双向主动弯曲气动柔性关节及其在机械手中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
各类主动关节是仿生机器人及运动机械的关键部件,其结构特征、运动特点、力学特性、驱动能力和控制方法,将决定整机产品的功能和应用水平。随着科技的发展,机器人技术的应用正以前所未有的速度向工业装配、物流、服务和军事领域扩展,对其整体性能提出了更高的要求。尤其是对关节的结构柔性、运动柔性、驱动柔性和柔性控制提出了挑战,迫切需要研发具有综合柔性功能的仿生关节,对环境和操作对象的变化具有适应性。
     近几十年来,国内外学者对关节柔性问题的研究取得了丰富成果。已开发具有部分柔性功能的关节,主要有伺服电机、液压缸和气缸驱动方式,且被广泛应用于各种机械和机器人中。但其体积较大关节偏“硬”,能实现的柔性功能程度有限。气动人工肌肉驱动因具有高度柔顺性,受到极大关注并已陆续研发出五种形式的人工肌肉。其中仅有McKibben型肌肉较为成功,在柔性机器人关节的驱动上已初步得到应用,但关节本体仍为刚性,具有综合柔性的关节尚待研究。在理论上,其大变形气动弹性体的力学特性还需要进一步深入探讨。
     本文从自主研制的气动人工肌肉着手,突破了传统主动关节的结构模式,提出了一种并联四肌肉组成的双向主动弯曲气动柔性关节。将关节本体需要的刚度分化到肌肉约束弹簧中,使驱动装置与关节本体复合为一体,具有本体柔性、运动柔性和驱动柔性。该关节能实现正屈、反伸、内收、外展和轴向移动,两个正交主方向弯曲能力强,具有较好的形状变化适应性。
     根据新型关节的特殊要求,创造性地提出了一种伸长型气动人工肌肉。采用约束弹簧和橡胶管组合的结构形式,使弹簧可根据关节的刚度要求调整参数,达到关节刚柔相宜的统一。在研究肌肉轴向膨胀的极限工作压力和约束稳定性基础上,建立了一种判断人工肌肉径向约束失稳的实验方法。发现了人工肌肉主动扭转变形规律,提出了一种SS型圆柱螺旋弹簧和双体人工肌肉的限扭转方案,经有限元分析表明SS型圆柱螺旋弹簧轴向变形和弯曲变形均属于线弹性。
     通过对人工肌肉力学性能的理论和实验研究,揭示了其相当于变参数柔性气缸的工作原理。针对人工肌肉大变形和非线性等问题,利用超弹性体变形能函数和经典弹性变形两种理论,研究了人工肌肉的静力学特性,给出了相应的数学公式。利用平动质量动能等效方法,建立了肌肉轴向变参数动力学模型,分析了其固有频率变化区间。为建立肌肉抗弯刚度的理论模型,对人工肌肉受载弯曲变形进行了分析,获得了理论计算公式。搭建了实验系统,采取光学投影等非接触式测量手段进行了肌肉的力学特性实验。
     在深入探索复合弹性体大变形特征的基础上,创建了新型柔性关节变参数静力学和动力学模型。利用组合弹性体变形叠加原理,建立了关节力学性能与人工肌肉特性的关系,关节的弯曲变形与气压的关系,得到了相应的数学公式,进行了实验验证。针对关节弯曲存在变形耦合、非线性和变参数等问题,通过轴向和弯曲质量动能等效方法,建立了关节变参数动力学模型,分析了关节主要固有频率变化规律。研究了柔性关节的驱动功能,关节接触点位置、气压、关节尺寸等参数对弯曲夹持力的影响,确定了关节五种主要变形状态的控制方法。
     基于双向弯曲柔性关节研发了一种具有全新结构和功能的五指柔性机械手。采取中指居中、四指相对布局,形成了以双拇指为主的抓取模式,保证了抓取的稳定性。采用了楔形盘为关节连接部件,结合独特的反伸功能,解决了机械手的灵活性和抓取物体范围的矛盾。为研究机械手位姿数学模型,将关节的非线性变形关系,以参数形式组合到齐次变换矩阵中,有效解决了弹性大变形非线性关节的坐标变换和位姿计算问题。具体推导了手指特征点在手掌坐标系中的位置,给出了手指四种模式位姿计算公式。利用Matlab软件,对手指的正屈、反伸、外展和内收功能进行了抓取仿真,得到了相应的轨迹和机械手抓取位姿图,并通过机械手抓取动作实验加以验证。
     本文对不同类型的手指夹持位置、气压和夹持力的关系进行了实验研究,并探讨了关节运动柔性和控制方式对夹持力的动态影响。通过对机械手抓取实物的实验分析,验证了其操作功能的实现效果。在深入分析机械手控制功能要求和特点的基础上,建立了由计算机、控制器和气压控制三部分组成的控制系统方案。针对柔性机械手四类12种抓取模式,研究了控制方法和气压控制系统结构,搭建了气动实验台。结合控制要求形成了电气控制系统结构方案,确定了机械手的具体控制方法和控制策略,给出了主要控制软件程序流程图。
     论文的研究工作为解决当前存在的关节柔性不足等问题,提供了一种新的解决方案。研究结果表明,所开发的主动弯曲关节,具有良好的综合柔性;利用该关节组合的柔性机械手,可完成人手的多数动作和功能。该关节可用于各类相关机械和机器人中,具有较高的研究价值和十分广阔的应用前景。
Active joint is the key component of the biomimetic robot, and its structure characteristic, movements, mechanics, drive capability and control method determine the functions and application of the machine product. With the development of robotics, especially spread to fabricating industry, logistics, service and military affairs with unprecedented speed, people put forward higher request to the performance of the robot and propel a challenge for the structural flexibility, compliance, gentle drive and soft control. It is an urgent task to develop the biomimetic joints with integration flexibility, which can adapt to the change of environment and operational objectives.
     Many researchers have yielded important information on the problems of flexible joints. The joints in existence with portion flexibility are mainly driven by motor, hydraulic cylinder or functional materials, in which the motor driven and the hydraulic driven have widely used in machinery and robots, but its large bulk and rigidity greatly reduce the flexibility of joints. In order to improve the flexibility and compliance of the robot hand, many researchers have developed five types of PAM (Pneumatic Artificial Muscle). The McKibben muscle is more successful to drive the flexible joint of robot than the other artificial muscles. Yet this type of joint self is still rigid, the joint with integration flexibility is not formed so far, the mechanical properties of pneumatic elastic bodies with large deformation still is to be learned.
     In this thesis, a new type of flexible joint was carried out base on the elongation type of pneumatic artificial muscle we developed, the structure of joint break through the traditional pattern of active joint; four PAMs in parallel compose the bidirectional active flexible joint. The drive device and the joint itself compound as one which has good flexibility, the stiffness of the joint is distributed to the spring of the PAM. The joint can bend, anti-stretch, abduce, adduct and axial elongate. The bending capability in two orthogonal principal directions which let it has good adaptability to the changes in shape.
     In this thesis, we creatively put forward the elongation pneumatic artificial muscle. The structure of combined the constraint spring and the rubber tube, makes it easy to adjust the parameters of spring to change the stiffness of joint for suitability. Furthermore, we discussed the operating range of the artificial muscle and restrict stability; then put forward the experimental method to judge the instability destruction in radial of the artificial muscle. To solve the torsion of PAM, we put forward the SS type cylindrical spiral spring and artificial muscle with two bodies. It indicates that the axial and bending deformation of SS type cylindrical spiral spring is linear through the finite element analysis.
     This thesis has theoretical and experimental analysis on its mechanical properties; studied its work principle as the variation parameter cylinder. We have analysis on the static characteristics of PAM and establish the mathematical model using deformation energy function and the classical theory of elastic deformation to solve the large and non-linear deformation problem; established the variable dynamic model of PAM applying the equivalent method of translational kinetic energy and get the natural frequency interval; studied the axial and bending deformation of the new type of flexible joint. We also did the experiments on the PAM applying the non-contact measurement.
     In this thesis, we built the static and dynamic model with variable parameter of the joint based on the exploration of large deformation of compound elastic body; studied the relationship between the PAM and joint; discussed the relationship between the air pressure and the bending deformation; then get its mathematical model which is verified by the experiments. In addition, we established the variation parameter dynamic model of flexible joint, and get natural frequency regularity of joint. Furthermore, we investigated on the factors to influence to grasp force, such as the drive function and the contact position of joint, air pressure, the size of joint, etc.Then we decided the control system configuration of joint, where five mode of deformation are controlled.
     Based on the bidirectional bending active pneumatic flexible joints, we developed the five-fingered robot hand which has a brand new structure and function. The middle finger is in middle and the other four fingers are opposite to each other, which form the grasp mode with dual-thumb and ensure the stability of grasp. We adopted the wedge plate as the connection part, and combined the anti-stretch function of the hand to improve the flexibility and the grasp range of robot hand. We introduced the large deformation non-linear variables of flexible joints to the transformation matrix using the parametric translational coordinates; get the homogeneous transformation matrix of four patterns of the finger; get the trajectory and the pose of finger when it is bending, anti-stretch, abducent and adducent using matlab; and the experiments prove the validity of the theoretical model.
     We did experimental analysis on the relationship between grasp force as well as the grasp position and the air pressure; moreover, we discussed the influence of flexibility to grasp force. Then we did the experiments about robot hand to grasp the object, which verified the manipulation function of robot hand. We discussed on the control requirements and its characteristic, and then form the scheme of control system, which combined the computer, controller and pneumatic control system. We propose the control method to the four type grasp mode which including twelve moments of fingers; designed the pneumatic control system and built the pneumatic table; formed the electrical control system scheme. Then we determined the details of control method of fingers and robot hand as well as the flow chart of control program.
     The research of this thesis provided a new solution to solve the insufficiency of flexibility of joint as so far. The results show that the bidirectional active flexible bending joint we developed has good flexibility and compliance to meet the special requirements of the biomimetic joints; and the flexible robot hand composed by this joint can complete the action and function as human being, and it has high theoretical value and broad application prospects.
引文
[1]蔡自兴.机器人学(第二版)[M].北京:清华大学出版社,2009.9.
    [2]姜山等.智能仿人机械人的现状及展望[J].机器人技术及应用,2000(4):6-9.
    [3]李允明.国外仿人机器人的发展概况[J].机器人,2005,27(6):561-568.
    [4]Kutz L J. Robotic transplanting of bending plants [J].Transactions of the ASAE,1987, 30(3):586-590.
    [5]Monta M, Kondo N, Ting K C. End-effectors for tomato harvesting robot[J].Artifical Intelligence Review,1998,12:11-25.
    [6]Reeda J N, Milesa S J, Butlera J, et al. Automatic mushroom harvester development[J]. Journal of Agricultural Engineering Reserch,2001,78(1):15-23.
    [7]Lida M, Furube K, et al. Development of watermelon harvesting gripper[J]. Journal of the Japanese Society of Agricultral Machinery,1996.58(3):19-26.
    [8]Kollenburg Crisan, L M van,Werkhoven C,Wennekes P.Development of a mechatronic systerm for automatic harvesting of cucumbers[J]. Robotics and automated machinery,1997:143-148.
    [9]Kondo N,Ting K C.Robotics for bio-productin systerms[M].USA:ASAE publisher,1998.
    [10]罗庆生,韩玲.现代仿生机器人设计[M].北京:电子工业出版社,2008.3.
    [11]张秀丽,郑浩峻,段广洪.机器人仿生学研究综述[J].机器人,2002,24(3):188-192.
    [12]迟东祥,颜国正.仿生机器人的研究状况及其未来发展[J].机器人,2001,(5):476-480.
    [13]王田苗,孟偲,裴葆青,戴振东.仿壁虎机器人研究综述,机器人[J].2007,29:290-297.
    [14]Menon C, Murphy M, SittiM.Gecko inspired surface climbing robots [C]. Proceedings of the IEEE international conference on Robotics and Biomimetics,2004:431-436.
    [15]Randall D. Beer, Roger D. Quinn, Hillel J. Chiel and Roy E. Ritzmann. Biologically Inspired Approaches to Robotics[J]. Communications of the ACM,1997,40:30-38.
    [16]Yamauchi B, Schultz A, Adams W, Grefenstette J, etc. ARIEL:Autonomous Robot for Integrated Esploration and Localication[C]. Proc. of the Fourteenth National Conference on Artificial Intelligence,1997:804-805.
    [17]王沫楠,杨玉春.仿生机器蟹的模型建立及优化.哈尔滨理工大学学报,2003,8(6):1-3.
    [18]日本机器人协会编,宗光华,程君实等译.新版机器人技术手册[M].北京:科学出版社,2007.10.
    [19]H Asada, T Kanade. Design Concept of Direct-Drive Manipulators Using Rare-Earth DC Torque Motors[C]. proc. Of llth ISIR,1981:629-634.
    [20]L Kersten.The Lemma Concepy:A New Manipulator [J]. Mechanism and Machine Theory,1977, (12):77-84.
    [21]Mason M T,Salisbury J K.Robot Hands and the Mechanics of Manipulation[M]. USA, Cambridge:MIT Press,1985.
    [22]Caffaz A, Cannata G. The Designand Development of the DIST-Hand Dextrous Gripper[C]. Proceedings of the IEEE International Conference on Robotics and Automation,1998:2075-2080.
    [23]Paap KL, Christaller T, Kirchener F.A Robot Snake To Inspect Broken Buildings[C]. Proceedings of the 2000 IEEE/RSJ International Conference on Intellegent Robots and Systerm,2000:2079-2081.
    [24]Tetsushi Kamegawa, Tatsushiro YamasaKi, Hiroki Igarashi et al. Development of The Snake-like Resue Robot "Kohga"[C]. Proceedings of the 2004 IEEE International Conference on Robotics & Automation,2004:5081-5086.
    [25]Chiharu Ishii, Kosuke Kobayashi. Development of a New Robotic Forceps Manipulator for Minimally Invasive Surgery and Its Control[C]. SICE-ICASE International Joint Conference,2006:250-253.
    [26]Chiharu Ishii, Yosuke Nishitani, Hiroshi Hashimoto. Robotic Hand with a New Bending Mechanism[C]. Proceedings of the 2009 IEEE International Conference on Mechatronics and Automation,2009:32-36.
    [27]Jason Potratz, Jingzhou Yang, Karim Abdel-Malek. A Light Weight Compliant Hand Mechanism with High Degrees of Freedom [J]. ASME,2005,11:934-945.
    [28]王国庆,李大寨.钱锡康等.新型三指灵巧手的研究[J].机械工程学报,1997,33(3):71-75.
    [29]Zhang Y, Han Z, Zhang H,et al.Design and control of the BUAA four-fingered hand[C]. Proceedings of IEEE International Conference on Robotics and Automation, 2001:2517-2522.
    [30]刘宏,G. Hirzinger.智能机器人灵巧手的研究[J].西安交通大学学报,2003,37(4):331-342.
    [31]叶长龙,马书根,李斌,王越超.三维蛇形机器人巡视者Ⅱ的开发[J].机械工程学报,2009,45(5):128-133.
    [32]Jacobsen S C, Wood J E, Knutti D F, Biggers K B. The UTAH/MIT Dexterous Hand: Work in Prograss[J].The International.Journal of Robotics Research,1984,3(4):21-50.
    [33]VANDERBORGHT B,VERRELST B,VAN HAM R,etal.Torque and Compliance Control of the Pneumatic Artificial Muscles in the Biped"Lucy"[C]. Proceedings of the 2006 IEEE International Conference on Roboticsand Automation,2006:842-847.
    [34]W. McMahan, V. Chitrakaran, M.Csencsits, D. Dawson. Field Trials and Testing of the OctArm Continuum Manipulator[C]. Proceedings of the 2006 IEEE International Conference on Robotics and Automation,2006:2336-2341.
    [35]Kurt S. Aschenbeck, Nicole I. Kern, Richard J. Bachmann, Roger D. Quinn. Design of a Quadruped Robot Driven by Air Muscles[C]. Biomedical Robotics and Biomechatronics, 2006:875-880.
    [36]范伟,余麟,刘昭博.气动人工肌肉驱动仿人灵巧手的设计[J].机床与液压,2006,(8):62-65.
    [37]彭光正,余麟,刘吴.气动人工肌肉驱动仿人灵巧手的结构设计[J].北京理工大学学报,2006,26(7):593-597.
    [38]毛勇,王家廞,庄新彦,丘振.基于气动人工肌肉的双足机器人关节设计[J].电子技术应用,2006,(3):78-80.
    [39]田社平,林良明,颜国正.基于神经网络的人工肌非线性控制.上海交通大学学报,2001,35(5):714-716.
    [40]朱兴龙,周骥平,颜景平.一种新型的三自由度垂直相交运动解耦液压伺服关节的设计[J].中国机械工程,2002,13(21):1824-1826.
    [41]朱兴龙,周骥平.液压伺服关节自适应模糊神经网络控制补偿方法[J].控制理论与应用,2005,22(5):694-698.
    [42]钱少明,杨庆华,鲍官军,王恒,张立彬.基于气动柔性驱动器的弯曲关节的基本特性研究[J].中国机械工程,2009,20(24):2903-2907.
    [43]李尚会,杨庆华,鲍官军,王志恒.基于FPA的新型气动柔性球关节的研究[J].浙江工业大学学报,2009,37(6):662-666.
    [44]Xuan-yin Wang, Yang Zhang, Xiao-jie Fu, Gui-shan Xiang. Design and Kinematic Analysis of a Novel Humanoid Robot Eye Using Pneumatic Artificial Muscles[J]. Journal ofBionic Engineering,2008,5:264-270.
    [45]章军.六关节三指苹果抓取机械手的自适应柔性分析[J].农业工程学报,2010,1,140-144.
    [46]李新贵,张瑞锐,黄美荣,李荣贵.导电聚合物人工肌肉[J].材料科学与工程学报,2004,22(1):128-131.
    [47]李晓锋,梁松苗,李艳芳,王永鑫,徐坚.仿生材料电活性聚合物“人工肌肉”的研究进展[J].高分子通讯,2008,8:134-145.
    [48]唐华平,姜永正,唐运军,殷陈锋,聂拓,王桥医.人工肌肉IPMC电致动响应特性及其模型[J].中南大学学报(自然科学版),2009,40(1):153-158.
    [49]应申舜,秦现生,任振国,冯华山,王战玺.基于人工肌肉的机器人驱动关节设计与研究[J].机器人,2008,2(30):142-146.
    [50]陶国良,谢建蔚,周洪.气动人工肌肉的发展趋势与研究现状[J].机械工程学报,2009,45(10):75-83.
    [51]张立彬,鲍官军,杨庆华,高峰.气动柔性驱动器及其在灵巧手中的应用研究综述[J].中国机械工程,2008,19(23):2891-2897.
    [52]B. Tondu, P. Lopez. Modeling and control of McKibben artificial muscle robot actuators [J]. IEEE Control System,2000:15-38.
    [53]DG Caldwell, GA Medrnao-Cerda and MJ Goodwin, Braided Pneumatic Actuator Control of a Multi-Jointed Manipulator [J]. IEEE International Conference on Systems, Man and Cybernetics,1993,4:23-28.
    [54]F Daerden, D Lefeber. Pneumatic artificial muscles:actuators for robotics and automation [J]. European Journal of Mechanical and Environmental Engineering,2002, 47:10-21.
    [55]B. Tondu, V. Boitier, P. Lopez. Naturally compliant robot-arms actuated by McKibben artificial muscles [J]. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics,1994:2635-2640.
    [56]Shadow Robot Group (London), The SHADOW Air Muscle, .
    [57]Shadow Robot Company. Design of a Dextrous Hand for Adv an ced CLAWAR Applications [R]. London:Shadow Robot Company,2003.
    [58]FESTO, Fluidic Muscle,.
    [59]Boblan I, Bannasch R, Schwenk H, et al. A Human-like Robot H and Arm with Fluidic Muscles:Biologically Inspired Construction and Functionality [J]. Embodied Artificial Intelligence,2004:160-179.
    [60]Suzumori K, Iikura S, Tanaka H. Flexible microactuator for miniature robots[C]. Proc. IEEE Micro Electro Mechanical Systems,1991:204-209.
    [61]Koichi Suzumori. Elastic materials producing compliant robots [J]. Robotics and Autonomous Systems,1996,18(10):135-140.
    [62]Chou Ching-Ping, Black Hannaford. Measurement and Modeling of Mckibben Pneumatic Artificial Muscles[C]. IEEE Transaction on Robotics and Automation,1996.
    [63]DAERDEN F,LEFEBER D,VERRELST B, et al.Pleated pneumatic artificial muscles: actuators for automation and robotics[C]. Proceedings of the 2001 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,2001:738-743.
    [64]A Manuello Bertetto, M Ruggiu. Characterization and modeling of air muscles [J]. Journal of Mechanics Research Communications,2004,31:185-194.
    [65]Tri Vo Minh, Tegoeh Tjahjowidodo, Herman Ramon, Hendrik Van Brussel. Cascade position control of a single pneumatic artificial muscle-mass system with hysteresis compensation[J]. Journal of Mechatronics,2010,20:402-414.
    [66]Keith E. Gordona, Gregory S. Sawicki, Daniel P. Ferris. Mechanical performance of artificial pneumatic muscles to power an ankle-foot orthosis [J]. Journal of Biomechanics,2006,39:1832-1841.
    [67]Yang Qinghua, Zhang Libin, Bao Guanjun, et al. Research on Novel Flexible Pneumatic Actuator FPA[C]. IEEE Conference on Robotics, Automation and Mechatronics,2004: 385-389..
    [68]Bao Guanjun, Zhang Libin, Yang Qinghua, et al. Development of Flexible Pneumatic Spherical Joint[C]. IEEE Conference on Robotics, Automation and Mechatronics,2004: 381-384.
    [69]杨庆华.基于气动柔性驱动器的气动柔性关节及其应用研究[D].杭州:浙江工业大学工学,2005.4.
    [70]鲍官军.气动柔性驱动器FPA的特性及其在多指灵巧手设计中的应用研究[D].杭州:浙江工业大学,2006.6.1.
    [71]阮健,许耀铭.气动柔性气缸及弯曲、扭转关节:中国[P],CN 87 107075 A.1988-4-13
    [72]Suzumori K, Iikura S, Tanaka H. Flexible Microactuator for Miniature Robots[C]. Proc. IEEE Micro Electro Mechanical Systems,1991:204-209.
    [73]Suzumori K, Iikura S, Tanaka H. Development of Flexible Microactuator and Its Applications to Robotic Mechanisms[C]. Proceedings of the 1991 IEEE In ternational Conference on Robotics and Automation,1991:1622-1627.
    [74]Suzumori K, Maeda T, Watanabe H, et al. Fiberless Flex ible Microactuator Designed by Finite-element Method [J]. IEEE/ASME Transactions on Mecha-tronics,1997,2(4): 281-286.
    [75]于莲芝,颜国正,马官营,普鹏.一种柔性移动微小机器人系统的驱动力学特性分 析[J].仪器仪表学报,2007,28(1):7-11.
    [76]Schulz S, Pylatiuk C, Bretthauer G.A New Ultralight Anthropomorphic Hand[C]. Proceedings of the 2001 IEEE International Conference on Robotics & Automation, 2001:2437-2441.
    [77]Noritsugu T, Kubota M, Yoshimatsu S. Development of Pneumatic Rotary Soft Actuator Made of Silicone Rubber [J]. Journal of Robotics and Mechatronics,2001,13(1) 17-22.
    [78]Brown G, Haggard R, Benney R, Rosato N. A new pneumatic actuator and its use in airdrop applications[C]. Proceedings of the 15th Aerodynamic Decelerator Systems Technology Conference,1999.
    [79]Krainski WJ, Kunz SE. The dynamics of a parachute retraction soft-landing system[C]. Proceedings of the 14th AIAA Aerodynamic Decelerator Conference,1997.
    [80]Brown G, Haggard R, Almassy R, Benney R. The affordable guided airdrop system (AGAS) [C]. Proceedings of the 15th Aerodynamic Decelerator Systems Technology Conference,1999.
    [81]Chou CP, Hannaford B. Measurement and modeling of McKibben pneumaticartificial muscles [J]. IEEE Trans Rob Autom,1996.
    [82]Caldwell DG, Medrano-Cerda GA, Goodwin MJ. Control of pneumatic muscle actuators[J]. IEEE Control System Magazine,1995;15(1):40-48.
    [83]隋立明,王祖温.包钢.气动肌肉的刚度特性分析[J].中国机械工程,2004,15(3):242-244.
    [84]张宏立,申珉珉,彭光正.气动人工肌肉静态数学模型与实验研究[J].液压与气动,2009(4):17-18.
    [85]张远深,刘明春,何再龙,赵娜,曾志刚.气动人工肌肉的理想建模及仿真[J].机床与液压,2009(4):37-40.
    [86]B Subudhi, A S Morris. Dynamic modelling, simulation and control of a manipulator with flexible links and joints [J]. Robotics and Autonomous Systems,2002,41:257-270.
    [87]杨庆华, 陈刚,周泉,张立彬,阮健.一种新型弯曲关节的建模研究[J].浙江工业大学学报,2003,31(2):92-96.
    [88]杜经民,朱端阳,杨钢,李宝仁.气动人工肌肉静态特性实验研究[J].液压与气动,2005(5):21-23.
    [89]T. Kerscher, J. Albiez, J.M. Zollner, R. Dillmann, Evaluation of the dynamic model of fluidic muscles using quick-release[C]. Proceedings of the First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics,2006:637-642.
    [90]K Balasubramanian, KS Rattan. Trajectory tracking control of a pneumatic muscle system using fuzzy logic[C]. Annual Conference of the North American Fuzzy Information Processing Society,2005:472-477.
    [91]李春胜,黄德彬.机械工程材料手册[M]下册.北京:电子工业出版社,2007.1.
    [92]张英会,刘辉航,王德成.弹簧手册[M].北京:机械工业出版社,2008.8.
    [93]李晓芳,杨晓翔.橡胶材料的超弹性本构模型[J].弹性体,2005,15(1):50-58.
    [94]郑明军,谢基龙.压缩状态下橡胶件大变形有限元分析[J].北方交通大学学报,2001,25(1):76-79.
    [95]熊有德.材料强度力学[M].北京:科学出版社,2009.9.
    [96]T Belytschko, etc. Nonlinear finite elements for continua and structures [M]. John Wiley & Sons, New York,2002.庄茁泽.连续体和结构的非线性有限元[M].北京:清华大学出版社,2002.
    [97]邹雨,庄茁,黄克智.超弹性材料过盈配合的轴对称平面应力解答[J].工程力学,2004,21(6):72-75.
    [98]危银涛,杨廷青,杜星文.橡胶类材料大变形本构关系及其有限元方法[J].固体力学学报,1999,20(4):281-289.
    [99]何志刚,董大鹏,王国林,应世洲,周孔亢.轮胎超弹性本构材料参数确定的影响因素分析[J].机械工程学报,2008,44(12):296-301.
    [100]P.K.弗雷克里,A.R.佩恩著,杜承恩译.橡胶在工程中应用的理论与实践[M].北京:化学工业出版社,1985.
    [101]L.R.G.特劳雷尔著,王梦娇,王培国,薛广智译.橡胶弹性物理学[M].北京:化学工业出版社,1982.
    [102]A.N.詹特主编,张立群,田明,刘力,冯予星翻译.橡胶工程[M].北京:化学工业出版社,2002.11.
    [103]钟文彬,李柏林,晏星凡.预应力圆柱螺旋弹簧弯曲弹性特性研究[J].机械设计,2008,25(1):25-27.
    [104]杨庆生,崔芸,龙连春.工程力学[M].北京:科学出版社,2008.9.
    [105]Singiresu S. Rao著,李欣业,张明路译.机械振动(第四版)[M].北京:清华大学出版社,2009.8.
    [106]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004.5.
    [107]Jacobsen S C, Wood J E, Knutti D F, Biggers K B. The UTAH/MIT Dexterous Hand: Work in Prograss[J].The International Journal of Robotics Research,1984,3(4):21-50.
    [108]张立彬,鲍官军,杨庆华,计时鸣.气动柔性扭转关节静态模型[J].机械工程学报,2008,7:135.
    [109]TONDU B, LOPEZ P. Modeling and control of Mckibben artificial muscle robot actuators[J].IEEE Control Systems Magazine,2000,20(2):15-38.
    [110]Jun Ueda, Masahiro Kondo, Tsukasa Ogasawara. The multifingered NAIST hand system for robot in-hand manipulation[J]. Mechanism and Machine Theory,2010,45: 224-238.
    [111]朱笑丛,陶国良,曹剑.气动肌肉并联关节的位姿轨迹跟踪控制[J].机械工程学报,2008,44(7):161-167.
    [112]李世荣,宋曦,周又和.弹性曲梁几何非线性精确模型及其数值解[J].工程力学,2004,21(2):129-133.
    [113]Okada T.Computer control of multi-jointed finger system for precise object-handing [J].IEEE Transactions on Systems, Man and Cybernetics,1982,12(3):289-299.
    [114]B Barkat, S Zeghloul, J P Gazeau. Optimization of grasping forces in handling of brittle objects [J]. Robotics and Autonomous Systems,2009,57:460-468.
    [115]Caffaz, Cannata G. The Designand Development of the DIST-Hand Dextrous Gripper[C]. Proceedings of the IEEE International Conference on Robotics and Automation,1998: 2075-2080.
    [116]Paap KL, Christaller T, Kirchener F.A Robot Snake To Inspect Broken Buildings[C]. Proceedings of the 2000 IEEE/RSJ International Conference on Intellegent Robots and Systerm,2000:2079-2081.
    [117]余麟,刘昊,彭光正.五指仿人灵巧手运动学与动力学模型[J].北京理工大学学报,2008,28(10):880-884.
    [118]T. Okada. Object-handling System for Manual Industry [J]. IEEE Trans.on Systems, Man, and Cybernetics,1979,2:79-86.
    [119]J. K. Salisbury and J. J. Craig. Articulated Hands:Force and Kinematics Issues [J]. International Journal of Robotics Research,1982,11:1-10.
    [120]S. C. Jacobsen, E. K. Iversen, D. F. Knutti, R. T. Johnson and K. B. Biggers. Design of the Utah/MIT Dexterous Hand[C]. Proc. Of IEEE Int. Conf. on Robotics and Automation,1982:1520-1532.
    [121]T. Tanikawa, T Arai. Development of a Micro-Manipulation System Having Two-Fingered Micro-Hand [J]. IEEE Trans.on Robotics and Automation,1999,15: 152-162.
    [122]W. Paetsch, M. Kaneko. A Three Fingered, Multijointed Gripper for Experimental Use[C]. Proc. of IEEE International Workshop on Intelligent Robots and Systems,1990: 853-858.
    [123]Y. Zhang, H. Han, H. Zhang, X. Shang. Design and Control of the BUAA Four-Fingered Hand[C]. Proc. of IEEE Int. Conf. on Robotics and Automation,2001:2517-2522.
    [124]S. Schulz, C. Pylatiuk, and G. Bretthauer. A New Ultralight Anthropomorphic Hand[C]. Proc. of IEEE Int. Conf. on Robotics and Automation,2001:2437-2441.
    [125]张立彬,杨庆华,阮健,陈刚,周泉,都明宇.气动关节人工手的研究[J].农业工程学报,2003,19(1):84-86.
    [126]刘宏,姜力.仿人多指灵巧手及其操作控制[M].北京:科学出版社,2010.3.
    [127]黄开枝,译.MATLAB7基础教程—面向工程应用[M].北京:清华大学出版社,2007.7.
    [128]Li Z, Hsu P, Sastry S. Grasping and coordinated manipulation by a multi-fingered robot hand [J]. International Journal of Robot Research,1989,8(4):33-49.
    [129]Yoshikawa T, Zheng X-Z. Coordinated dynamic hybrid position/force control for multiple robot manipulators handling one constrained object[J]. International Journal of Robot Research,1993; 12(3):219-230.
    [130]Nagai K, Yoshikawa T. Grasping and manipulation by arm/multifingered-hand mechanisms[C]. Proc o IEEE Int Conf on Robotics and Automation,1995:1040-1047.
    [131]Li Z, Sastry S. Task oriented optimal grasping by multifingered robot hands[C]. Proc of IEEE Int Conf on Robotics and Automation,1987:389-394.
    [132]Cutkosky MR. On grasp choice, grasp models, and the design of hands for manufacturing tasks [J]. Trans Robot Autom,1989,5(3):269-279.
    [133]C. Ferrari and J. Canny. Planning Optimal Grasps[C]. Proc. IEEE Conf. on Robotics and Automation,1992:2290-2295.
    [134]Brian Mirtich, John Canny. Easily Computable Optimum Grasps in 2-D and 3-D[C]. Proc. IEEE Conf. on Robotics and Automation,1994:739-747.
    [135]W. Townsend. The Barrett Hand Grasper-Programmably Flexible Part Handling and Assembly [J]. Industrial Robot,2000,27:181-188.
    [136]http://www.barretttechnology.com/robot/products/hand/handfram.htm.
    [137]Park YC, Starr GP. Optimal grasping using a multifingered robot hand[C]. Proc of IEEE Int Confon Robotics and Automation,1990:689-94.
    [138]Park YC, Starr GP. Grasp synthesis of polygonal objects using three-fingered robot hand [J]. International Journal of Robot Research,1992,11 (3):163-184.
    [139]Kaneko M, Tanie K. Contact point detection for grasping an unknown object using self-posture changeability[J]. IEEE Trans Robot Autom,1994;10(3):355-367.
    [140]B Mishra, JT Schwartz, M Sharir. On the existence and synthesis of multifinger positive grips [J].Algorithmica,1987,2(4):541-558.
    [141]Van-Duc Nguyen. Constructing Force-Closure Grasps in 3D[C]. Proc. IEEE Conf. on Robotics and Automation,1987:240-245.
    [142]刘善增,余跃庆,杜兆才,刘庆波.柔性机器人动力学分析与控制策略综述[J].工业仪表与自动化装置,2008,(2):18-24.
    [143]鲍官军,高峰,荀一,都明宇,杨庆华.气动柔性末端执行器设计及其抓持模型研究[J].农业工程学报,2009,25(10):121-126.
    [144]齐朝晖.多体系统动力学[M].北京:科学出版社,2008.7.
    [145]王华伟,余跃庆,苏丽颖,王雯静.柔顺机构动力学建模新方法[J].机械工程学报,2008,44(10):96-103.
    [146]H.Kawasaki, J.Takai, Y.Tanaka, M.Carafeddine, T. Mouri. Control of Multi-Fingered HapticInterface Opposite to Human Hand[C]. Proc. Of Int. Con on Intelligent Robotics and Systems,2003:2709-2712.
    [147]Caihua Xiong, Youfu Li, Youlun Xiong. Grasp capability analysis of multifingered robot hands[J]. Robotics and Autonomous Systems,1999,27:211-224.
    [148]E A Al-Gallaf. Multi-fingered robot hand optimal task force distribution Neural inverse kinematics approach [J]. Robotics and Autonomous Systems,2006,54:34-51.
    [149]谢红卫,邹逢兴,张明,李鹏波,李琦译.现代控制系统,第八版[M].北京:高等教育出版社,2004,1.
    [150]N. Yamano, S. Takamuku and K. Hosoda. Development of Underactuated Humanoid Robot Hand for Adaptable Grasp[C]. Proc. Of 2008 JSME Conference on Robotics and Mechatronics,2008.
    [151]屠立,周丕宣,张树有.柔性机械手机械结构与自适应控制全局优化设计[J].农业机械学报,2008,39(8):128-134.
    [152]王祖温,隋立明,包钢.气动人工肌肉关节的输入整形研究[J].机械工程学报,2005,41(1):66-70.
    [153]卫玉芬.气动肌肉驱动机器人手臂的设计与控制研究[D].南京:南京理工大学,2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700