90] Lee J,Macosko C W,Urry D W. Swelling behavior of γ-irradiation cross-linked elastomeric polypentapeptide-based hydrogels. Macromolecules. 2001 , 34(12) :4114-4123.
    [91] Yamaguchi T,Nakao S I,Kimura S. Evidence and mechanisms of filling polymerization by plasma-induced graft polymerization. Journal of Polymer Science: Part A: Polymer Chemistry. 1996,34(7):1203-1208.
    [92] Choi Y J,Moon S H,Yamaguchi T,Nakao S I. New morphological control for thick,porous membranes with a plasma graft-filling polymerization. Journal of Polymer Science: Part A: Polymer Chemistry. 2003,41(9):1216-1224.
    [93] Iwata H,Oodate M,Uyama Y,Amemiya H,Ikada Y. Preparation of temperature-sensitive membranes by graft polymerization onto a porous membrane. Journal of Membrane Science. 1991,55(1-2):119-130.
    [94] 黄健,王晓琳,陈秀珍,余学海. 高分子微滤膜等离子体处理接枝N-异丙基丙烯酰胺. 高分子材料科学与工程. 2003,19(4):48-51.
    [95] 李斌,陈文广,王晓工,周其庠. 聚丙烯表面接枝PNIPAAm膜I.光接枝反应和表面形态结构研究. 高分子学报. 2002,(6):780-785.
    [96] 李斌,陈文广,王晓工,周其庠. 聚丙烯表面接枝PNIPAAm膜II.表面特性和温度响应性研究. 高分子学报. 2003,(1):7-12.
    [97] Park Y S,Ito Y,Imanishi Y. Permeation control through porous membranes immobilized with thermosensitive polymer. Langmuir. 1998,14(4):910-914.
    [98] Geismann C,Yaroshchuk A,Ulbricht M. Permeability and electrokinetic characterization of poly(ethylene terephthalate) capillary pore membranes with grafted temperature-responsive polymers. Langmuir. 2007,23(1):76-83.
    [99] Ulbricht M,?zdemir S,Geismann C. Functionalized track-etched membranes as versatile tool to investigate stimuli-responsive polymers for “smart” nano- and Microsystems. Desalination. 2006,199(1-3):150-152.
    [100] Shtanko N I,Kabanov V Y,Apel P Y,Yoshida M. The use of radiation-induced graft polymerization for modification of polymer track membranes. Nuclear Instruments and Methods in Physics Research B. 1999,151(1-4):416-422.
    [101] 庞德聆,张晋华,任礼华,钱志林,黄刚. 热敏智能径迹膜的研制. 2002,25(7):573-577.
    [102] 庞德聆,张晋华,任礼华,钱志林,黄刚. 热敏智能径迹膜. 1999,22(7):389-391.
    [103] 刘崎,朱智勇,杨小敏,陈西良,宋玉峰. PVDF-g-N-IPAAm温敏膜的辐射合成及性能研究. 辐射研究与辐射工艺学报. 2006,24(2):97-101.
    [104] 姚康德,成国祥. 智能材料. 北京:化学工业出版社,2002.
    [105] Kinoshita T. Biomembrane mimetic systems. Progress in Polymer Science. 1995,20(3):527-583.
    [106] Kinoshita T. Photoresponsive membrane systems. Journal of Photochemistry and Photobiology B: Biology. 1998,42(1):12-19.
    [107] Liu N G,Dunphy D R,Atanassov P,Bunge S D,Chen Z,López G P,Boyle T J, Brinker C J. Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane. Nano letters. 2004,4(4):551-554.
    [108] Liu N G,Chen Z,Dunphy D R,Jiang Y B,Assink R A,Brinker C J. Photoresponsive nanocomposite formed by self-assembly of an azobenzene-modified silane. Angewandte Chemie International Edition. 2003,42(15):1731-1734.
    [109] Weh K,Noack M,Hoffmann K,Schr?der K P,Caro J. Change of gas permeation by photoinduced switching of zeolite-azobenzene membranes of type MFI and FAU. Microporous and Mesoporous Materials. 2002,54(1-2):15-26.
    [110] Park Y S,Ito Y,Imanishi Y. Photocontrolled gating by polymer brushes grafted on porous glass filter. Macromolecules. 1998,31(8):2606-2610.
    [111] Aoyama M,Watanabe J,Inoue S. Photoregulation of permeability across a membrane from a graft copolymer containing a photoresponsive polypeptide branch. Journal of the American Chemistry Society. 1990,112(14),5542-5545.
    [112] Feldheim D L,Elliott C M. Switchable gate membranes. Conducting polymer films for the selective transport of neutral solution species. Journal of Membrane Science,1992,70(1):9-15.
    [113] 刘燕军,傅学起. pH值响应分离膜研究进展. 化工进展. 2005,24(9):951-955.
    [114] 谢锐,褚良银,曲剑波. pH响应型微囊膜的研究与应用进展. 膜科学与技术. 2005,25(1):69-73,80.
    [115] Iwata H,Hirata I,Ikada Y. Atomic force microscopic analysis of a porous membrane with pH-sensitive molecular valves. Macromolecules. 1998,31(11):3671-3678.
    [116] Ito Y,Inaba M,Chung D J,Imanishi Y. Control of water permeation by pH and ionic strength through a porous membrane having poly(carboxy1ic acid) surface-grafted. Macromolecules. 1992,25(26):7313-7316.
    [117] Park Y S,Ito Y,Imanishi Y. pH-controlled gating of a porous glass filter by surface grafting of polyelectrolyte brushes. Chemical of Materials. 1997,9(12):2755-2758.
    [118] Ito Y,Park Y S,Imanishi Y. Visualization of critical pH-controlled gating of a porous membrane grafted with polyelectrolyte brushes. Journal of the American Chemistry Society. 1997,119(11):2739-2740.
    [119] Ito Y,Ochiai Y,Park Y S,Imanishi Y. pH-sensitive gating by conformational change of a polypeptide brush grafted onto a porous polymer membrane. Journal of the American Chemistry Society. 1997,119(7):1619-1623.
    [120] Zhang H J,Ito Y. pH control of transport through a porous membrane self-assembled with a poly(acrylic acid) loop brush. Langmuir. 2001,17(26):8336-8340.
    [121] Ito Y,Park Y S,Imanishi Y. Nanometer-sized channel gating by a self-assembled polypeptide brush. Langmuir. 2000,16(12):5376-5381.
    [122] Zhang K,Wu X Y. Modulated insulin permeation across a glucose-sensitive polymeric composite membrane. Journal of Controlled Release. 2002,80(1-3):169-178.
    [123] Cartier S,Horbett T A,Ratner B D. Glucose-sensitive membrane coated porous filters for control of hydraulic permeability and insulin delivery from a pressurized reservoir. Journal of Membrane Science. 1995,106(1-2):17-24.
    [124] Ito Y,Nishi S,Park Y S,Imanishi Y. Oxidoreduction-sensitive control of water permeation through a polymer brushes-grafted porous membrane. Macromolecules. 1997,30(19):5856-5859.
    [125] 刘育,尤长城,张衡益. 超分子化学——合成受体的分子识别与组装. 天津:南开大学出版社. 2001.
    [126] Ito T,Yamaguchi T. Controlled release of model drugs through a molecular recognition ion gating membrane in response to a specific ion signal. Langmuir. 2006,22(8):3945-3949.
    [127] 黄量,戴立信. 手性药物的化学与生物学. 北京:化学工业出版社,2002.
    [128] Mezey P G. New Developments in Molecular Chirality. Dordrecht, Boston, London:Klumer Academic Publishers,1991.
    [129] FDA’s policy statement for the development of new stereoisomeric drugs. Chirality. 1992,4(5):338-340.
    [130] 黄蓓,杨立荣,吴坚平. 手性拆分技术的工业应用. 化工进展. 2002,21(6):375-380.
    [131] Van der Ent E M,Van’t Riet K,Keurentjes J T F,Van der Padt A. Design criteria for dense permeation-selective membranes for enantiomer separations. Journal of Membrane Science. 2001,185(2):207-221.
    [132] Ulbricht M. Membrane separations using molecularly imprinted polymers. Journal of Chromatography B. 2004,804(1):113-125.
    [133] 黄蓓,陈欢林. 选择性扩散和选择性吸附手性拆分膜及其应用. 功能高分子学报. 2002,15(4):480-486.
    [134] 谢锐,褚良银,曲剑波. 手性拆分膜的研究与应用新进展. 现代化工. 2004,24(4):15-18.
    [135] Aoki T,Shinohara K I,Kaneko Ta,Oikawa E. Enantioselective permeation of various racemates through an optically active poly{1-[dimethyl(10-pinanyl)silyl]-1-propyne} membrane. Macromolecules. 1996,29(12):4192-4198.
    [136] Aoki T,Ohshima M,Shinohara K I,Kaneko T,Oikawa E. Enantioselective permeation of racemates through a solid (+)-poly{2-[dimethyl(10-pinanyl)silyl]norbornadiene} membrane. Polymer. 1997,38(1):235-238.
    [137] Aoki T,Kobayashi Y,Kaneko T,Oikawa E,Yamamura Y,Fujita Y,Teraguchi M,Nomura R,Masuda T. Synthesis and properties of polymers from disubstituted acetylenes with chiral pinanyl groups. Macromolecules. 1999,32(1):79-85.
    [138] Kim J H,Kim J H,Jegal J,Lee K H. Optical resolution of α-amino acids through enantioselective polymeric membranes based on polysaccharides. Journal of Membrane Science. 2003,213(1-2):273-283.
    [139] Lee S B,Mitchell D T,Trofin L,Nevanen T K,S?derlund H,Martin C R. Antibody-based bio-nanotube membranes for enantiomeric drug separations. Science. 2002,296(5576):2198-2200.
    [140] Higuchi A,Yomogita H,Yoon B O,Kojima T,Hara M,Maniwa S,Saitoh M. Optical resolution of amino acid by ultrafiltration using recognition sites of DNA. Journal of Membrane Science. 2002,205(1-2):203-212.
    [141] Higuchi A,Furuta K,Yomogita H,Yoon B O,Hara M,Maniwa S,Saitoh M. Optical resolution of amino acid by ultrafiltration through immobilized DNA membranes.Desalination. 2002,148(1-3):155-157.
    [142] Higuchi A,Hayashi A,Kanda N,Sanui K,Kitamura H. Chiral separation of amino acids in ultrafiltration through DNA-immobilized cellulose membranes. Journal of Molecular Structure. 2005,739(1-3):145-152.
    [143] Higuchi A,Higuchi Y,Furuta K,Yoon B O,Hara M,Maniwa S,Saitoh M,Sanui K. Chiral separation of phenylalanine by ultrafiltration through immobilized DNA membranes. Journal of Membrane Science. 2003,221(1-2):207-218.
    [144] Nakamura M,Kiyohara S,Saito K,Sugita K,Sugo T. Chiral separation of DL-tryptophan using porous membranes containing multilayered bovine serumin albumin crosslinked with glutaraldehyde. Journal of Chromatography A. 1998,822(1):53-58.
    [145] Nakamura M,Kiyohara S,Saito K,Sugita K,Sugo T. High resolution of DL-tryptophan at high flow rates using a bovine serum albumin-multilayered porous hollow-fiber membrane. Analytical Chemistry. 1999,71(7):1323-1325.
    [146] Kiyohara S,Nakamura M,Saito K,Sugita K,Sugo T. Binding of DL-tryptophan to BSA adsorbed in multilayers by polymer chains grafted onto a porous hollow-fiber membrane in a permeation mode. Journal of Membrane Science. 1999,152(2):143-149.
    [147] Saito K. Charged polymer brush grafted onto porous hollow-fiber membrane improves separation and reaction in biotechnology. Separation Science and Technology. 2002,37(3):535-554.
    [148] Tsuneda S,Saito K,Furusaki S,Sugo T. High-throughput processing of proteins using a porous and tentacle anion-exchange membrane. Journal of Chromatography A. 1995,689(2):211-218.
    [149] Krieg H M , Breytenbach J C , Keizer K. Chiral resolution by β-cyclodextrin polymer-impregnated ceramic membranes. Journal of Membrane Science. 2000 ,164(1-2):177-185.
    [150] 龙远德,黄天宝. β-环糊精聚合物膜拆分氨基酸对映体. 高等学校化学学报. 1999,20(6):884-886.
    [151] Yoshikawa M,Ooi T,Izumi J I. Novel membrane materials having EEE derivatives as a chiral recognition site. European Polymer Journal. 2001,37(2):335-342.
    [152] Yoshikawa M,Ooi T,Izumi J I. Alternative molecularly imprinted membranes from a derivative of natural polymer, cellulose acetate. Journal of Applied Polymer Science. 1999,72(4):493-499.
    [153] Yoshikawa M , Yonetani K. Molecularly imprinted polymeric membranes with oligopeptide tweezers for optical resolution. Desalination. 2002,149(1-3):287-292.
    [154] Yoshikawa M,Fujisawa T,Izumi J I,Kitao T,Sakamoto S. Molecularly imprinted polymeric membranes involving tetrapeptide EQKL derivatives as chiral-recognition sites toward amino acids. Analytica Chimica Acta. 1998,365(1-3):59-67.
    [155] Thoelen C,De bruyn M,Theunissen E,Kondo Y,Vankelecom I F J,Grobet P,Yoshikawa M , Jacobs P A. Membranes based on poly(γ-methyl-L-glutamate): synthesis, characterization and use in chiral separations. Journal of Membrane Science. 2001,186(2):153-163.
    [156] Aoki T , Tomizawa S , Oikawa E. Enantioselective permeation through poly{γ-[3-(pentamethyldisiloxanyl) propyl]-L-glutamate} membranes. Journal of Membrane Science. 1995,99(2):117-125.
    [157] Lee N H,Frank C W. Separation of chiral molecules using polypeptide-modified poly(vinylidene fluoride) membranes. Polymer. 2002,43(23):6255-6262.
    [158] Sasaki Y,Iwamoto S,Mukai M,Kikuchi J I. Photo- and thermo-responsive assembly of liposomal membranes triggered by a gemini peptide lipid as a molecular switch. Journal of Photochemistry and Photobiology A: Chemistry. 2006,183(3):309-314.
    [159] Yanagioka M,Kurita H,Yamaguchi T,Nakao S I. Development of a molecular recognition separation membrane using cyclodextrin complexation controlled by thermosensitive polymer chains. Industrial & Engineering Chemistry Research. 2003,42(2):380-385.
    [160] Nozaki T,Maeda Y,Ito K,Kitano H. Cyclodextrins modified with polymer chains which are responsive to external stimuli. Macromolecules. 1996,28(2):522-524.
    [161] Nozaki T , Maeda Y , Kitano H. Cyclodextrin gels which have a temperature responsiveness. Journal of Polymer Science:Part A:Polymer Chemistry. 1997,35 (8):1535-1541.
    [162] Wang H D,Chu LY, Yu X Q,Xie R,Yang M,Xu D,Zhang J,Hu L. Thermosensitive affinity behavior of poly(N-isopropylacrylamide) hydrogels with β-cyclodextrin moieties. Industrial & Engineering Chemistry Research. 2007,46(5):1511-1518.
    [163] Liu Y Y,Fan X D, Gao L. Synthesis and characterization of β-cyclodextrin based functional monomers and its copolymers with N-isopropylacrylamide. Macromolecular Bioscience. 2003,3(12): 715-719.
    [164] Liu Y Y , Fan X D, Zhao Y B. Synthesis and characterization of a poly(N-isopropylacrylamide) with β-cyclodextrin as pendant groups. Journal of Polymer Science A: Polymer Chemistry. 2005,43(16):3516-3524.
    [165] Liu Y Y,Fan X D. Synthesis and characterization of pH- and temperature-sensitive hydrogel of N-isopropylacrylamide/cyclodextrin based copolymer. Polymer. 2002,43(18):4997-5003.
    [166] Liu Y Y , Fan X D , Hu H , Tang Z H. Release of chlorambucil from poly(N-isopropylacrylamide) hydrogels with β-cyclodextrin moieties. Macromolecular Bioscience. 2004,4(8):729-736.
    [167] Liu Y Y,Fan X D. Preparation and characterization of a novel responsive hydrogel with a β-cyclodextrin-based macromonomer. Journal of Applied Polymer Science. 2003,89(2):361-367.
    [168] Liu Y Y,Fan X D,Kang T,Sun L. A cyclodextrin microgel for controlled release driven by inclusion effects. Macromolecular rapid communications. 2004,25(22):1912-1916.
    [169] Ohashi H, Hiraoka Y, Yamaguchi T. An autonomous phase transition-complexation/decomplexation polymer system with a molecular recognition property. Macromolecules. 2006,39(7):2614-2620.
    [170] 童林荟. 环糊精化学——基础与应用. 北京:科学出版社,2001.
    [171] 黄怡,范晓东. 碱性水溶液中β-环糊精的选择性磺酰化. 西北大学学报(自然科学版). 2003,33(1):41-44.
    [172] 刘育,张毅民,孙世新,陈荣悌. 一种简便、有效的合成 6-OTs-β-CD 的新方法. 高等学校化学学报. 1995,16(10):1567-1568.
    [173] Petter R C,Salek J S,Sikorski C T,Kumaravel G,Lin F T. Cooperative binding byaggregated mono-6-(alkylamino)-β-cyclodextrins. Journal of the American Chemistry Society. 1990,112(10): 3860-3868.
    [174] Takahashi K,Hattori K,Toda F. Monotosylated α- and β-cyclodextrins prepared in an alkaline aqueous solution. Tetrahedron Letters. 1984,25(31):3331-3334.
    [175] Onozuka S,Kojima M,Hattori K,Toda F. The regiospecific mono tosylation of cyclodextrins. Bulletin of Chemical Society of Japan. 1980,53(11):3221-3224.
    [176] 申宝剑,童林荟,张宏伟,金道森. β-环糊精 2 位碳仲羟基的选择性磺酰化. 有机化学. 1991,11(3):265-268.
    [177] 欧阳玉祝,彭清静,邹晓勇,李辉. 修饰环境对 β-环糊精磺酸酯合成的影响. 精细化工. 2000,17(1):23-26.
    [178] May B L,Kean S D,Easton C J,Lincoln S F. Preparation and characterization of 6A-polyamine-mono-substituted β-cyclodextrins. Journal of the Chemical Society. Perkin Transactions. 1997,1(21):3157-3160.
    [179] Ueno A , Breslow R. Selective sulfonation of a secondary hydroxyl group of β-cyclodextrin. Tetrahedron Letters. 1982,23(34):3451-3454.
    [180] Pollak A,Blumenfeld H,Wax M,Baughn R L,Whitesides G M. Enzyme immobilization by condensation copolymerization into crosslinked polyacrylamide gels. Journal of the American Chemistry Society. 1980,102(20): 6324-6336.
    [181] Lai X H,Ng S C. Preparation and chiral recognition of a novel chiral stationary phase for high-performance liquid chromatography, based on mono(6A-N-allylamino-6A-deoxy)-perfunctionalized β-cyclodextrin and covalently bonded silica gel. Journal of Chromatography A. 2004,1031(1-2):135-142.
    [182] Virtanen J , Baron C , Tenhu H. Grafting of poly(N-isopropylacrylamide) with poly(ethylene oxide) under various reaction conditions. Macromolecules. 2000,33(2):336-341.
    [183] Liu Y Y,Fan X D. Synthesis, properties and controlled release behaviors of hydrogel networks using cyclodextrin as pendant groups. Biomaterials. 2005,26(32):6367-6374.
    [184] Bonomo R P,Cucinotta V,D’Allessandro F,Impellizzeri G,Maccarrone G,Rizzarelli E. Coordiation properties of 6-Deoxy-6-[1-(2-amino)ethylamino]-β-cyclodextrin and theability of its copper(II) complex to recognize and separate amino acid enantiomeric pairs. Journal of Inclusion Phenomena and Molecular Recognition in Chemistry. 1993,15(2):167-180.
    [185] Gottlieb H E,Kotlyar V,Nudelman A. NMR chemical shifts of common laboratory solvents as trace impurities. Journal of Organic Chemistry. 1997,62(21):7512-7515.
    [186] Hirasawa T,Maeda Y,Kitano H. Inclusional complexation by cyclodextrin-polymer conjugates in organic solvents. Macromolecules. 1998,31(14):4480-4485.
    [187] Ritter H,Sadowski O,Tepper E. Influence of cyclodextrin molecules on the synthesis and the thermoresponsive solution hehavior of N-isopropylacrylamide copolymers with adamantyl groups in the side-chains. Angewandte Chemie International Edition. 2003,42(27):3171-3173.
    [188] Zhang J T , Huang S W , Liu J , Zhuo R X. Temperature sensitive poly[N-isopropylacrylamide-co-(acryloyl β-cyclodextrin)] for improved drug release. Macromolecular Bioscience. 2005,5(3):192-196.
    [189] Zhang J T,Huang S W,Zhuo R X. Preparation and characterization of novel temperature sensitive poly(N-isopropylacrylamide-co-acryloyl beta-cyclodextrin) hydrogels with fast shrinking kinetics. Macromolecular Chemistry and Physics. 2004,205(1):107-113.
    [190] Zhang J T , Huang S W , Gao F Z , Zhuo R X. Novel temperature-sensitive, β-cyclodextrin-incorporated poly(N-isopropylacrylamide) hydrogels for slow release of drug. Colloid and Polymer Science. 2005,283(4):461-464.
    [191] Zhang J T , Huang S W , Xue Y N , Liu J , Zhuo R X. Thermal-sensitive beta-cyclodextrin-containing poly(N-isopropylacrylamide) hydrogels crosslinked by Si-o-Si bonds-synthesis, characterization and prolonging in vitro release of 5-fluorouracil. Chinese Journal of Polymer Science. 2005,23(5):513-519.
    [192] Liu Y Y,Fan X D,Zhao Q. A novel IPN hydrogel based on poly (N-isopropylacrylamide) and β-cyclodextrin polymer. Journal of Macromolecular Science A: Pure and Applied Chemistry. 2003,A40(10):1095-1105.
    [193] Choudhary V,Rajya S,Singh D. Study on the copolymerization of N-isopropylacrylamide with glycidyl methacrylate. Macromolecular Symposia. 2004,210:49-57.
    [194] Chu L Y,Park S H,Yamaguchi T,Nakao S I. Preparation of thermoresponsive core-shell microcapsules with a porous membrane and poly(N-isopropylacrylamide) gates. Journal of Membrane Science. 2001,192(1-2):27-39.
    [195] Yamaguchi T,Nakao S I,Kimura S. Plasma-graft filling polymerization: preparation of a new type of pervaporation membrane for organic liquid mixtures. Macromolecules. 1991,24(20):5522-5527.
    [196] 陈杰瑢. 低温等离子体化学及其应用. 北京:科学出版社,2001.
    [197] Yasuda H. Plasma polymerization. Orlando:Academic press,Inc.,1985.
    [198] 四川大学工科基础化学教学中心,分析测试中心编著. 分析化学. 北京:科学出版社,2001.
    [199] Henn A R. The surface tension of water calculated from a random network model. Biophysical Chemistry. 2003,105(2-3):533-543.
    [200] Extrand C W,Kumagai Y. An experimental study of contact angle hysteresis. Journal of Colloid and Interface Science. 1997,191(2):378-383.
    [201] Okajima S,Yamaguchi T,Sakai Y,Nakao S I. Regulation of cell adhesion using a signal-responsive membrane substrate. Biotechnology and Bioengineering. 2005,91(2):237-243.
    [202] Okajima S,Sakai Y,Yamaguchi T. Development of a regenerable cell culture system that senses and releases dead cells. Langmuir. 2005,21(9):4043-4049.
    [203] Choi E Y,Strathmann H,Park J M,Moon S H. Characterization of non-uniformly charged ion-exchange membranes prepared by plasma-induced graft polymerization. Journal of Membrane Science. 2006,268(2):165-174.
    [204] Yamada K,Haraguchi T,Kajiyama T. Plasma-graft polymerization of vinyl monomers with reactive groups onto a surface of poly(p-phenylene terephthalamide) fiber. Journal of Applied Polymer Science. 1996,60(11):1847-1853.
    [205] 杨座国,杨远明,许振良. 手性流动相高效液相色谱法拆分D,L-色氨酸. 华东理工大学学报(自然科学版). 2005,31(1):1-4.
    [206] Virtanen J,Tenhu H. Studies on copolymerization of N-isopropylacrylamide and glycidyl methacrylate. Journal of Polymer Science:Part A:Polymer Chemistry. 2001,39(21):3716-3725.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700