多源气体泄漏扩散的实验及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代石油化工行业的快速发展,在生产、使用、运输、贮存过程中存在大量易燃易爆、有毒有害气体,重大事故性泄漏频繁发生,造成了巨大的人员伤亡、经济损失和环境破坏。因此气体泄漏扩散问题始终是国内外学者关心和研究的焦点,具有重要的现实意义。
     然而,前人的研究多集中在单源泄漏扩散问题,而对于多源泄漏扩散的研究存在着严重的缺失。而恰恰在实际中多源气体泄漏却时有发生,如当遭受意外事故或破坏性自然灾害时都有可能导致多源气体泄漏。因此本文针对多源气体泄漏扩散问题进行研究,旨在揭示多源气体泄漏扩散的流动特性及其演变规律,预测它的时间空间分布特性,从而为应急救援和疏散决策制定提供有力的理论指导。
     本文较系统地从多源气体泄漏扩散的近场区域和远场区域两个方面分别展开研究。对于近场区域,基于相似性定理建立了小尺寸实验系统,以氦气和二氧化碳气体分别作为轻气和重气的典型代表,应用纹影和高速摄像系统对单源和多源轻气、重气射流在静滞自由空间中的流动开展了实验研究,从而揭示了流场的基本特性。同时,结合小尺寸实验建立了相应的物理模型,通过k-ε湍流定常模拟和大涡模拟的方法对单源和多源轻气、重气射流随时间演变的动力学过程,多源间相互作用的内在机理等进行了数值模拟和理论分析。此外,通过实验、数值模拟和理论分析方法三者相结合揭示了泄漏速率、泄漏角度、泄漏源间距以及泄漏源数目等若干因素的影响机制。
     对于远场区域,在现有气体扩散模型的基础上,修正并建立了多源气体扩散模型,主要通过数值模拟计算的方法对多源气体泄漏扩散后的浓度随时间空间的分布特性及其事故后果进行了预测。
     在轻气扩散模型中,以应用最为广泛的高斯模型为基础,针对高斯模型中的不足,通过引入Briggs的羽流上升模型和地面粗糙度的定义对其进行了修正。应用修正的高斯模型模拟预测了单源轻气连续泄漏和瞬时泄漏扩散浓度随时间空间的分布情况,结合气体毒性标准给出了不同毒性水平下的影响区域范围,下风向、侧风向的最大影响距离及固定位置处浓度随时间的变化情况等。基于修正的高斯模型发展建立了多源轻气扩散模型,实现了对多源轻气泄漏扩散的模拟计算。同时通过因素影响分析和因素显著性分析还揭示了轻气泄漏扩散中各因素的影响规律和重要性。
     在重气扩散模型中,通过有效性验证和统计学分析方法选择合适的重气扩散模型。在将SLAB模型的模拟预测结果与现场试验、其它重气模型以及真实事故案例中的结果进行对比后,研究发现SLAB模型具有高度准确性和可靠性。因此对SLAB模型展开了深入研究,揭示了重气扩散中的影响因素及规律,同时在SLAB模型的基础上发展了多源重气扩散模型,实现了对多源重气泄漏扩散的模拟计算。
With the rapid development of modern petrochemical industry, there are a lot of inflammable, explosive, toxic and hazardous gases in the production, use, transportation and storage process. And significant accidental leakages from these gases occur frequently, causing enormous casualties, economic losses and environmental pollution. Thus, both of the domestic and foreign scholars focus on the gas leakage and dispersion, which have practical significance.
     However, previous studies were mostly related to the gas leakage from single source, and there was a serious lack for the research of multi-source gas leakage. In reality, the multi-source gas leakage occurred occasionally, such as when suffered from accidents or natural disaster. Therefore, the research about gas leakage and dispersion from multi-source was conducted in this paper, aiming to reveal its flow characteristics and evolution rules over time, and to predict the temporal and spatial concentration distribution, so as to provide strong theoretical guidance for emergency rescue and evacuation decision-making.
     In this article, both of the near-field and far-field regions of multi-source gas leakage were studied systematically. For the near-field region, a small-scale experiment system was established based on the similarity theory. Helium and carbon were selected to be the typical representative of light and heavy gas, respectively, The experimental studies on the flow of these two gases released from single and multi-source in stagnant free space were conducted. And the basic characteristics of flow field was revealed, through the Schlieren and high-speed imaging system. Meanwhile, the corresponding physical model were founded with the combination of small-scale experiments. Both of the k-s turbulence unsteady simulation and large eddy simulation have been made to study the dynamics process of light gas and heavy gas, the internal mechanism of multi-source interaction with the theoretical analysis. In addition, according to the results of experiments, numerical simulations and theoretical analysis, the influence mechanism of the factors of leakage rate, leakage angle, distance between multi-source and source number were revealed.
     For the far-field region, the established gas dispersion models were modified and developed to be that of multi-source. Then, the temporal and spatial concentration distribution characteristics as well as the accident consequences of multi-source gas leaskage could be predicted by numerical simulation.
     In the dispersion model of light gas, although Gaussian model was most widely used, there were still some deficiency in it. So the Briggs plume rise model and the definition of ground roughness were chested in the Gaussian model. Based on the this modified Gaussian model, the dispersion of single continuous and instantaneous leakage from light gas were both simulated to predict the concentration distribution in the space over time. Combining the toxicity criteria, the influenced area, the maximum downwind and crosswind distance as well as the concentration evolution at a fixed position were all calculated. Furthermore, a multi-source dispersion model of light gas on the basis of this modified Gaussian model was founded. The influencing analysis and significance analysis of involved factors were made to reveal the rules and importance.
     In various dispersion models of heavy gas, an appropriate one was selected by the methods of validity verification and statistical analysis. It was founded that the SLAB model was quite reliable and accurate by comparing its prediction results with that of field tests, other heavy gas model and real accident case. Therefore, an intensive study of SLAB model was conducted and the impact factors and regularity in the dispersion of heavy gas were revealed. Meanwhile, a multi-source dispersion model of heavy gas based on the SLAB model was developed.
引文
[1]Krausmann E., Cruz A. M., Affeltranger B. The impact of the 12 May 2008 Wenchuan earthquake on industrial facilities[J]. Journal of Loss Prevention in the Process Industries,2010,23(2):242-8.
    [2]Kazama M., Noda T. Damage statistics (Summary of the 2011 off the Pacific Coast of Tohoku Earthquake damage)[J]. Soils and Foundations,2012,52(5):780-92.
    [3]Barad M. L. PROJECT PRAIRIE GRASS, A FIELD PROGRAM IN DIFFUSION. VOLUME II[R]. DTIC Document; 1958.
    [4]Nickola P., Ramsdell Jr J., Ludwick J. DETAILED TIME-HISTORIES OF CONCENTRATIONS RESULTING FROM PUFF AND SHORT-PERIOD RELEASES OF AN INERT RADIOACTIVE GAS: A VOLUME OF ATMOSPHERIC DIFFUSION DATA[R]. Battelle-Northwest, Richland, Wash. Pacific Northwest Lab.; 1970.
    [5]Koopman R., Baker J., Cederwall R. et al. Burro Series Data Report-LLNL/NWC 1980 LNG Spill Tests[J]. UCID-19075, Lawrence Livermore National Laboratory, Livermore, CA,1982,
    [6]Goldwire Jr H., Rodean H., Cederwall R. et al. Coyote series data report, LLNL/NWC 1981 LNG spill tests:dispersion, vapor burn, and rapid phase transition[J]. UCID-199953 Lawrence Livermore National Laboratory, Livermore, California,1983,
    [7]Colenbrander G., Evans A., Puttock J. Spill tests of LNG and refrigerated liquid propane on the sea[J]. Maplin Sands,1980,
    [8]Puttock J., Colenbrander G., Blackmore D. Maplin Sands experiments 1980:Dispersion results from continuous releases of refrigerated liquid propane. Heavy Gas and Risk Assessment—Ⅱ:Springer 1983:147-61.
    [9]Colenbrander G., Puttock J. Maplin Sands experiments 1980:interpretation and modelling of liquefied gas spills onto the sea. Atmospheric Dispersion of Heavy Gases and Small Particles:Springer 1984:277-95.
    [10]Goldwire Jr H., McRae T., Johnson G. et al. Desert Tortoise series data report:1983 pressurized ammonia spills[R]. Lawrence Livermore National Lab., CA (USA); 1985.
    [11]Koopman R., McRae T., Goldwire H. Results of recent large-scale NH 3 and N 2 O 4 dispersion experiments[J].1984,
    [12]McRae T., Cederwall R., Ermak D. et al. Eagle series data report:1983 nitrogen tetroxide spills[R]. Lawrence Livermore National Lab., CA(USA); 1987.
    [13]McQuaid J. Heavy gas dispersion trials at Thorney Island:proceedings of a symposium held at the University of Sheffield, Great Britain,3-5 April 1984[M]. Elsevier Publishing Company 1985.
    [14]Blewitt D., Yohn J., Koopman R. et al. Conduct of anhydrous hydrofluoric acid spill experiments[C]. Proceedings, International Conference On Vapor Cloud Modeling, American Institute of Chemical Engineers.1987.
    [15]Nielsen M., Ott S. A collection of data from dense gas experiments[J].1995,
    [16]Nyren K., Winter S. Pressure measurements on the release system and determination of jet momentum in the project BA propane field tests 1989[J]. NASA STI/Recon Technical Report N,1990,9110263.
    [17]Britter R. Dispersion of two phase flashing releases-FLADIS field experiment; a further note on modelling flashing releases[J].1994,
    [18]Nielsen M., Bengtsson R., Jones C. et al. Design of the FLADIS field experiments with dispersion of liquefied ammonia[J].1994,
    [19]Nielsen M., Ott S. Fladis field experiments. Final report[M].1996.
    [20]Hanna S., Steinberg K. Overview of Petroleum Environmental Research Forum (PERF) dense gas dispersion modeling project[J]. Atmospheric Environment,2001,35(13):2223-9.
    [21]Hall D., Hollis E., Ishaq H. A wind tunnel model of the Porton dense gas spill field trials[M]. Springer 1984.
    [22]Heidorn K., Murphy M., Irwin P. et al. Effects of obstacles on the spread of a heavy gas—Wind tunnel simulations[J]. Journal of Hazardous Materials,1992,30(2):151-94.
    [23]Havens J., Walker H., Spicer T. O. Wind tunnel study of air entrainment into two-dimensional dense gas plumes at the Chemical Hazards Research Center[J]. Atmospheric Environment,2001,35(13):2305-17.
    [24]Krogstad P., Pettersen R. Windtunnel modelling of a release of a heavy gas near a building[J]. Atmospheric Environment (1967),1986,20(5):867-78.
    [25]Konig-Langlo G., Schatzmann M. Wind tunnel modeling of heavy gas dispersion[J]. Atmospheric Environment Part A General Topics,1991,25(7):1189-98.
    [26]Liu X., Niu J., Kwok K. et al. Investigation of indoor air pollutant dispersion and cross-contamination around a typical high-rise residential building:Wind tunnel tests[J]. Building and Environment, 2010,45(8):1769-78.
    [27]Neff D. E. Physical modeling of heavy plume dispersion[R]. Colorado State Univ., Fort Collins, CO (USA); 1989.
    [28]Roberts P., Hall D. Wind-tunnel simulation. Boundary layer effects in dense gas dispersion experiments[J]. Journal of Loss Prevention in the Process Industries,1994,7(2):106-17.
    [29]Sweatman W. L., Chatwin P. Dosages from instantaneous releases of dense gases in wind tunnels and into a neutrally stable atmosphere[J]. Boundary-Layer Meteorology,1996,77(3-4):211-31.
    [30]Duijm N., Carissimo B., Mercer A. et al. Development and test of an evaluation protocol for heavy gas dispersion models[J]. Journal of Hazardous Materials,1997,56(3):273-85.
    [31]Bosanquet C., Pearson J. The spread of smoke and gases from chimneys[J]. Transactions of the Faraday Society,1936,321249-63.
    [32]Luhar A. K., Patil R. A general finite line source model for vehicular pollution prediction[J]. Atmospheric Environment (1967),1989,23(3):555-62.
    [33]Oettl D., Kukkonen J., Almbauer R. A. et al. Evaluation of a Gaussian and a Lagrangian model against a roadside data set, with emphasis on low wind speed conditions [J]. Atmospheric Environment, 2001,35(12):2123-32.
    [34]Vignati E., Berkowicz R., Palmgren F. et al. Transformation of size distributions of emitted particles in streets[J]. Science of the Total Environment,1999,235(1):37-49.
    [35]Kukkonen J., Partanen L., Karppinen A. et al. Evaluation of the OSPM model combined with an urban background model against the data measured in 1997 in Runeberg Street, Helsinki[J]. Atmospheric Environment,2003,37(8):1101-12.
    [36]Schulman L. L., Strimaitis D. G., Scire J. S. Development and evaluation of the PRIME plume rise and building downwash model[J]. Journal of the Air & Waste Management Association,2000,50(3): 378-90.
    [37]Willis G. E., Deardorff J. A laboratory study of dispersion from a source in the middle of the convectively mixed layer[J]. Atmospheric Environment (1967),1981,15(2):109-17.
    [38]Snyder W. H., Hunt J., Lee J. et al. Structure of strongly stratified flow over hills:dividing-streamline concept[J]. Journal of Fluid Mechanics,1985,152(249-288):
    [39]Carruthers D., Holroyd R., Hunt J. et al. UK-ADMS:A new approach to modelling dispersion in the earth's atmospheric boundary layer[J]. Journal of Wind Engineering and Industrial Aerodynamics, 1994,52139-53.
    [40]Brode R. W. SCREEN 3 Model User's Guide[J]. NASA,1995,(19980015351):
    [41]Britter R. E., McQuaid J. Workbook on the dispersion of dense gases[J].1988,
    [42]Kaiser G., Walker B. Releases of anhydrous ammonia from pressurized containers—the importance of denser-than-air mixtures[J]. Atmospheric Environment (1967),1978,12(12):2289-300.
    [43]Cox C., Carpenter R. Further development of a dense vapour cloud model for hazard analysis[J]. Heavy gas and risk assessment,1980,
    [44]Fryer L., Kaiser G. DENZ-A computer program for the calculation of the dispersion of dense toxic or explosive gases in the atmosphere[M]. UKAEA 1979.
    [45]Webber D., Mercer A., Jones S. Hydrogen fluoride source terms and dispersion[J]. Journal of Loss Prevention in the Process Industries,1994,7(2):94-105.
    [46]Colenbrander G. A mathematical model for the transient behavior of dense vapor clouds[C].3rd International Symposium on Loss Prevention and Safety Promotion in the Process Industries, Basel, Switzerland.1980:29.
    [47]Van Ulden A. A new bulk model for dense gas dispersion:two-dimensional spread in still air. Atmospheric Dispersion of Heavy Gases and Small Particles:Springer 1984:419-40.
    [48]Eidsvik K. J. A model for heavy gas dispersion in the atmosphere[J]. Atmospheric Environment (1967), 1980,14(7):769-77.
    [49]Meroney R. N., Lohmeyer A. Gravity spreading and dispersion of dense gas clouds released suddenly into a turbulent boundary layer[M]. Fluid Mechanics and Wind Engineering Program, Civil Engineering Department, Colorado State University 1982.
    [50]Zeman O. The dynamics and modeling of heavier-than-air, cold gas releases[J]. Atmospheric Environment (1967),1982,16(4):741-51.
    [51]Ermak D., Chan S. Recent developments on the FEM3 and SLAB atmospheric dispersion models[R]. Lawrence Livermore National Lab., CA(USA); 1986.
    [52]Jagger S. Development of CRUNCH:A dispersion model for continuous releases of a denser-than-air vapour into the atmosphere[M]. United Kingdom Atomic Energy Authority, Safety and Reliability Directorate 1983.
    [53]Britter R. GASTAR user manual. CERC, Cambridge, UK 1991.
    [54]England W., Teuscher L., Hauser L. et al. Atmospheric Dispersion of Liquefied Natural Gas Vapor Clouds Using SIGMET, a Three-Dimensional Time-Dependent Hydrodynamic Computer Code[J]. Proc 1978 Heat Transf and Fluid Mech Inst,1978,
    [55]Schnatz G., Flothmann D. A 'K' model and its modification for the dispersion of heavy gases[J]. S Hartwig, D Reidel Publishing Co,1980,125.
    [56]Taft J. Simulations of experimental spills using MARIAH model[J]. A report by Deygon—Ra, Inc, to Exxon Research & Engineering Company,1981,
    [57]Deaves D. Application of a turbulence flow model to heavy gas dispersion in complex situations. Heavy Gas and Risk Assessment—Ⅱ:Springer 1983:91-102.
    [58]Riou Y. Comparison between MERCURE-GL code calculations, wind tunnel measurements and Thorney Island field trials[J]. Journal of Hazardous Materials,1987,16247-65.
    [59]Bartzis J. ADREA-HF:a three-dimensional finite volume code for vapour cloud dispersion in complex terrain[J]. EUR(Luxembourg),1991,
    [60]Vergison E., Van Diest J., Basler J. Atmospheric dispersion of toxic gases in a complex environment J]. Journal of Hazardous Materials,1989,22(3):331-57.
    [61]温正,石良臣,任毅如.FLUENT流体计算应用教程[M].清华大学出版社2009.
    [62]范宝春,叶经方.瞬态流场参数测量[M].哈尔滨工程大学出版社2007.
    [63]Pasumarthi K. S., Agrawal A. K. Schlieren measurements and analysis of concentration field in self-excited helium jets[J]. Physics of Fluids,2003,15(12):3683-92.
    [64]张旭,黎苏.高速纹影摄影技术在喷雾场和流场测试中的应用[J].东北师大学报(自然科学版),1992,3014.
    [65]王治华.受限空间内气体扩散的数值模拟及分析[D]:大连理工大学,2009.
    [66]Papanastasiou T., Georgiou G., Alexandrou A. N. Viscous fluid flow[M]. CRC Press 2010.
    [67]王福军.计算流体动力学分析:CFD软件原理与应用[M].清华大学出版社2004.
    [68]Liu C.-H., Li Y. Turbulence modeling for computing viscous high-Reynolds-number flows on unstructured meshes[J]. Computer methods in applied mechanics and engineering,2001,190(40): 5325-39.
    [69]余照.氢泄漏与扩散数值仿真研究:国防科学技术大学,2008.
    [70]Smagorinsky J. GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS: I. THE BASIC EXPERIMENT*[J]. Monthly weather review,1963,91(3):99-164.
    [71]范全林,张会强,郭印诚et al.圆湍射流的轴对称大涡模拟[J].燃烧科学与技术,2001,7(4):248-51.
    [72]王东东.基于FLUENT的危险性气体泄漏扩散研究[D]:南开大学,2008.
    [73]施志荣.化工气体泄漏事故扩散规律的实验室研究[D]:江苏工业学院,2006.
    [74]李炜,力学,槐文信.浮力射流的理论及应用[M].科学出版社1997.
    [75]Houf W., Schefer R. Analytical and experimental investigation of small-scale unintended releases of hydrogen[J]. International Journal of Hydrogen Energy,2008,33(4):1435-44.
    [76]Chen C.-J., Rodi W. On the decay of vertical buoyant jets in uniform environment[C]. Proceedings of 6th International Heat Transfer Conference.1978:97-102.
    [77]Ricou F., Spalding D. Measurements of entrainment by axisymmetrical turbulent jets[J]. J Fluid Mech, 1961,11(1):21-32.
    [78]Hirst E. ANALYSIS OF BUOYANT JETS WITHIN THE ZONE OF FLOW ESTABLISHMENT[R]. Oak Ridge National Lab., Tenn.; 1971.
    [79]El-Amin M., Sun S. Horizontal H< sub> 2-air turbulent buoyant jet resulting from hydrogen leakage[J]. International Journal of Hydrogen Energy,2012,37(4):3949-57.
    [80]Sutton O. The theoretical distribution of airborne pollution from factory chimneys[J]. Quarterly Journal of the Royal Meteorological Society,1947,73(317-318):426-36.
    [81]Holmes N. S., Morawska L. A review of dispersion modelling and its application to the dispersion of particles:an overview of different dispersion models available[J]. Atmospheric Environment, 2006,40(30):5902-28.
    [82]闾国年,张书亮,龚敏霞.地理信息系统集成原理与方法[M].科学出版社2003.
    [83]6 Effect models for consequence analysis. In:Ian TC, Raghu R, eds. Process Systems Engineering: Academic Press 2005:195-259.
    [84]Mohan M., Siddiqui T. Analysis of various schemes for the estimation of atmospheric stability classification[J]. Atmospheric Environment,1998,32(21):3775-81.
    [85]Pasquill F. The estimation of the dispersion of windborne material[J]. Meteorol Mag,1961,90(1063): 33-49.
    [86]Turner D. B. Workbook of atmospheric dispersion estimates[M]. US Department of Health, Education, and Welfare, National Center for Air Pollution Control 1970.
    [87]Briggs G. Diffusion estimation for small emissions in environmental research laboratories. Air Resources Atmospheric Turbulence and Diffusion Laboratory,1973[J]. Annual Report of the USAEC, Report ATDL-106, National Oceanic and Atmospheric Administration, Oak Ridge, TN,1973,
    [88]Islitzer N., Slade D. Diffusion and transport experiments[R]. Environmental Science Services Administration, Idaho Falls, Idaho; 1968.
    [89]Carpenter S., Montgomery T. L., Leavitt J. M. et al. Principal plume dispersion models:TVA power plants[J]. Journal of the Air Pollution Control Association,1971,21(8):491-5.
    [90]Sutton O. The dispersion of hot gases in the atmosphere[J]. Journal of Meteorology,1950,7(5):307-12.
    [91]Bosanquet C. The rise of a hot waste gas plume[J]. J Inst Fuel,1957,30(197):322-8.
    [92]Briggs G. A smoke plume rise theory. Preliminary.[J].1964,
    [93]Hoult D. P., Fay J. A., Forney L. J. A theory of plume rise compared with field observations[J]. Journal of the Air Pollution Control Association,1969,19(8):585-90.
    [94]Abraham G. The flow of round buoyant jets issuing vertically into ambient fluid flowing in a horizontal direction[J].1970,
    [95]Hirst E. ANALYSIS OF ROUND, TURBULENT, BUOYANT JETS DISCHARGED TO FLOWING STRATIFIED AMBIENTS[R]. Oak Ridge National Lab., Tenn.; 1971.
    [96]Ooms G. A new method for the calculation of the plume path of gases emitted by a stack[J]. Atmospheric Environment (1967),1972,6(12):899-909.
    [97]Briggs G. CONCAWE meeting:discussion of the comparative consequences of different plume rise formulas[J]. Atmospheric Environment (1967),1968,2(3):228-32.
    [98]Briggs G. Some recent analyses of plume rise observations[J].1970,
    [99]Briggs G. A. A plume rise model compared with observations[J]. Journal of the Air Pollution Control Association,1965,15(9):433-8.
    [100]Briggs G. A. A Simple model for bent-over plume rise[J].1970,
    [101]Briggs G. A. Plume rise predictions[J].1975 Annual Report,1976,
    [102]Beychok M. Air pollution dispersion modeling [J].
    [103]张维凡,张希贤.重要有毒物质泄漏扩散模型研究[J].化工劳动保护:安全技术与管理分册,1996,(3):1-19.
    [104]陈祖刚,王玉龙,李艳桦et al.基于ArcEngine高斯烟团气体扩散模型的模拟实现[J].测绘信息与工程,2011,36(2):10-2.
    [105]高祥宝,董寒青.数据分析与SPSS应用[M].清华大学出版社2007.
    [106]石祥.大量有毒重气泄漏扩散事故危害评价浅析[A][J].第十届中国科协年会论文集(一),2008,
    [107]朱红萍,罗艾民,李润求.重气泄漏扩散事故后果评估系统研究[J].中国安全科学学报,2009,19(5):119-24.
    [108]Britter R. E. Atmospheric dispersion of dense gases[J]. Annual Review of Fluid Mechanics,1989,21(1): 317-44.
    [109]魏利军.重气扩散过程的数值模拟:[学位论文],2000.
    [110]Havens J. A., Spicer T. O. Development of an atmospheric dispersion model for heavier-than-air-gas mixtures, volume 1[J]. Final Report, Sep 1980-Feb 1985 Arkansas Univ, Fayetteville Dept of Chemical Engineering,1985,1
    [111]潘旭海,蒋军成.重气云团瞬时泄漏扩散的数值模拟研究[J].化学工程,2003,31(1):35-9.
    [112]肖淑衡.厂区燃气等危险性气体泄漏扩散的模拟研究[D]:广州大学,2006.
    [113]张启平,麻德贤.危险物泄漏扩散过程的重气效应[J].北京化工大学学报:自然科学版,1998,25(3):86-90.
    [114]Blewitt D., Yohn J., Ermak D. An evaluation of SLAB and DEGADIS heavy gas dispersion models using the HF spill test data[C]. Proceedings of the AIChE International Conference on Vapor Cloud Modeling.1987:2-4.
    [115]Ermak D., Chan S., Morgan D. et al. A comparison of dense gas dispersion model simulations with burro series LNG spill test results[J]. Journal of Hazardous Materials,1982,6(1):129-60.
    [116]Ermak D. L., Chan S. T. A STUDY OF HEAVY GAS EFFECTS ON THE AT11OSPHERIC DISPERSION OF DENSE GASES[J].1985,
    [117]Morgan Jr D., Morris L., Chan S. et al. Phenomenology and modeling of liquefied natural gas vapor dispersion[R]. Lawrence Livermore National Lab., CA (USA); 1984.
    [118]Hanna S., Chang J., Strimaitis D. Hazardous gas model evaluation with field observations [J]. Atmospheric Environment Part A General Topics,1993,27(15):2265-85.
    [119]Morgan Jr D., Morris L. K., Ermak D. L. SLAB:a time-dependent computer model for the dispersion of heavy gases released in the atmosphere[R]. Lawrence Livermore National Lab., CA (USA); 1983.
    [120]Ermak D. L. User's manual for SLAB:An atmospheric dispersion model for denser-than-air releases[M]. Lawrence Livermore Laboratory 1990.
    [121]Chang J., Hanna S. Air quality model performance evaluation[J]. Meteorology and Atmospheric Physics,2004,87(1-3):167-96.
    [122]Demael E., Carissimo B. Comparative evaluation of an Eulerian CFD and Gaussian plume models based on prairie grass dispersion experiment J]. Journal of Applied Meteorology and Climatology, 2008,47(3):888-900.
    [123]Hanna S., Strimaitis D., Chang J. Hazard Response Modeling Uncertainty (A Quantitative Method). Volume 2. Evaluation of Commonly Used Hazardous Gas Dispersion Models[R]. DTIC Document; 1993.
    [124]高凌.SLAB View在化学泄漏事故应急救援中的应用[J].消防科学与技术,2011,30(9):833-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700