DNA-微弹性结构的热效应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用微悬臂梁实验、聚合刷标度理论、DNA溶液液晶理论以及层合梁两变量方法等,研究温变效应和分子间相互作用对无标记生物检测中DNA-微弹性结构纳米力学响应的影响,构建DNA分子几何特征、缓冲溶液离子强度、非生物层力学性能以及温度变化等与DNA-微弹性结构挠度以及频率变化之间的关系。
     主要工作如下:
     (1)利用微悬臂梁光杠杆技术实时测量了DNA分子在种植和杂交过程中引起DNA-微梁挠度检测信号,考察了碱基对数以及温度变化对单链DNA(ssDNA)-微梁以及双链DNA(dsDNA)-微梁挠度检测信号的影响。研究表明:温度变化对DNA-微梁挠度检测信号的干扰不可忽略。
     (2)基于de Gennes的聚合刷标度理论和Zhang的层合梁两变量方法,利用能量最小原理建立了ssDNA-微梁纳米力学响应的能量模型,研究了碱基对数、种植密度以及温度变化对ssDNA-微梁挠度的影响,并与第二章的实验结果进行了对比,说明了构型熵是引起ssDNA-微梁纳米力学响应的重要因素,但还需考虑分子间其它相互作用(如静电力)的贡献。
     (3)借助Strey等提出的DNA液晶理论,考虑静电力、水合力以及构型熵三种微观作用对DNA-微梁挠度的影响,结合第二章等温情况下的实验数据,利用变分法得到的解析模型拟合了种植和杂交过程中DNA-微梁的物理化学参数,从理论上解释了DNA杂交引起微梁的上翘下弯现象,并预见了在DNA-微梁挠度差检测技术中存在失效现象,同时分析了DNA链间相互作用和溶液离子强度变化对检测失效的影响。
     (4)考虑非生物层的热弹性变形能以及DNA生物膜的自由能,建立了在力-热共同作用下的DNA-微梁挠度的解析模型,并与第二章温变情况下的实验结果进行了对比,证实了该能量模型的可靠性。给出了在不同种植密度、碱基对数、溶液离子强度以及基底材料条件下的温变控制条件,说明了DNA-微梁挠度差检测技术的热相关性。此外,根据连续介质力学观点理论预测了DNA生物膜热膨胀系数,说明了近表面系统(DNA-微梁)与渗透溶液系统的差异。
     (5)基于Hamilton原理建立了力-热作用下DNA-微梁动态响应的解析模型,研究了基底非生物层材料种类、DNA分子结构特性以及温度变化等对DNA-微梁动态响应的影响。研究表明:基底材料和吸附DNA分子种类对频率偏移的影响明显。大部分情况下DNA分子吸附使得DNA-微梁频率减小。然而,以SU8聚合物基底的dsDNA-微梁频率存在增加或减小现象。在种植密度大约为0.25#/nm2时,dsDNA-微梁频率几乎无变化,使得动态检测失效。此外,相比于静态工作模式,DNA-微梁动态工作模式具有更高的热稳定性。
     (6)利用变分法建立了力-热作用下DNA-圆薄板轴对称弯曲问题的理论模型,对比了本文提出的四层板模型预测结果与简化两层板模型结果,研究了温变效应对DNA-圆薄板挠度的影响。结果表明:需考虑PDMS层和钛层对DNA-圆薄板挠度的影响。温度变化对DNA-圆薄板挠度的影响不可忽略,应严格控制DNA-圆薄板的环境温变,特别在低种植密度、短链DNA分子以及高溶液离子强度条件下尤为如此。
The microcantilever-based experiment, scaling theory of polymer brushes, liquid crystaltheory of DNA solution, two-variable method for laminated beams, etc., are utilized to investigatethe influences of thermal effect and intermolecular interactions on the nanomechanical responsesof DNA-microelastic structures in label-free biodetections. The relation between the deflection,resonance frequency shift of a DNA-microelastic structure and DNA molecular structure feature,ionic strength of buffer solution, mechanical properties of non-biological layers, temperaturechange, etc., is established. Main works are as follows:
     (1) Using optical lever technique based on a microcantilever sensor, the real-time deflections of aDNA-microcantilever during the immobilization and hybridization processes are measured.The influences of nucleotide number and temperature change on the deflection signals of aDNA(ssDNA or dsDNA)-microcantilever are investigated. This result shows the influence oftemperature change on the deflections of a DNA-microcantilever cannot be ignored.
     (2) Based on de Gennes’s scaling theory for polymer brushes and Zhang’s two-variable methodfor laminated beams, an energy model for nanomechanical motion of assDNA-microcantilever is presented. The effects of nucleotide number, grafting density, andtemperature change on deflections are discussed. The comparisons of numerical predictionsand experimental data from Chapter2suggest that, although the conformational entropy is animportant factor, it is necessary to investigate the influence of other intermolecularinteractions (e.g. electrostatic force) on deflections.
     (3) By means of Strey’s liquid crystal theory for DNA solutions, the contributions of threemicroscopic interactions including electrostatic force, hydration force, and conformationalentropy to the deflections of a DNA-microcantilever are discussed. The physico-chemicalparameters for a DNA-microcantilever during the immobilization and hybridizationprocesses are accomplished by curve fitting with the experimental data from Chapter2underisothermal conditions. This theoretical model elucidates the experimental phenomenon ofupward or downward motions induced by DNA hybridization. The proposed model alsopredicts that there exists a failure phenomenon, which will make the differential deflectiontechnique invalid. A failure analysis induced by interactions between DNA molecules andchange of ionic strengths is discussed.
     (4) Considering thermoelastic energy of non-biological layers and free energy of DNA biofilm,an analytical model for the deflections of a DNA-microcantilever is presented under thecombination of mechanical and thermal loadings. The predicted deflections are comparedwith the experimental data from Chapter2to validate the applicability of this model. Under different conditions (e.g. grafting density, nucleotide number, ionic strength of solution, andsubstrate material), the controlling temperature is obtained. And the thermal correlation ofDNA-microcantilevers is discussed. At the same time, the macroscopic thermal expansioncoefficient of a DNA biofilm on the basis of continuum mechanics viewpoints is obtained.The difference between the near-surface system (DNA-microcantilever) and the osmoticpressure solution system is discussed.
     (5) An analytical model is presented to predict the dynamical response of aDNA-microcantilever according to Hamilton’s principle. The effects of the sort of thematerial of non-biological substrate layer, DNA molecular structure features, and temperaturechange on the resonant frequency of a DNA-microcantilever are discussed. Results indicatethat the influences of substrate materials and types of DNA molecules on the resonantfrequency shift of a DNA-microcantilever are prominent. In most cases, the resonantfrequency of a DNA-microcantilever decreases with DNA adsorption. However, the resonantfrequency of a dsDNA-SU8-microcantilever exists increase or decrease. At the graftingdensity of0.25#/nm2, the resonant frequency of a dsDNA-SU8-microcantilever keeps almostno change, which makes the dynamical detection fail. In addition, compared to the staticmode of operation, the dynamic mode of a DNA-microcantilever has a higher thermalstability.
     (6) A variational method is presented to formulate an analytical model for the axisymmetricbending of a DNA-thin-circular-plate under the combination of axisymmetric mechanical andthermal loadings. The comparisons of the proposed four-layered plate model and the reducedtwo-layered plate model are discussed. The effect of temperature change on deflections of aDNA-plate is studied. Results show that the contribution of PDMS and Ti layers tonanomechanical deflections of a DNA-plate should be considered. As the influence oftemperature change on deflections of a DNA-plate cannot be ignored, the temperature changeshould be carefully controlled, especially at a low grafting density, with a small nucleotidenumber, and at a high ionic strength of solution.
引文
[1] Marshall A, Hodgson J. DNA chips: An array of possibilities[J]. Nature Biotechnology,1998,16(1):27-31.
    [2] Ramsay G. DNA chips: State-of-the art[J]. Nature Biotechnology,1998,16(1):40-44.
    [3]陈弘毅,陈宇,孙玲,郭睿倩,潘庆,何杰.“半导体集成化芯片系统基础研究”重大研究计划结束综述[J].中国科学基金,2011,(2):77-84.
    [4]王青松,张舒.生物芯片技术在药物研究中的应用[J].国外医药抗生素分册,2004,25(4):145-148.
    [5] Homola J, Yee S S, Gauglitz G. Surface plasmon resonance sensors: Review[J]. Sensors andActuators B: Chemical,1999,54(1-2):3-15.
    [6] Nelson R W, Nedelkov D, Tubbs K A. Biosensor chip mass spectrometry: A chip-basedproteomics approach[J]. Electrophoresis,2000,21(6):1155-1163.
    [7] Saleh O A, Sohn L L. Direct detection of antibody-antigen binding using an on-chip artificialpore[J]. Proceedings of the National Academy of Sciences of the United States of America,2003,100(3):820-824.
    [8] Yue M, Lin H, Dedrick D E, Satyanarayana S, Majumdar A, Bedekar A S, Jenkins J W,Sundaram S. A2-D microcantilever array for multiplexed biomolecular analysis[J]. Journal ofMicroelectromechanical Systems,2004,13(2):290-299.
    [9]朱晓娥,袁耿彪.基因芯片技术在基因突变诊断中的应用及其前景[J].重庆医学,2010,39(22):3128-3131.
    [10] Arlett J L, Myers E B, Roukes M L. Comparative advantages of mechanical biosensors[J].Nature Nanotechnology,2011,6(4):203-215.
    [11] Fritz J, Baller M K, Lang H P, Rothuizen H, Vettiger P, Meyer E, Guntherodt H J, Gerber C,Gimzewski J K. Translating biomolecular recognition into nanomechanics[J]. Science,2000,288(5464):316-318.
    [12] Wu G H, Datar R H, Hansen K M, Thundat T, Cote R J, Majumdar A. Bioassay ofprostate-specific antigen (PSA) using microcantilevers[J]. Nature Biotechnology,2001,19(9):856-860.
    [13] Yang S M, Chang C, Yin T I, Kuo P L. DNA hybridization measurement by self-sensingpiezoresistive microcantilevers in CMOS biosensor[J]. Sensors and Actuators B: Chemical,2008,130(2):674-681.
    [14] Yoshikawa G, Akiyama T, Gautsch S, Vettiger P, Rohrer H. Nanomechanical membrane-typesurface stress sensor[J]. Nano Letters,2011,11(3):1044-1048.
    [15] Zheng S, Choi J H, Lee S M, Hwang K S, Kim S K, Kim T S. Analysis of DNA hybridizationregarding the conformation of molecular layer with piezoelectric microcantilevers[J]. Lab on aChip,2011,11(1):63-69.
    [16] Cha M, Shin J, Kim J H, Kim I, Choi J, Lee N, Kim B G, Lee J. Biomolecular detection with athin membrane transducer[J]. Lab on a Chip,2008,8(6):932-937.
    [17] Satyanarayana S, McCormick D T, Majumdar A. Parylene micro membrane capacitive sensorarray for chemical and biological sensing[J]. Sensors and Actuators B: Chemical,2006,115(1):494-502.
    [18] Tsouti V, Boutopoulos C, Andreakou P, Ioannou M, Zergioti I, Goustouridis D, KafetzopoulosD, Tsoukalas D, Normand P, Chatzandroulis S. Detection of DNA mutations using a capacitivemicro-membrane array[J]. Biosensors and Bioelectronics,2010,26(4):1588-1592.
    [19] Alvarez M, Lechuga L M. Microcantilever-based platforms as biosensing tools[J]. Analyst,2010,135(5):827-836.
    [20]张慧勇,潘宏青,张柏林,唐纪琳.微悬臂梁生化传感器在液体环境中的应用[J].分析化学,2012,(5):801-808.
    [21] Calleja M, Kosaka P M, San Paulo A, Tamayo J. Challenges for nanomechanical sensors inbiological detection[J]. Nanoscale,2012,4(16):4925-4938.
    [22] Lang H P, Hegner M, Meyer E, Gerber C. Nanomechanics from atomic resolution tomolecular recognition based on atomic force microscopy technology[J]. Nanotechnology,2002,13(5):29-36.
    [23] McKendry R, Zhang J Y, Arntz Y, Strunz T, Hegner M, Lang H P, Baller M K, Certa U, MeyerE, Guntherodt H J, Gerber C. Multiple label-free biodetection and quantitative DNA-bindingassays on a nanomechanical cantilever array[J]. Proceedings of the National Academy ofSciences of the United States of America,2002,99(15):9783-9788.
    [24] Lang H P, Hegner M, Gerber C. Cantilever array sensors[J]. Materials Today,2005,8(4):30-36.
    [25] Zhang J, Lang H P, Huber F, Bietsch A, Grange W, Certa U, McKendry R, Guntgerodt H J,Hegner M, Gerber C. Rapid and label-free nanomechanical detection of biomarker transcriptsin human RNA[J]. Nature Nanotechnology,2006,1(3):214-220.
    [26] Watari M, Galbraith J, Lang H P, Sousa M, Hegner M, Gerber C, Horton M A, McKendry R A.Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays[J].Journal of the American Chemical Society,2007,129(3):601-609.
    [27] Ghatkesar M K, Braun T, Barwich V, Ramseyer J P, Gerber C, Hegner M, Lang H P.Resonating modes of vibrating microcantilevers in liquid[J]. Applied Physics Letters,2008,92(4):043106:1-3.
    [28] Singamaneni S, LeMieux M C, Lang H P, Gerber C, Lam Y, Zauscher S, Datskos P G, LavrikN V, Jiang H, Naik R R, Bunning T J, Tsukruk V V. Bimaterial microcantilevers as a hybridsensing platform[J]. Advanced Materials,2008,20(4):653-680.
    [29] Braun T, Ghatkesar M K, Backmann N, Grange W, Boulanger P, Letellier L, Lang H P,Bietsch A, Gerber C, Hegner M. Quantitative time-resolved measurement of membraneprotein-ligand interactions using microcantilever array sensors[J]. Nature Nanotechnology,2009,4(3):179-185.
    [30] Lang H P, Hegner M, Gerber C. Nanomechanical cantilever array sensors. In: SpringerHandbook of Nanotechnology[M]. Springer Verlag, Berlin,2010:427-452.
    [31] Zhang J, Lang H P, Yoshikawa G, Gerber C. Optimization of DNA hybridization efficiency bypH-driven nanomechanical bending[J]. Langmuir,2012,28(15):6494-6501.
    [32] Huber F, Lang H P, Backmann N, Rimoldi D, Gerber C. Direct detection of a BRAF mutationin total RNA from melanoma cells using cantilever arrays[J]. Nature Nanotechnology,2013,8(2):125-129.
    [33] Ndieyira J W, Watari M, Barrera A D, Zhou D, Vogtli M, Batchelor M, Cooper M A, Strunz T,Horton M A, Abell C, Rayment T, Aeppli G, Mckendry R A. Nanomechanical detection ofantibiotic mucopeptide binding in a model for superbug drug resistance[J]. NatureNanotechnology,2008,3(11):691-696.
    [34] Sushko M L, Harding J H, Shluger A L, McKendry R A, Watari M. Physics ofnanomechanical biosensing on cantilever arrays[J]. Advanced Materials,2008,20(20):3848-3853.
    [35] Gruter R R, Khan Z, Paxman R, Ndieyira J W, Dueck B, Bircher B A, Yang J L, Drechsler U,Despont M, McKendry R A, Hoogenboom B W. Disentangling mechanical and mass effectson nanomechanical resonators[J]. Applied Physics Letters,2010,96(2):023113:1-3.
    [36] Watari M, Ndieyira J W, McKendry R A. Chemically programmed nanomechanical motion ofmultiple cantilever arrays[J]. Langmuir,2010,26(7):4623-4626.
    [37] Hansen K M, Ji H F, Wu G H, Datar R, Cote R, Majumdar A, Thundat T. Cantilever-basedoptical deflection assay for discrimination of DNA single-nucleotide mismatches[J].Analytical Chemistry,2001,73(7):1567-1571.
    [38] Wu G H, Ji H F, Hansen K, Thundat T, Datar R, Cote R, Hagan M F, Chakraborty A K,Majumdar A. Origin of nanomechanical cantilever motion generated from biomolecularinteractions[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,2001,98(4):1560-1564.
    [39] Tian F, Hansen K M, Ferrell T L, Thundat T, Hansen D C. Dynamic microcantilever sensorsfor discerning biomolecular interactions[J]. Analytical Chemistry,2005,77(6):1601-1606.
    [40] Yan X D, Ji H F, Thundat T. Microcantilever (MCL) Biosensing [J]. Current AnalyticalChemistry,2006,2(3):297-307.
    [41] Kim S, Yi D C, Passian A, Thundat T. Observation of an anomalous mass effect inmicrocantilever-based biosensing caused by adsorbed DNA[J]. Applied Physics Letters,2010,96(15):153703:1-3.
    [42] Hagan M F, Majumdar A, Chakraborty A K. Nanomechanical forces generated by surfacegrafted DNA[J]. Journal of Physical Chemistry B,2002,106(39):10163-10173.
    [43] Biswal S L, Raorane D, Chaiken A, Birecki H, Majumdar A. Nanomechanical detection ofDNA melting on microcantilever surfaces[J]. Analytical Chemistry,2006,78(20):7104-7109.
    [44] Stachowiak J C, Yue M, Castelino K, Chakraborty A, Majumdar A. Chemomechanics ofsurface stresses induced by DNA hybridization[J]. Langmuir,2006,22(1):263-268.
    [45] Raorane D A, Lim M D, Chen F F, Craik C S, Majumdar A. Quantitative and label-freetechnique for measuring protease activity and inhibition using a microfluidic cantileverarray[J]. Nano Letters,2008,8(9):2968-2974.
    [46] Alvarez M, Carrascosa L G, Moreno M, Calle A, Zaballos A, Lechuga L M, Martinez A C,Tamayo J. Nanomechanics of the formation of DNA self-assembled monolayers andhybridization on microcantilevers[J]. Langmuir,2004,20(22):9663-9668.
    [47] Calleja M, Nordstrom M, Alvarez M, Tamayo J, Lechuga L M, Boisen A. Highly sensitivepolymer-based cantilever-sensors for DNA detection[J]. Ultramicroscopy,2005,105(1-4):215-222.
    [48] Mertens J, Rogero C, Calleja M, Ramos D, Martin-Gago J A, Briones C, Tamayo J. Label-freedetection of DNA hybridization based on hydration-induced tension in nucleic acid films[J].Nature Nanotechnology,2008,3(5):301-307.
    [49] Arroyo-Hernandez M, Tamayo J, Costa-Kramer J L. Stress and DNA assembly differences oncantilevers gold coated by resistive and e-beam evaporation techniques[J]. Langmuir,2009,25(18):10633-10638.
    [50] Mertens J, Tamayo J, Kosaka P, Calleja M. Observation of spermidine-induced attractiveforces in self-assembled monolayers of single stranded DNA using a microcantilever sensor[J].Applied Physics Letters,2011,98(153704):1-3.
    [51] Carrascosa L, Moreno M, Alvarez M, Lechuga L. Nanomechanical biosensors: A new sensingtool[J]. Trends in Analytical Chemistry,2006,25(3):196-206.
    [52] Jeon S, Jung N, Thundat T. Nanomechanics of a self-assembled monolayer on microcantileversensors measured by a multiple-point deflection technique[J]. Sensors and Actuators B:Chemical,2007,122(2):365-368.
    [53] Kang T J, Lim D K, Nam J M, Kim Y H. Multifunctional nanocomposite membrane forchemomechanical transducer[J]. Sensors and Actuators B: Chemical,2010,147(2):691-696.
    [54] Huang L, Seker E, Landers J P, Begley M R, Utz M. Molecular interactions insurface-assembled monolayers of short double-stranded DNA[J]. Langmuir,2010,26(13):11574-11580.
    [55]薛长国,李凯,朱娟娟,张青川,刘红,伍小平,刘兢.微梁传感研究谷胱甘肽转硫酶抗原抗体特异结合[J].实验力学,2007,22(3-4):407-412.
    [56]黄渊,薛长国,张青川,谭伟明,王保民,伍小平.利用微悬臂梁传感对瘦肉精进行非标记检测[J].医用生物力学,2009,24(2):89-93.
    [57]陈雁云,薛长国,黄渊,张青川,刘红,王保民,伍小平.微悬臂梁传感器对中药成分的非标记检测[J].实验力学,2010,25(5):529-535.
    [58]薛长国,赵洪伟,吴尚犬,南铁贵,王保民,张青川,伍小平.紫杉醇微悬臂梁免疫传感器方法的研究[J].分析化学,2011,39(6):863-866.
    [59]徐英明,潘宏青,伍三华,张柏林.微悬臂梁检测三肽Gly-Gly-His与Cu2+的相互作用过程[J].分析化学,2009,37(6):783-787.
    [60]张慧勇,潘宏青,唐纪琳,张柏林.微悬臂生物传感器检测生物素-亲和素相互作用[J].化学学报,2011,69(2):243-246.
    [61] Hou H, Bai X, Xing C, Lu B, Hao J, Ke X, Gu N, Zhang B, Tang J. Label-free detection ofsingle-stranded DNA binding protein based on a cantilever array[J]. Talanta,2013,109:173-176.
    [62] Sang S, Witte H. A novel PDMS micro membrane biosensor based on the analysis of surfacestress[J]. Biosensors and Bioelectronics,2010,25(11):2420-2424.
    [63] Eom K, Park H S, Yoon D S, Kwon T. Nanomechanical resonators and their applications inbiological/chemical detection: Nanomechanics principles[J]. Physics Reports,2011,503(4-5):115-163.
    [64] Su M, Li S U, Dravid V P. Microcantilever resonance-based DNA detection with nanoparticleprobes[J]. Applied Physics Letters,2003,82(20):3562-3564.
    [65] Ilic B, Yang Y, Aubin K, Reichenbach R, Krylov S, Craighead H G. Enumeration of DNAmolecules bound to a nanomechanical oscillator[J]. Nano Letters,2005,5(5):925-929.
    [66] Kwon T, Eom K, Park J, Yoon D S, Lee H L, Kim T S. Micromechanical observation of thekinetics of biomolecular interactions[J]. Applied Physics Letters,2008,93(17):173901:1-3.
    [67] Zhou J, Li P, Zhang S, Huang Y, Yang P, Bao M, Ruan G. Self-excited piezoelectricmicrocantilever for gas detection[J]. Microelectronic Engineering,2003,69(1):37-46.
    [68]于晓梅,张大成,王丛舜,李婷,阮勇. U形阵列式微机械悬臂梁的研究[J].物理学报,2004,53(1):31-36.
    [69]李艳宁,李树民,郭彤,房轩,傅星,胡小唐.基于微梁谐振原理的相对湿度检测技术[J].纳米技术与精密工程,2007,5(2):85-88.
    [70]俞锋,李昕欣,于海涛.平面内谐振式微悬臂梁生化传感器的设计与制造[J].传感技术学报,2012,25(7):869-875.
    [71] Ansari M Z, Cho C. Deflection, frequency, and stress characteristics of rectangular, triangular,and step profile microcantilevers for biosensors[J]. Sensors,2009,9(8):6046-6057.
    [72] Ansari M Z, Cho C, Kim J, Bang B. Comparison between deflection and vibrationcharacteristics of rectangular and trapezoidal profile microcantilevers[J]. Sensors,2009,9(4):2706-2718.
    [73] Ansari M Z, Cho C D. A study on increasing sensitivity of rectangular microcantilevers usedin biosensors[J]. Sensors,2008,8(11):7530-7544
    [74] Zhang G M, Zhao L B, Jiang Z D, Yang S M, Zhao Y L, Huang E Z, Hebibul R, Wang X P,Liu Z G. Surface stress-induced deflection of a microcantilever with various widths andoverall microcantilever sensitivity enhancement via geometry modification[J]. Journal ofPhysics D: Applied Physics,2011,44(42):425402:1-11.
    [75] Subramanian S, Gupta N. Improved V-shaped microcantilever width profile for sensingapplications[J]. Journal of Physics D: Applied Physics,2009,42(18):185501:1-6.
    [76] Lim Y C, Kouzani A Z, Duan W, Kaynak A. Effects of design parameters on sensitivity ofmicrocantilever biosensors[C]. In: Proceedings of the2010IEEE/ICME InternationalConference on Complex Medical Engineering, Gold Coast, Australia,2010, pp.177-181.
    [77] Chen Q, Fang J, Ji H F, Varahramyan K. Micromachined SiO2microcantilever for highsensitive moisture sensor[J]. Microsystem Technologies,2008,14(6):739-746.
    [78] Calleja M, Tamayo J, Nordstrom M, Boisen A. Low-noise polymeric nanomechanicalbiosensors[J]. Applied Physics Letters,2006,88(11):113901:1-3.
    [79] Nordstrom M, Keller S, Lillemose M, Johansson A, Dohn S, Haefliger D, Blagoi G,Havsteen-Jakobsen M, Boisen A. SU-8cantilevers for bio/chemical sensing: Fabrication,characterisation and development of novel read-out methods[J]. Sensors,2008,8(3):1595-1612.
    [80] Tamayo J, Ramos D, Mertens J, Calleja M. Effect of the adsorbate stiffness on the resonanceresponse of microcantilever sensors[J]. Applied Physics Letters,2006,89(22):224104:1-3.
    [81] Plaza J A, Zinoviev K, Villanueva G, Alvarez M, Tamayo J, Dominguez C, Lechuga L M.T-shaped microcantilever sensor with reduced deflection offset[J]. Applied Physics Letters,2006,89(9):094109:1-3.
    [82] Zhang W, Feng H, Sang S, Shi Q, Hu J, Li P, Li G. Structural optimization of themicro-membrane for a novel surface stress-based capacitive biosensor[J]. MicroelectronicEngineering,2013,106:9-12.
    [83] Genolet G, Brugger J, Despont M, Drechsler U, Vettiger P, de Rooij N F, Anselmetti D. Soft,entirely photoplastic probes for scanning force microscopy[J]. Review of ScientificInstruments,1999,70(5):2398-2401.
    [84] Sofla A, Seker E, Landers J P, Begley M R. PDMS-glass interface adhesion energy determinedvia comprehensive solutions for thin film bulge/blister tests[J]. Journal of Applied Mechanics,2010,77(3):031007:1-5.
    [85] Zhang X R, Xu X F. Development of a biosensor based on laser-fabricated polymermicrocantilevers[J]. Applied Physics Letters,2004,85(12):2423-2425.
    [86] Johansson A, Hansen O, Hales J, Boisen A. Temperature effects in Au piezoresistorsintegrated in SU-8cantilever chips[J]. Journal of Micromechanics and Microengineering,2006,16(12):2564-2569.
    [87] Ransley J H T, Watari M, Sukumaran D, McKendry R A, Seshia A A. SU8bio-chemicalsensor microarrays[J]. Microelectronic Engineering,2006,83(4-9):1621-1625.
    [88] Tenje M, Keller S, Dohn S, Davis Z J, Boisen A. Drift study of SU8cantilevers in liquid andgaseous environments[J]. Ultramicroscopy,2010,110(6):596-598.
    [89] Chatzandroulis S, Tsouti V, Gousrouridis D, Normand P, Boutopoulos C, Zergioti I, TsoukalasD, Ioannou M, Kafetzopoulos D, Hue J. Sensitivity investigations of surface stress capacitiveDNA sensor[C]. In: Proceedings of the IEEE Sensors2010Conference, Kona, HI,2010, pp.1554-1557.
    [90] Weng X, Jiang H, Li D. Microfluidic DNA hybridization assays[J]. Microfluidics andNanofluidics,2011,11(4):367-383.
    [91] Berger R, Delamarche E, Lang H P, Gerber C, Gimzewski J K, Meyer E, Guntherodt H J.Surface stress in the self-assembly of alkanethiols on gold[J]. Science,1997,276(5321):2021-2024.
    [92] Shen F, Lu P, O'Shea S J, Lee K H, Ng T Y. Thermal effects on coated resonantmicrocantilevers[J]. Sensors and Actuators A: Physical,2001,95(1):17-23.
    [93] Mertens J, Finot E, Thundat T, Fabre A, Nadal M H, Eyraud V, Bourillot E. Effects oftemperature and pressure on microcantilever resonance response[J]. Ultramicroscopy,2003,97(1-4):119-126.
    [94] Sandberg R, Svendsen W, Molhave K, Boisen A. Temperature and pressure dependence ofresonance in multi-layer microcantilevers[J]. Journal of Micromechanics andMicroengineering,2005,15(8):1454-1458.
    [95] Pettitt B M, Vainrub A, Wong K Y. DNA saline solutions near surfaces: A few ideas towardsdesign parameters of DNA arrays. In: Ionic soft matter: Modern trends in theory andapplications[M]. Springer, Netherlands,2005:381-393.
    [96] Zhang N H, Chen J Z, Li J J, Tan Z Q. Mechanical properties of DNA biofilms adsorbed onmicrocantilevers in label-free biodetections[J]. Biomaterials,2010,31(25):6659-6666.
    [97] Zhang N H, Meng W L, Tan Z Q. A multi-scale model for the analysis of the inhomogeneity ofelastic properties of DNA biofilm on microcantilevers[J]. Biomaterials,2013,34(7):1833-1842.
    [98] Lai J, Perazzo T, Shi Z, Majumdar A. Optimization and performance of high-resolutionmicro-optomechanical thermal sensors[J]. Sensors and Actuators A: Physical,1997,58(2):113-119.
    [99] LeMieux M C, McConney M E, Lin Y H, Singamaneni S, Jiang H, Bunning T J, Tsukruk V V.Polymeric nanolayers as actuators for ultrasensitive thermal bimorphs[J]. Nano Letters,2006,6(4):730-734.
    [100]邬林,吴定强,张青川.基于光学读出的微悬臂梁温度传感器研制[J].实验力学,2012,27(6):696-702.
    [101]马洪宇,黄庆安,秦明.谐振式MEMS温度传感器设计[J].光学精密工程,2010,18(9):2022-2027.
    [102] Zhou H J, Zhang Y, Ou-Yang Z C. Elastic property of single double-stranded DNA molecules:Theoretical study and comparison with experiments[J]. Physical Review E,2000,62(1):1045-1058.
    [103] Zhang N H, Xing J J. An alternative model for elastic bending deformation of multilayeredbeams[J]. Journal of Applied Physics,2006,100(10):103519:1-5.
    [104] Zhang N H. Thermoelastic stresses in multilayered beams[J]. Thin Solid Films,2007,515(23):8402-8406.
    [105] Zhang N H, Chen J Z. An alternative two-variable model for bending problems ofmultilayered beams[J]. Journal of Applied Mechanics,2008,75(4):044503:1-3.
    [106] Zhang N H, Chen J Z. Elastic bending analysis of bilayered beams by an alternativetwo-variable method[J]. European Journal of Mechanics-A/Solids,2009,28(2):284-288.
    [107] Zhang N H, Chen J Z. An alternative model for elastic thermal stresses in two materials joinedby a graded layer[J]. Composites: Part B,2010,41(5):375-379.
    [108] Zhang N H, Shan J Y. An energy model for nanomechanical deflection of cantilever-DNAchip[J]. Journal of the Mechanics and Physics of Solids,2008,56(6):2328-2337.
    [109] Zhang N H, Chen J Z. Mechanical properties of double-stranded DNA biolayers immobilizedon microcantilever under axial compression[J]. Journal of Biomechanics,2009,42(10):1483-1487.
    [110] Meyer R B. Piezoelectric effects in liquid crystals[J]. Physical Review Letters,1969,22(18):918-921.
    [111] Liu F, Zhang Y, Ou-Yang Z C. Flexoelectric origin of nanomechanic deflection inDNA-microcantilever system[J]. Biosensors and Bioelectronics,2003,18(5-6):655-660.
    [112] Zhang N H, Shan J Y, Xing J J. Piezoelectric properties of single-strand DNA molecular brushbiolayers[J]. Acta Mechanica Solida Sinica,2007,20(3):206-210.
    [113] Merlo M, Negretto F, Soncini M, Maria F, Montevecchi. Electrostatic nanomechanics ofcantilever biosensors[J]. Materials Science Forum,2007,539-543:595-601.
    [114] Utz M, Begley M R. Scaling theory of adsorption-induced stresses in polymer brushes graftedonto compliant structures[J]. Journal of the Mechanics and Physics of Solids,2008,56(3):801-814.
    [115] Sushko M L. Nanomechanics of organic/inorganic interfaces: A theoretical insight[J]. FaradayDiscussions,2009,143(81-93):63-80.
    [116] Dareing D W, Thundat T. Simulation of adsorption-induced stress of a microcantileversensor[J]. Journal of Applied Physics,2005,97(4):043526:1-5.
    [117] Zhang J Q, Yu S W, Feng X Q, Wang G F. Theoretical analysis of adsorption-inducedmicrocantilever bending[J]. Journal of Applied Physics,2008,103(9):093506:1-6.
    [118] Yi X, Duan H L. Surface stress induced by interactions of adsorbates and its effect ondeformation and frequency of microcantilever sensors[J]. Journal of the Mechanics andPhysics of Solids,2009,57(8):1254-1266.
    [119] Afshari M, Jalili N. Modeling molecular interactions arising from adsorbed biological specieson the microcantilever biosensor surface[C]. In: Proceedings of the2006ASME InternationalMechanical Engineering Congress and Exposition, Chicago, Illinois, USA,2006, pp.1649-1655.
    [120] McFarland A W, Poggi M A, Doyle M J, Bottomley L A, Colton J S. Influence of surfacestress on the resonance behavior of microcantilevers[J]. Applied Physics Letters,2005,87(5):053505:1-3.
    [121] Hwang K S, Eom K, Lee J H, Chun D W, Cha B H, Yoon D S, Kim T S, Park J H. Dominantsurface stress driven by biomolecular interactions in the dynamical response ofnanomechanical microcantilevers[J]. Applied Physics Letters,2006,89(17):173905:1-3.
    [122] Ren Q, Zhao Y P. Influence of surface stress on frequency of microcantilever-basedbiosensors[J]. Microsystem Technologies,2004,10(4):307-314.
    [123] Afshari M, Jalili N. Towards non-linear modeling of molecular interactions arising fromadsorbed biological species on the microcantilever surface[J]. International Journal ofNon-Linear Mechanics,2007,42(4):588-595.
    [124] Mahmoodi S N, Jalili N, Daqaq M F. Modeling, nonlinear dynamics, and identification of apiezoelectrically actuated microcantilever sensor[J]. IEEE/ASME Transactions onMechatronics,2008,13(1):58-65.
    [125] Lu P, Lee H P, Lu C, O'Shea S J. Surface stress effects on the resonance properties ofcantilever sensors[J]. Physical Review B,2005,72(8):085405:1-5.
    [126] Zhang J Q, Feng X Q, Huang G Y, Yu S W. Chemisorption-induced resonance frequency shiftof a microcantilever[J]. Chinese Physics Letters2012,29(5):056801:1-4.
    [127] Zhang J Q, Yu S W, Feng X Q. Theoretical analysis of resonance frequency change induced byadsorption[J]. Journal of Physics D: Applied Physics,2008,41(12):125306:1-8.
    [128] Xu X J, Deng Z C. Surface effects of adsorption-induced resonance analysis onmicro/nanobeams via nonlocal elasticity[J]. Applied Mathematics and Mechanics,2013,34(1):37-44.
    [129]徐晓建,邓子辰.非局部因子和表面效应对微纳米材料振动特性的影响[J].应用数学和力学,2013,34(1):10-17.
    [130] Zheng M, Eom K, Ke C. Calculations of the resonant response of carbon nanotubes to bindingof DNA[J]. Journal of Physics D: Applied Physics,2009,42(14):145408:1-8.
    [131] Strey H H, Parsegian V A, Podgornik R. Equation of state for DNA liquid crystals: Fluctuationenhanced electrostatic double layer repulsion[J]. Physical Review Letters,1997,78(5):895-898.
    [132] Strey H H, Parsegian V A, Podgornik R. Equation of state for polymer liquid crystals: Theoryand experiment[J]. Physical Review E,1999,59(1):999-1008.
    [133] Eom K, Kwon T Y, Yoon D S, Lee H L, Kim T S. Dynamical response of nanomechanicalresonators to biomolecular interactions[J]. Physical Review B,2007,76(11):113408:1-4.
    [134] Timoshenko S. Analysis of bi-metal thermostats[J]. Journal of the Optical Society of America,1925,11(3):233-255.
    [135] Hsueh C H. Modeling of elastic deformation of multilayers due to residual stresses andexternal bending[J]. Journal of Applied Physics,2002,91(12):9652-9656.
    [136] Hsueh C H, Luttrell C R, Cui T. Thermal stress analyses of multilayered films on substratesand cantilever beams for micro sensors and actuators[J]. Journal of Micromechanics andMicroengineering,2006,16(11):2509-2515.
    [137] Hsueh C H, Evans A G. Residual stresses in meta/ceramic bonded strips[J]. Journal of theAmerican Ceramic Society,1985,68(5):241-248.
    [138] Hsueh C H, Lee S. Modeling of elastic thermal stresses in two materials joined by a gradedlayer[J]. Composites: Part B,2003,34(8):747-752.
    [139] Freund L. Some elementary connections between curvature and mismatch strain incompositionally graded thin films[J]. Journal of the Mechanics and Physics of Solids,1996,44(5):723-736.
    [140] Zhang N H, Meng W L, Aifantis E C. Elastic bending analysis of bilayered beams containinga gradient layer by an alternative two-variable method[J]. Composite Structures,2011,93(12):3130-3139.
    [141] Maroufi M, Zihajehzadeh S, Shamshirsaz M, Rezaie A H. Effect of thermal and mechanicalproperties variations on microcantilever mass sensor performance[J]. MicrosystemTechnologies,2011,17(4):575-583.
    [142] Tauchert T R. Thermally induced flexure, buckling, and vibration of plates[J]. AppliedMechanics Reviews,1991,44(8):347-360.
    [143] Chandrashekhara K, Tenneti R. Non-linear static and dynamic analysis of heated laminatedplates: A finite element approach[J]. Composites Science and Technology,1994,51(1):85-94.
    [144]尹益辉,陈刚,陈裕泽.热力联合作用下不同材料参数圆薄板的大挠度弯曲[J].固体力学学报,2002,23(4):471-476.
    [145] De Gennes P G. Scaling concepts in polymer physics[M]. New York: Cornell University Press,1979.
    [146] Breslauer K J, Frank R, Blocker H, Marky L A. Predicting DNA duplex stability from the basesequence[J]. Proceedings of the National Academy of Sciences of the United States ofAmerica,1986,83(11):3746-3750.
    [147] Zhang N H, Chen J Z, Wan S X. A model for the hybridization exothermic effect in label-freebiodetections by a nanomechanical cantilever-DNA chip[J]. International Journal ofThermophysics,2009,30(2):648-660.
    [148] Feng L, Gao F, Liu M, Wang S, Li L, Shen M, Wang Z. Investigation of the mechanicalbending and frequency shift induced by adsorption and temperature using micro-andnanocantilever sensors[J]. Journal of Applied Physics,2012,112(1):013501:1-9.
    [149] Gelbart W M, Bruinsma R F, Pincus P A, Parsegian V A. DNA-inspired electrostatics[J].Physics Today,2000,53(9):38-44.
    [150] Grosberg A Y, Nguyen T, Shklovskii B. Colloquium: The physics of charge inversion inchemical and biological systems[J]. Reviews of Modern Physics,2002,74(2):329-345.
    [151] Rau D C, Lee B, Parsegian V A. Measurement of the repulsive force between polyelectrolytemolecules in ionic solution: Hydration forces between parallel DNA double helices[J].Proceedings of the National Academy of Sciences of the United States of America,1984,81(9):2621-2625.
    [152] Buchapudi K R, Huang X, Yang X, Ji H F, Thundat T. Microcantilever biosensors forchemicals and bioorganisms[J]. Analyst,2011,136(8):1539-1556.
    [153] Tamayo J, Kosaka P M, Ruz J J, San Paulo A, Calleja M. Biosensors based onnanomechanical systems[J]. Chemical Society Reviews,2013,42(3):1287-1311.
    [154]李凯,张青川,刘红,伍小平,张广照.微梁传感研究PNIPAM分子链热致折叠构象转变[J].实验力学,2006,21(3):259-64.
    [155]李凯,刘红,张青川,侯毅,张广照,伍小平.利用微悬臂梁表面应力研究聚N-异丙基丙烯酰胺分子的构象转变[J].物理学报,2006,55(8):4111-4116.
    [156] Lee J H, Hwang K S, Yoon D S, Kang J Y, Kim S K, Kim T S. Direct electrical measurementof protein-water interactions and temperature dependence using piezoelectricmicrocantilevers[J]. Advanced Materials,2011,23(26):2920-2923.
    [157] Steel A B, Levicky R L, Herne T M, Tarlov M J. Immobilization of nucleic acids at solidsurfaces: Effect of oligonucleotide length on layer assembly[J]. Biophysical Journal,2000,79(2):975-981.
    [158] Peterson A W, Heaton R J, Georgiadis R M. The effect of surface probe density on DNAhybridization[J]. Nucleic Acids Research,2001,29(24):5163-5168.
    [159] Fogolari F, Zuccato P, Esposito G, Viglino P. Biomolecular electrostatics with the linearizedPoisson-Boltzmann equation[J]. Biophysical Journal,1999,76(1):1-16.
    [160]李晶晶,徐凌伟,陈建中,张能辉.芯片上单链DNA生物膜的弯电性能分析[J].材料工程,2011,10:11-14.
    [161] Zhang N H, Tan Z Q, Li J J, Meng W L, Xu L W. Interactions of single-stranded DNA onmicrocantilevers[J]. Current Opinion in Colloid and Interface Science,2011,16(6):592-596.
    [162] Daoud M, Cotton J P. Star shaped polymers: A model for the conformation and itsconcentration dependence[J]. Journal de Physique,1982,43(3):531-538.
    [163] Zhang N H, Tan Z Q, Shan J Y. A model for nanomechanical behaviours ofmicrocantilever-based single-stranded DNA chips induced by conformational entropy[C]. In:Proceedings of the19th Annual International Conference on Composites/Nano Engineering,Shanghai, China,2011, pp.1329-1330.
    [164] Fu J Y, Chen D P, Ye T C, Jiao B B, Ou Y. Modeling and optimal design of multilayer thermalcantilever microactuators[J]. Science in China Series E-Technological Sciences,2009,52(5):1167-1170.
    [165]柯扬船,何平笙.高分子物理教程[M].北京:化学工业出版社,2006.
    [166]高光华.高等化工热力学[M].北京:清华大学出版社,2010.
    [167] Zhou F, Huck W T S. Surface grafted polymer brushes as ideal building blocks for "smart''surfaces[J]. Physical Chemistry Chemical Physics,2006,8(33):3815-3823.
    [168]张能辉,单金英.基因芯片纳米力学行为的能量模型[J].力学季刊,2007,28(1):54-57.
    [169]王永岗,戴诗亮.受热双层圆薄板的轴对称非线性振动[J].工程力学,2003,20(2):76-79.
    [170] Rekesh D, Lyubchenko Y, Shlyakhtenko L S, Lindsay S M. Scanning tunneling microscopy ofmercapto-hexyl-oligonucleotides attached to gold[J]. Biophysical Journal,1996,71(2):1079-1086.
    [171] Hu Z Y, Thundat T, Warmack R J. Investigation of adsorption and absorption-induced stressesusing microcantilever sensors[J]. Journal of Applied Physics,2001,90(1):427-431.
    [172] Lavrik N V, Sepaniak M J, Datskos P G. Cantilever transducers as a platform for chemical andbiological sensors[J]. Review of Scientific Instruments,2004,75(7):2229-2253.
    [173] Boisen A, Dohn S, Keller S S, Schmid S, Tenje M. Cantilever-like micromechanical sensors[J].Reports on Progress in Physics,2011,74(3):036101:1-30.
    [174]陆冬云,温浩,刘会洲,许志宏.球形嵌段共聚物胶束的温度效应[J].物理化学学报,2004,20(1):38-42.
    [175] Zhang N H, Shan J Y. A model for nanomechanical behavior of microcantilever-ssDNA chipinduced by electrostatic repulsion[C]. In: Proceedings of the Piezoelectricity, Acoustic Waves,and Device Applications and2009China Symposium on Frequency Control Technology, JointConference of the2009Symposium on, Wuhan, China,2009, pp.61-65.
    [176] Zhang N H, Shan J Y. Nanomechanical behaviors of microcantilever-based single-strandedDNA chips induced by counterion osmotic effects[J]. Biomechanics and Modeling inMechanobiology,2011,10(2):229-234.
    [177] Jayaraman A, Hall C K, Genzer J. Computer simulation study of probe-target hybridization inmodel DNA microarrays: Effect of probe surface density and target concentration[J]. Journalof Chemical Physics,2007,127(14):144912:1-10.
    [178] Jayaraman A, Hall C K, Genzer J. Computer simulation study of molecular recognition inmodel DNA microarrays[J]. Biophysical Journal,2006,91(6):2227-2236.
    [179] Begley M R, Utz M. Multiscale modeling of adsorbed molecules on freestandingmicrofabricated structures[J]. Journal of Applied Mechanics,2008,75(2):021008:1-8.
    [180] Brenner S L, Parsegian V A. A physical method for deriving the electrostatic Interactionbetween rod-like polyions at all mutual angles[J]. Biophysical Journal,1974,14(4):327-334.
    [181] Leikin S, Parsegian V A, Rau D C, Rand R P. Hydration forces[J]. Annual Review of PhysicalChemistry,1993,44:369-395.
    [182] Zhao Y, Ganapathysubramanian B, Shrotriya P. Cantilever deflection associated withhybridization of monomolecular DNA film[J]. Journal of Applied Physics,2012,111(7):074310:1-9.
    [183] Tan Z Q, Li J J, Zhang N H. An analytical model for nanomechanical behavior ofmicrocantilever-DNA chip[C]. In: Proceedings of the2nd International Conference on SmartMaterials and Nanotechnology in Engineering, Weihai, China,2009, pp.74933X:1-6.
    [184] Shen G, Tercero N, Gaspar M A, Varughese B, Shepard K, Levicky R. Charging behavior ofsingle-stranded DNA polyelectrolyte brushes[J]. Journal of the American Chemical Society,2006,128(26):8427-8433.
    [185] Borisov O V, Zhulina E B, Birshtein T M. Diagram of the states of a grafted polyelectrolytelayer[J]. Macromolecules,1994,27(17):4795-4803.
    [186]曲庆璋,章权,季求知,梁兴复.弹性板理论[M].北京:人民交通出版社,2000.
    [187]谭邹卿.微悬臂梁-DNA芯片纳米力学行为的解析分析[D].上海:上海大学,2010.
    [188] Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M. Structural properties ofoligonucleotide monolayers on gold surfaces probed by fluorescence investigations[J].Langmuir,2004,20(23):10086-10092.
    [189] Kaiser W, Rant U. Conformations of end-tethered DNA molecules on gold surfaces:Influences of applied electric potential, electrolyte screening, and temperature[J]. Journal ofthe American Chemical Society,2010,132(23):7935-7945.
    [190] Weber G, Haslam N, Whiteford N, Prugel-Bennett A, Essex J W, Neylon C. Thermalequivalence of DNA duplexes without calculation of melting temperature[J]. Nature Physics,2006,2(1):55-59.
    [191] Cheatham III T E, Kollman P A. Molecular dynamics simulation of nucleic acids[J]. AnnualReview of Physical Chemistry,2000,51(1):435-471.
    [192] Dragan A, Russell D, Privalov P. DNA hydration studied by pressure perturbation scanningmicrocalorimetry[J]. Biopolymers,2009,91(1):95-101.
    [193] Rayan G, Tsamaloukas A D, Macgregor R B, Heerklotz H. Helix-coil transition of DNAmonitored by pressure perturbation calorimetry[J]. Journal of Physical Chemistry B,2009,113(6):1738-1742.
    [194] Kozinsky I, Postma H W C, Kogan O, Husain A, Roukes M L. Basins of attraction of anonlinear nanomechanical resonator[J]. Physical Review Letters,2007,99(20):207201:1-4.
    [195] Gil-Santos E, Ramos D, Martinez J, Fernandez-Regulez M, Garcia R, San Paulo A, Calleja M,Tamayo J. Nanomechanical mass sensing and stiffness spectrometry based ontwo-dimensional vibrations of resonant nanowires[J]. Nature Nanotechnology,2010,5(9):641-645.
    [196] Johnson B N, Mutharasan R. Biosensing using dynamic-mode cantilever sensors: A review[J].Biosensors and Bioelectronics,2012,32(1):1-18.
    [197] Li M, Tang H X, Roukes M L. Ultra-sensitive NEMS-based cantilevers for sensing, scannedprobe and very high-frequency applications[J]. Nature Nanotechnology,2007,2(2):114-120.
    [198] Cha B H, Lee S M, Park J C, Hwang K S, Kim S K, Lee Y S, Ju B K, Kim T S. Detection ofHepatitis B Virus (HBV) DNA at femtomolar concentrations using a silicananoparticle-enhanced microcantilever sensor[J]. Biosensors and Bioelectronics,2009,25(1):130-135.
    [199] Gupta A K, Nair P R, Akin D, Ladisch M R, Broyles S, Alam M A, Bashir R. Anomalousresonance in a nanomechanical biosensor[J]. Proceedings of the National Academy ofSciences of the United States of America,2006,103(36):13362-13367.
    [200] Lee J H, Hwang K S, Yoon D S, Kim H, Song S H, Kang J Y, Kim T S. Anomalous resonantfrequency changes in piezoelectric microcantilevers by monolayer formation of Au films[J].Applied Physics Letters,2011,99(14):143701:1-3.
    [201] Chen G Y, Thundat T, Wachter E A, Warmack R J. Adsorption-induced surface stress and itseffects on resonance frequency of microcantilevers[J]. Journal of Applied Physics,1995,77(8):3618-3622.
    [202] Kirstein S, Mertesdorf M, Schonhoff M. The influence of a viscous fluid on the vibrationdynamics of scanning near-field optical microscopy fiber probes and atomic force microscopycantilevers[J]. Journal of Applied Physics,1998,84(4):1782-1790.
    [203] Sader J E. Frequency response of cantilever beams immersed in viscous fluids withapplications to the atomic force microscope[J]. Journal of Applied Physics,1998,84(1):64-76.
    [204] Huang G Y, Gao W, Yu S W. Model for the adsorption-induced change in resonance frequencyof a cantilever[J]. Applied Physics Letters,2006,89(4):043506:1-3.
    [205] Pine P. Atomistic simulation of nanoelectro mechanical systems based on carbonnanotubes[D]. Haifa: Technion-Israel Institute of Technology,2011.
    [206]刘启宽,李亮,张志军,李映辉.风力机叶片大挠度挥舞振动特性分析[J].动力学与控制学报,2012,10(2):171-176.
    [207] Marie R, Jensenius H, Thaysen J, Christensen C B, Boisen A. Adsorption kinetics andmechanical properties of thiol-modified DNA-oligos on gold investigated by microcantileversensors[J]. Ultramicroscopy,2002,91(1-4):29-36.
    [208] Chon J W, Mulvaney P, Sader J E. Experimental validation of theoretical models for thefrequency response of atomic force microscope cantilever beams immersed in fluids[J].Journal of Applied Physics,2000,87(8):3978-3988.
    [209]桑胜波,张文栋,李朋伟.基于表面应力的生物传感器敏感元件研制[J].纳米技术与精密工程,2013,11(1):41-44.
    [210] Begley M R, Utz M, Komaragiri U. Chemo-mechanical interactions between adsorbedmolecules and thin elastic films[J]. Journal of the Mechanics and Physics of Solids,2005,53(9):2119-2140.
    [211]程昌钧,朱媛媛.弹性力学[M].上海:上海大学出版社,2005.
    [212]吴连元.板壳稳定性理论[M].武汉:华中理工大学出版社,1996.
    [213]刘小明,俞进萍,谭道宏.弹性力学题解[M].武汉:华中科技大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700