碳纤维约束钢筋混凝土圆柱及方柱本构模型
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虽然国内外对碳纤维增强复合材料(Carbon Fiber Reinforced Polymer, CFRP)约束混凝土本构关系进行了较多研究,但依然存在以下问题:(1)大量研究针对的是碳纤维约束素混凝土试件,没有考虑钢筋的存在对本构关系的影响;(2)多采用分段的方程形式来描述CFRP约束混凝土圆柱的单调应力—应变关系,参数较多且确定复杂,有的模型在两段连接处不可导;(3)目前还没有可描述CFRP约束钢筋混凝土方柱在中等约束情况下的单调本构模型,急需开展CFRP中等约束钢筋混凝土方柱单调及反复受压滞回本构的研究。针对上述问题,本文通过CFRP约束钢筋混凝土圆柱、方柱的单调及反复受压试验,系统研究了考虑钢筋影响的单调与滞回本构模型,在材料层面上为碳纤维抗震加固混凝土结构的非线性分析与设计提供依据,对完善和发展我国混凝土结构抗震加固设计方法具有重要的理论意义和实用价值。本文主要研究工作如下:
     1.通过20个直径204 mm,高612 mm的碳纤维约束钢筋混凝土圆柱和18个边长204 mm,高612 mm的碳纤维约束钢筋混凝土方柱的单调及反复受压试验,考察了钢筋对CFRP约束混凝土单调及反复受压性能的影响;发现钢筋对CFRP约束混凝土圆柱单调受压应力—应变关系的影响较小,但对方柱的影响很大,且钢筋的存在对圆柱和方柱反复受压滞回本构关系的影响都较大,说明CFRP约束混凝土本构模型中应考虑钢筋的影响;
     2.建立CFRP约束钢筋混凝土圆柱的极限应力、应变计算公式,采用统一的方程形式得到了CFRP约束钢筋混凝土圆柱的单调受压本构模型;通过研究反复受压下加、卸载曲线的规律,结合单调受压应力—应变关系,建立了反复受压下CFRP约束钢筋混凝土圆柱的滞回模型,模型预测结果与试验结果吻合较好;
     3.首次提出了CFRP约束钢筋混凝土方柱强约束、中等约束及弱约束的界定标准,通过分析试验结果,得到CFRP约束钢筋混凝土方柱中等约束下转折点与极限点应力、应变的计算公式,建立了CFRP中等约束钢筋混凝土方柱的单调受压应力—应变模型;分析了反复受压时卸载及再加载曲线的特征及数学描述,结合单调受压本构关系,建立了反复受压时CFRP约束钢筋混凝土方柱应力—应变关系的滞回模型,模型预测结果与试验结果吻合较好,说明本文所提CFRP中等约束钢筋混凝土方柱单调及滞回本构模型的正确性与适用性。
Although extensive researches on the stress-strain models of CFRP-confined concrete columns had been carried out around the world, some questions still exist as follow: (1) most of existing researches focused on CFRP-confined plain concrete and didn’t consider the effect of reinforcment. (2) subsection mode was adopted to describe the constitutive models of CFRP-confined reinforced concrete circular column. (3) there isn’t stress-strain model for CFRP-confined reinforced concrete square columns under medium confinement level. The studies on cyclic axial compression, using for earthquake resistance analysis of structural members, were much fewer. In order to solve above issues, this thesis studies the constitutive models that take the effect of reinforement into consideration through the monotonic and cyclic uniaxial compression experiments of CFRP-confined reinforced concrete circular and square columns. These work provide the technical support for nonlinear analysis of CFRP-confined structures and have important theoretical significance for improvement of seismic Design Code of building. The main contents of the thesis are summarized as follow:
     1. A total of 20 reinforced concrete circular columns (204 mm in diameter and 612 mm in height) and 18 square columns (204mm in length and 612 mm in height) externally confined with CFRP were tested under monotonic and cyclic uniaxial compression. For circular columns, reinforcment have less effect on stress-stain relationship, but have more effect on square columns and the cyclic compression behavior of circular and square columns. The influence of reinforcement should be considered in stress-strain models of CFRP-confined reinforced concrete circular and square columns.
     2. The equation of ultimate stress and strain and a new unique stress-strain model were developed for CFRP-confined reinforced concrete circular columns. The rule of unloading and reloading curves in cyclic compression relationship are formed. Combined with monotonic stress-strain model, the cyclic compression model of CFRP-confined reinforced concrete circular column is developed. The predicting results of the proposed model agree well with test datal.
     3. The standard of describing high-confined, medium-confined and low-confined for CFRP-confined reinforced concrete square column is advised. The equation of stress and strain of feature point and a new stress-strain model were developed for CFRP-confined reinforced concrete square column under medium confinement level. The rule of unloading and reloading curves are simulated based on test results. At last, the cyclic compression model of CFRP-confined reinforced concrete square column is developed considering the monotonic stress-strain model. The predicting results of the proposed model agree well with test data. It shows that the monotonic and cyclic compression models of CFRP-confined reinforced concrete square column under medium confinement level are correct and applicable in the future.
引文
1 Frieder, S., Priestley M. J., et al. Seismic Retrofit of RC Columns With Continuous Carbon Fiber Jackets. Journal of Composites for Construction. May, 1997:52-63
    2 Xiao Y.. Applications of FRP Composites in Concrete Column. Advance of Structural Engineering. 2004, Vol.7(4):335-343
    3腾锦光,陈建飞, S T史密斯,林立. FRP加固混凝土结构.北京:中国建筑工业出版社. 2005: 144-229
    4 Mohamed H. H.. Axial Stress-strain Relationship for FRP Confined Circular and Rectangular Concrete Columns. Cement & Concrete Composites. 2006, Vol.28:938-948
    5 ACI Committee 440.2R-2008. Guide for the Design and Construction of Externally Bonded FRP Systems for Strengthening Concrete Structures. 2008, Vol.6:36-38
    6 CSA S806-02. Design and Construction of Building Components with Fibre Reinforced Polymers. 2004, Vol.5:25-30
    7王震宇,李洪鹏.重复荷载作用下碳纤维约束混凝土加卸载准则.建筑结构. 2009, Vol.39(7):100-103
    8 Lam L., Teng J. G.. Strength Models for Fiber-reinforced Plastic-confined Concrete. Journal of Structural Engineering. 2002, Vol.128(5):612-623
    9 Lam L., Teng J. G.. Design-oriented Stress-strain Model for FRP-confined Concrete. Construction and Building Materials. 2003, Vol.17:471-489
    10 Teng J. G., Lam L. Behavior and Modeling of Fiber Reinforced Polymer-confined Concrete. Journal of Structural Engineering. ASCE, 2004, Vol.11:1713-1723
    11 Xiao Y., Wu H.. Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets. Journal of Materials in Civil Engineering. 2000, Vol.12(2):139-146
    12吴刚,吕志涛. FRP约束混凝土圆柱无软化段时的应力-应变关系研究.建筑结构学报. 2003, Vol.24(5):1-9
    13吴刚,吴智深,吕志涛. FRP约束混凝土圆柱体有软化段时的应力-应变关系研究.土木工程学报. 2006, Vol.39(11):7-14
    14 Toutanji H., Sean Dempsey. Stress Modeling of Pipelines Strengthened with Advanced Composites Materials. Thin-Walled Structures. 2001, Vol.39:153-165
    15 Toutanji H., Deng Y.. Strength and Durability Performance of Concrete Axially Loaded Members Confined with AFRP Composite Sheets. Composites: Pare B 33, 2002:255-261
    16 Youssef M. N., Feng M. Q., Mosallam A.S.. Stress-strain Model for Concrete Confined by FRP Composites. Composites: Part B. 2007, Vol.38: 614-628
    17顾祥林,李玉鹏,张伟平,欧阳煜.碳纤维布约束混凝土单轴受压时的应力—应变关系.结构工程师. 2006, Vol.22(2):50-56
    18于清. FRP的特点及其在土木工程中的应用.哈尔滨建筑大学学报. 2000, Vol.33(6):26-30
    19于清,韩林海,张铮.碳纤维约束混凝土压弯构件承载力计算方法研究.土木工程学报. 2004, Vol.37(10):33-40
    20陶忠,于清,韩林海,腾锦光,林力. FRP约束钢筋混凝土圆柱力学性能的试验研究.建筑结构学报. 2004, Vol.25(6):75-87
    21高献,陶忠,杨有,于清.大轴压比下FRP约束混凝土柱滞回性能试验研究.工业建筑. 2005, Vol.35(9):11-14
    22肖岩,吴徽,陈宝春.碳纤维套箍约束混凝土的应力—应变关系.工程力学. 2002, Vol.19(2):154-159
    23赵彤,刘明国,谢剑,张景明.应用碳纤维布增强钢筋混凝土柱抗震能力的研究.地震工程与工程振动. 2000, Vol.20(4):66-72
    24赵彤,刘明国,谢剑.碳纤维用于改善斜向受力高强混凝土柱抗震性能的研究.土木工程学报. 2002, Vol.35(3):13-19
    25赵彤,刘明学,谢剑.碳纤维布增强钢筋混凝土延性性能的评估与分析.地震工程与工程振动. 2003, Vol.23(4):117-122
    26吴刚,吕志涛.纤维增强复合材料(FRP)约束混凝土矩形柱应力-应变关系的研究.建筑结构学报. 2004, Vol.25(3):99-106
    27赵彤,刘明学,谢剑.碳纤维布增强钢筋混凝土延性性能的评估与分析.地震工程与工程振动. 2003, Vol.23(4):117-122
    28 Saadatmanesh H.. Extending Service Life of Concrete and Masonry Structures with Fiber Composites. Construction and Building Materials. 1997, Vol.11 (5-6): 327-335
    29潘景龙,王雨光,来文汇.混凝土柱截面形状对纤维包裹加固效果的影响.工业建筑. 2001, Vol.31(6):17-19
    30潘景龙,金熙男,等.钢筋混凝土轴压短柱包裹纤维材料后的承载性能研究.哈尔滨工业大学学报. 2002, Vol.35(3):14-19
    31金熙男,潘景龙,刘广义,来文汇.增强纤维约束混凝土轴压应力-应变关系试验研究.建筑结构学报. 2003, Vol.24(4):47-53
    32潘景龙,金熙男,胡忠君.预测FRP约束混凝土轴压强度的新模型.工业建筑. 2004增刊, 163-167
    33来文汇,潘景龙,金熙男.三种不同截面形状FRP约束混凝土应力-应变关系的试验研究.工业建筑. 2004, Vol.34(10):81-84.
    34欧阳煜.玻璃纤维(GFRP)片材加固混凝土框架结构的性能研究.浙江大学博士学位论文. 2001:12-23
    35欧阳煜,黄亦辉,钱在兹,顾祥林. GFRP片材加固混凝土方柱的轴压试验研究.工业建筑. 2002, Vol.32(6):54-56
    36欧阳煜,黄奕辉,钱在兹,顾祥林,张誉.玻璃纤维(GFRP)片材约束混凝土的受力性能分析.土木工程学报. 2004, Vol.37(3):26-34
    37李静,钱稼茹,蒋剑彪. CFRP约束混凝土应力—应变全曲线研究.第二届全国土木工程用纤维增强复合材料(F即)应用技术学术交流会论文集,清华大学出版社. 2002:157-162
    38李静,钱稼茹,蒋剑彪.往复水平力作用下CFS约束混凝土柱变形能力试验研究.混凝土. 2004, Vol.8:22-26.
    39 Harries, K.A., Kharel, G.. ExperimentalInvestigation of the Behavior of Variably Confined Concrete. Cement and Concrete Research. 2003, Vol.33: 873-880
    40 Chaallal, O., Hassan, M., Shahawy M.. Confinement Model for Axially Loaded Short Rectangular Columns Strengthened with Fiber-reinforced Polymer Wrapping. ACI Structural Journal. 2003, Vol.100(2):215-221.
    41董磊. FRP约束混凝土轴心受压性能的试验研究和理论分析.西安:西安科技大学硕士学位论文. 2007:32-46
    42李玉鹏,顾祥林,张伟平,欧阳煜.碳纤维布约束混凝土方柱的轴心受压性能.结构工程师. 2006, Vol.22(4):60-66
    43 Shahawy M., Mirmiran A., Beitelman T.. Tests and Modeling of Carbon Wrapped Concrete Columns. Composite Part B. 2000, Vol.31(6):471-480
    44 Xiao Y., Wu H.. Compressive Behavior of Concrete Confined by Carbon Fiber Composite Jackets. Journal of Materials in Civil Engineering. 2000, Vol.12(2): 139-146
    45 Rochette P., Labossiere P.. Axial Testing of Rectangular Column Models Confined with Composites. Journal of Composites for Construction. 2000, Vol.4(3):129-136
    46 Micelli F., Myers J. J.. Effect of Environmental Cycles on Concrete Cylinders Confined with FRP. Proc. CCC2001 Int. Conf. On Composition in Construction, Porto, Portugal, 2001
    47 Karabinis A. I., Rousakis T. C.. Concrete Confined by FRP Material: a Plasticity Approach. Engineering Structures. 2002, Vol.24:923-932
    48贾明英,程华,陈小兵,赵红梅.不同FRP约束混凝土圆柱轴心受压性能试验研究.工业建筑. 2002, Vol.32(5): 65-67
    49陆新征,冯鹏,叶列平. FRP约束混凝土方柱轴心受压性能的有限元分析.土木工程学报. 2003, Vol.36(2):46-51
    50周长东.玻璃纤维聚合物加固混凝土柱的力学性能研究.大连:大连理工大学博士论文. 2003:1-69
    51 Campione G., Miraglia N.. Strength and Strain Capacities of Concrete Compression Menbers Reinforced with FRP. Cement & Concrete Composites. 2003, Vol.25:31-41
    52 Jurgen Becque, Anil Patnaik K., Sami R. H., F.. Analytical Models for Concrete Confined with FRP Tubes. Journal of Composites for Construction. 2003, Vol.2:31-38
    53 Montoya E., Vecchio F. J., Sheikh S. A.. Numerical Evaluation of the Behavior of Steel-and FRP-confined Concrete Columns Using Compression Field Modeling. Engineering Structures. 2004, Vol.26:1535-1545
    54 Eugene Anselm. Stress-strain Behavior of Rectangular Concrete Columns Confined with FRP Sheets. Alabama: Master of Science in Engineering in University of Alabama in Huntsville, 2005
    55 Harajli H. M.. Axial Stress-strain Relationship for FRP Confined Circular and Rectangular Concrete Columns. Cement & Concrete Composites. 2006, Vol.28: 938-948
    56胡芳芳,刘伯权,王步. FRP约束混凝土圆柱体轴心抗压强度研究.建筑科学与工程学报. 2006, Vol.23(1):63-67
    57王苏岩,韩克双,王吉忠,周英武. CFRP约束高强混凝土方柱应力-应变关系分析模型.沈阳建筑大学学报. 2006, Vol.22(2):257-261
    58 Yousef A. A.. Influence of Edge Sharpness on the Strength of Square Concrete Columns Confined with FRP Composite Laminates. Composites: Part B. 2007, Vol.38:640-650
    59 Kumutha R., Vaidyanathan R., Palanichamy M. S.. Behaviour of Reinforced Concrete Rectangular Columns Strengthened Using GFRP. Cement & Concrete Composites. 2007, Vol.29:609-615
    60 Youssef M. N., Maria Q., Mosallam S. A.. Stress-strain Model for Concrete Confined by FRP Composites. Composites: Part B. 2007, Vol.38:614-628
    61 Togay Ozbakkaloglu, Deric J. O.. Concrete-Filled Square and Rectangular FRP Tubes under Axial Compression. Journal Composites for Construction ASCE. 2008, Vol.12(4):469-477
    62 Wu Y. F., Tao L., Oehlers D. J.. Fundamental Principles that Govern Retrofitting of Reinforced Concrete Columns by Steel and FRP Jacketing. Advances in Structural Engineering. 2006, Vol.9(4):507-33
    63 Wang L.M., Wu Y. F.. Effect of Corner Radius on the Performance of CFRP-confined Square Concrete Columns Test. Engineering Structures. 2008, Vol.30:493-50
    64 Turgay T., Koksal H. O.. Stress-strain Model for Concrete Confined with CFRP Jackets. Materials and Design. 2009, Vol.30:3243-3251
    65 Sakai J., Kawashima K.. Unloading and Reloading Stress-strain Model for Cofined Concrete. Structural Engineering ASCE. 2006, Vol.132(1):112-22
    66 Sima J. F., Roca P., Molins C.. Cyclic Constitutive Model for Concrete. Engineering Structures. 2008, Vol.30(3):695-706
    67 Shao Y., Zhu Z., Mirmiran A.. Cyclic Modeling of FRP-confined Concrete with Improved Ductility. Cement & Concrete Composites. 2006, Vol.28:959-968
    68 Chen X.. FRP-wraped Concrete Short Column under Uniaxial Compression. Final report. National Diagnosis and Rehabilitation of Industrial Building Research Center, Beijing, China, 2001
    69 Lam L., Teng J. G., Cheung C. H., Xiao Y.. FRP-confined Concrete under Axial Cyclic Compression. Cement & Concrete Composites. 2006, Vol.28:949-958
    70 Lam L., Teng J. G.. Stress-strain Model for FRP-confined Concrete under Cyclic Axial Compression. Engineering Structures. 2009, Vol.31:308-321
    71过镇海.钢筋混凝土原理.北京:清华大学出版社,1999
    72 Chaallal, O., Hassan, Shahawy M.. Confinement Model for Axially Loaded Short Rectangular Columns Strengthened with Fiber-reinforced Polymer Wrapping. ACI Structural Journal. 2003, Vol.100(2):215-221
    73 Abbasnia R., Ziaadiny H.. Behavior of Concrete Prisms Confined with FRP Composites under Axial Cyclic Compression. Engineering Structures. 2010, Vol.32:648-655
    74 Ilki A., Kumbasar N.. Behavior of Damaged and Undamaged Concrete Strengthened by Carbon Fiber Composite Sheets. Structure Engineering Mechanic. 2002, Vol.13(1):75-90
    75 Azadeh Parvin, Wang W.. Concrete Columns Confined by Fiber Composite Wraps under Combined Axial and Cyclic Lateral Loads. Composite Structures. 2002, Vol.58:539-549
    76 Varma R. K.. Numerical Model for CFRP Confined Concrete Elements Subject to Monotonic and Cyclic Loadings. Composites: Part B, 2009
    77 Sohail Samdani. Analytical Study of FRP-confined Concrete Columns. Toronro: Master of Applied Science in University of Toronto, 2003
    78 Turgay T., Polat Z., Koksal H.O., Doran B., Karako C.. Compressive Behavior of Large-scale Square Reinforced Concrete Columns Confined with Carbon Fiber Reinforced Polymer Jackets. Materials and Design. 2010, Vol.31:357–364
    79 Wang Y. C., Hsu K.. Design of FRP-wrapped Reinforced Concrete Columns for Enhancing Axial Load Carrying Capacity. Composite Structures. 2008, Vol.82:132–139

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700