用户名: 密码: 验证码:
感应电机定转子故障的微粒群诊断方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
感应电机是工农业生产中应用最为广泛的驱动设备之一,它的正常运行是保证安全生产的关键。随着现代工农业系统的飞速发展,电机的单机容量不断增加,所驱动的负载也越来越复杂。驱动电机一旦发生故障,势必造成一定的经济损失,并且影响到生产线的安全以及产品质量,严重时还会造成灾难性后果。统计数据表明,定转子故障是感应电机最常见的故障,分别约占其全部故障种类的30%和10%。因此,对感应电机定转子故障进行早期检测和诊断具有重大的理论意义和社会经济效益。本文正是在这样的背景下,从微粒群优化理论入手,对感应电机定转子故障问题进行研究,提出了一种改进的微粒群算法和相应的定转子故障诊断新方法。具体研究内容和主要成果如下:
     1)为改善微粒群算法的全局收敛性,使其更适合工程实际的应用,提出一种基于单纯形法和改进骨干微粒群算法的混合优化算法(SM-MBBPSO)。在该算法中,一方面利用惰性微粒的动态初始化策略保持种群的多样性,提高微粒的搜索效率;另一方面利用K-均值聚类混合策略结合微粒群算法强大的全局搜索能力和单纯形法精确的局部搜索能力。这两种改进策略使得整个混合算法的广度探索与深度开发能力得到了有效的均衡。最后,通过典型测试函数,验证了该混合算法的有效性。
     2)在传统定子电流频谱分析中,感应电机转子断条故障特征经常被基波分量淹没而无法准确检测。针对这一问题,提出一种基于SM-MBBPSO算法的基波滤除方法。该方法根据故障电流信号特点,将波形参数识别问题转换为优化问题,然后利用求得的波形参数,直接将基波分量在时域中剔除,从而达到突出故障特征的目的。最后,对模拟数据和实测信号进行实验,结果验证了所提方法的有效性和优越性。
     3)分析了定子故障对定子电流谐波和负序电流的影响,提出两种基于SM-MBBPSO算法的定子故障检测方法。第一种方法首先利用基于SM-MBBPSO算法的基波滤除方法消除基波分量对故障特征提取的影响;然后,利用小波包技术将残余电流信号中与故障相关的谐波分量分解到不同的频带;根据这些频带能量值的变化情况判别感应电机的定子故障。第二种方法根据基波在电流信号中所占比重最大的特点,利用SM-MBBPSO算法提取出三相定子电流的基波幅值和相位,进而直接计算出总的负序电流。由于在实际电机中,供电电压不平衡、电机先天不平衡和负载的变化等因素都会影响负序电流的大小,因此通过等效负序阻抗和支持向量机来消除这些非故障因素的影响,从而得到仅与定子故障相关的残余负序电流,实现感应电机定子故障的准确检测。最后,实验结果表明这2种方法都是可行、有效的。
     4)为了准确识别感应电机定转子故障,提高方法的推广能力,提出一种基于SM-MBBPSO算法和支持向量机的故障识别方法,并给出了可行的识别步骤和分析。该方法首先利用基于SM-MBBPSO算法的基波滤除方法和小波包技术,滤除基波分量、强化故障特征;然后根据定转子故障电流的频谱特征,选出感应电机运行状态的本质特征,并以此作为支持向量机的输入向量。采用“二叉树”向量机进行分类,并利用SM-MBBPSO算法和交叉检验优化支持向量机模型参数。最后实验结果表明,该方法识别感应电机定转子断条故障能取得良好的效果。
Induction motor is one of the most widely used drive-equipments in industrial andagricultural production, its regular operation is essential for guaranteeing the safety inproduction. With the rapid development of modern industrial system, the capacity of asingle motor keeps increasing and the load also becomes more complicated. Once amotor failure happens, it will lead to economic loss, affect the production line safetyand product quality, and some times cause catastrophic failure. Statistical studies haveshown that the stator and rotor faults, which account for nearly30%and10%of totalfailures respectively, are the most frequent faults of induction motors. Consequently, itis of significant social and economic benefits to do the research on the stator and rotorfault diagnosis. In this dissertation, on the basis of the particle swarmoptimization(PSO) theory, stator and rotor fault diagnosis methods for inductionmotors were deeply studied. Then a modified PSO algorithm and its diagnosismethods were proposed systematically. The main works and the contributions aresummarized as follows.
     1) To enhance global convergence capability of particle swarm optimization andmake it suitable to actual project application, a novel hybrid algorithm was proposed,called SM-MBBPSO, based on the Nelder-Mead simplex method(SM) and a modifiedbare-bones particle swarm optimization(MBBPSO). On the one hand, an adaptiveinitialization strategy on inactive particles was proposed to maintain diversity ofswarm and improve search efficiency of particles; on the other hand, a new hybridstrategy based on K-means clustering was proposed to combine the powerful globalsearch capability of MBBPSO and the high accurate local search capability of SM.These two strategys make the hybrid algorithm achieve a nice balance of exploitationand exploration capability. Finally, simulation results on benchmark functionsdemonstrate the effectiveness of the proposed algorithm.
     2) In the traditional motor current signature spectrum analysis, the characteristiccomponents of broken rotor bars fault are often submerged by the fundamentalcomponent. In order to overcome this shortcoming, a fundamental-componet filteringmethod was proposed based on the SM-MBBPSO. According to the characteristic ofcurrent signal, the problem of waveform parameters identification was converted intoa optimization one. Using the waveform parameters estimated by the SM-MBBPSO,the fundamental component can be eliminated in the time domain, which can highlight the fault characteristic components. Finally, the results of simulation andlaboratory tests demonstrate the effectiveness and superiority of the proposed method.
     3) The impact of stator fault on the stator current harmonics and negativesequence current was analyzed in detail; and two fault detection methods based on theSM-MBBPSO were proposed. In the first method, the fundamental component waseliminated by using the above fundamental-component filtering method firstly. Then,the harmonic components of residual current signal were decomposed into series offrequency bands by wavelet packet. The variation of subband energy was treated asthe fault feature to detect stator fault. According to the characteristic of current signals,the second method can estimate precisely the amplitude and initial phase of thefundamental component by using the powerful global search capability of theSM-MBBPSO; and then calculate the value of negative sequence current directly. In areal case, the unbalanced supply voltage sources, the inherent asymmetries of themotor and load variation will cause a change of the negative sequence current. Forthis reason, the portion of negative sequence current caused by the factors other thanstator fault was taken out by a negative sequence impedance and support vectormachine; and the residual negative sequence current was used to diagnose the statorfault of induction motor. Finally, the results of laboratory tests demonstrate theeffectiveness of these two methods.
     4) To accurately recognize the stator and rotor faults of induction motors, a novelmethod for fault indentification was proposed based on the SM-MBBPSO and supportvector machine(SVM); and feasible diagnostic steps and analysis were alsointroduced. Firstly, the above fundamental-componet filtering method and waveletpacket were used to eliminate the influence of fundamental component and strengthenfault characteristics. Then according to the spectral characteristics of current signal infault condition, essential features of motor faults were chosen from all the frequencybands, and were considered as the input vector of SVM. The Binary tree vectormachine was used to solve the multi-class classification problem; and theSM-MBBPSO and cross-validation were taken to optimize model parameters. Finally,the experiment shows that the proposed method is effective to recognize the stator androtor faults of induction motors.
引文
[1]朱东起,李发海.电机学[M].北京:科学出版社,2001.
    [2]达夫勒P. J.,彭曼J.电机的状态监测[M].北京:水利水电出版社,1992.
    [3]王绍禹,李伟清.发电机故障检查分析及预防[M].北京:中国电力出版社,1996.
    [4]王士政,杨正理,黄其新.电力系统继电保护原理及应用[M].北京:机械工业出版社,2010.
    [5]马宏忠.电机状态监测与故障诊断[M].北京:机械工业出版社,2007.
    [6]沈标正.电机故障诊断技术[M].北京:机械工业出版社,1996.
    [7]Schoen R R, Lin B K, Habetler T G, et al. An unsupervised, on-line system for inductionmotor fault detection using stator current monitoring[J]. IEEE Transactions on IndustryApplications,1995,31(6):1280-1286.
    [8]Trzynadlowski A M, Ritchie E. Comparative investigation of diagnostic media for inductionmotors: a case of rotor cage faults[J]. IEEE Transactions on Industrial Electronics,2000,47(5):1092-1099.
    [9]Cardoso A J M, Cruz S M A, Carvalho J F S, et al. Rotor cage fault diagnosis in three-phaseinduction motors, by Park's vector approach[C]. Coference Record of IEEE IndustryApplications Society Annual Meeting,1995:642-646.
    [10]Cruz S M A, Cardoso A J M. Rotor cage fault diagnosis in three-phase induction motors byextended Park's Vector approach[J]. Electric Machines and Power Systems,2000,28(4):289-299.
    [11]侯新国,吴正国,夏立.基于Park矢量模平方函数的异步电动机转子故障检测方法研究[J].中国电机工程学报,2003,23(9):137-140.
    [12]Cruz S M A, Cardoso A J M, Toliyat H A. Diagnosis of stator, rotor and airgap eccentricityfaults in three-phase induction motors based on the multiple reference frames theory[C].Coference Record of IEEE Industry Applications Society Annual Meeting,2003:1340-1346.
    [13]刘振兴,尹项根,张哲.基于Hilbert模量频谱分析的异步电动机转子故障在线监测与诊断方法[J].中国电机工程学报,2003,23(7):158-161.
    [14]马宏忠,姚华阳,黎华敏.基于Hilbert模量频谱分析的异步电机转子断条故障研究[J].电机与控制学报,2009,13(3):371-376.
    [15]姜建国,汪庆生,杨秉寿,等.用自适应方法提取鼠笼式异步电机转子断条的特征分量[J].电工技术学报,1990(4):1-6.
    [16]邱阿瑞.用起动电流的时变频谱诊断鼠笼异步电机转子故障[J].中国电机工程学报,1995,15(4):267-273.
    [17]张征平,任震,黄雯莹,等.基于小波脊线的电动机转子故障检测新方法[J].中国电机工程学报,2003,23(1):98-102.
    [18]魏云冰,黄进,牛发亮,等.基于小波脊线的笼型异步电动机转子故障特征提取[J].电工技术学报,2003,18(4):123-127.
    [19]Niu F L, Huang J. Rotor broken bars fault diagnosis for induction machines based on thewavelet ridge energy spectrum[C]. The Eighth International Conference on ElectricalMachines and Systems, Hangzhou,2005:2274-2277.
    [20]Elkasabgy N M, Eastham A R, Dawson G E. Detection of broken bars in the cage rotor on aninduction machine [J]. IEEE Transactions on Industry Applications,1992,28(1):165-171.
    [21]马宏忠,李训铭,方瑞明,等.利用失电残余电压诊断异步电机转子绕组故障[J].中国电机工程学报,2004,24(7):187-191.
    [22]Cupertino F, de Vanna E, Salvatore L, et al. Analysis techniques for detection of IM brokenrotor bars after supply disconnection[J]. IEEE Transactions on Industry Applications,2004,40(2):526-533.
    [23]Legowski S F, Sadrul Ula A H M, Trzynadlowski A M. Instantaneous power as a mediumfor the signature analysis of induction motors[J]. IEEE Transactions on Industry Applications,1996,32(4):904-909.
    [24]Cruz S M A, Cardoso A J M. Rotor cage fault diagnosis in three-phase induction motors bythe total instantaneous power spectral analysis[C]. Conference Record of IEEE IndustryApplications Conference Thirty-Fourth IAS Annual Meeting,1999:1929-1934.
    [25]刘振兴,尹项根,张哲,等.基于瞬时功率信号频谱分析的鼠笼式异步电动机转子故障在线诊断方法[J].中国电机工程学报,2003,23(10):148-152.
    [26]Drif M, Cardoso A J M. Rotor cage fault diagnostics in three-phase induction motors, by theinstantaneous non-active power signature analysis[C]. IEEE International Symposium onIndustrial Electronics,2007:1050-1055.
    [27]Drif M, Cardoso A J M. The use of the instantaneous-reactive-power signature analysis forrotor-cage-fault diagnostics in three-phase induction motors[J]. IEEE Transactions onIndustrial Electronics,2009,56(11):4606-4614.
    [28]Bangura J F, Demerdash N A. Diagnosis and characterization of effects of broken bars andconnectors in squirrel-cage induction motors by a time-stepping coupled finite element-statespace modeling approach[J]. IEEE Transactions on Energy Conversion,1999,14(4):1167-1176.
    [29]Aileen C J, Nagarajan S, Reddy S R. Detection of broken bars in three phase squirrel cageinduction motor using finite element method[C]. International Conference on EmergingTrends in Electrical and Computer Technology,2011:249-254.
    [30]Ma H Z, Ni X R, Ding Y Y, et al. Parameter identification and its application in faultdiagnosis of asynchronous motor[C]. International Conference on Electrical Machines andSystems,2007:1824-1828.
    [31]Kral C, Pirker F, Pascoli G. Model-based detection of rotor faults without rotor positionsensor-the sensorless Vienna monitoring method[J]. IEEE Transactions on IndustryApplications,2005,41(3):784-789.
    [32]Li J J, Sheng J B. The research of asynchronous motor stator and rotor parameteridentification method[J]. Electrician Technique Transaction,2006,21(1):70-74.
    [33]Bazine I, Bazine S, Tnani S, et al. On-line broken bars detection diagnosis by parametersestimation[C].13th European Conference on Power Electronics and Applications,2009:1-7.
    [34]宁玉泉.鼠笼感应电机转子断条和端环开裂的故障诊断和参数计算[J].中国电机工程学报,2002,22(10):98-104.
    [35]Kral C, Habetler T G, Harley R G, et al. A comparison of rotor fault detection techniqueswith respect to the assessment of fault severity[C]. IEEE International Symposium onDiagnostics for Electric Machines, Power Electronics and Drives,2003:265-270.
    [36]Mccully P J, Landy C F. Evaluation of current and vibration signals for squirrel cageinduction motor condition monitoring[C]. International Conference on Electrical Machinesand Drives,1997:331-335.
    [37]Tavner P J, Gaydon B G, Ward D M. Monitoring generators and large motors[J]. IEEProceedings B Electric Power Applications,1986,133(3):169-180.
    [38]Trutt F C, Sottile J, Kohler J L. Condition monitoring of induction motor stator windingsusing electrically excited vibrations[C]. Conference Record of the Industry ApplicationsConference,IAS Annual Meeting,2002:2301-2305.
    [39]Muller G H, Landy C F. A novel method to detect broken rotor bars in squirrel cageinduction motors when interbar currents are present[C]. Power Engineering Society GeneralMeeting,2003, IEEE,2003.
    [40]Li W, Mechefske C K. Detection of induction motor faults: A comparison of stator current,vibration and acoustic methods[J]. Journal of Vibration and Control,2006,12(2):165-188.
    [41]Filippetti F, Franceschini G, Tassoni C. Neural networks aided on-line diagnostics ofinduction motor rotor faults[J]. IEEE Transactions on Industry Applications,1995,31(4):892-899.
    [42]Haji M, Toliyat H A. Pattern recognition-a technique for induction machines rotor brokenbar detection[J]. IEEE Transactions on Energy Conversion,2001,16(4):312-317.
    [43]Altug S, Mo-Yuen C, Trussell H J. Fuzzy inference systems implemented on neuralarchitectures for motor fault detection and diagnosis[J]. IEEE Transactions on IndustrialElectronics,1999,46(6):1069-1079.
    [44]Filippetti F, Franceschini G, Tassoni C, et al. Recent developments of induction motor drivesfault diagnosis using AI techniques[J]. IEEE Transactions on Industrial Electronics,2000,47(5):994-1004.
    [45]满红,贾世杰.基于小波分析和神经网络的异步电机早期故障诊断[J].大连交通大学学报,2011,32(3):80-83.
    [46]陈理渊,黄进.基于支持向量机的电机转子断条故障诊断[J].电工技术学报,2006,21(8):48-52.
    [47]曹志彤,陈宏平,何国光.电机故障诊断支持向量机[J].仪器仪表学报,2004,25(6):738-741.
    [48]牛发亮,黄进,杨家强,等.基于感应电机启动电磁转矩Hilbert-Huang变换的转子断条故障诊断[J].中国电机工程学报,2005,25(11):107-112.
    [49]牛发亮.感应电机转子断条故障诊断方法研究[D].浙江大学,2006.
    [50]黄进,牛发亮,杨家强.基于双PQ变换的感应电机转子故障诊断[J].中国电机工程学报,2006,26(13):135-140.
    [51]韩天,尹忠俊,杨邵伟.电机转子断条故障诊断方法探讨[J].电力系统及其自动化学报,2009,21(1):93-117.
    [52]Menzhi L E, Saad A. Induction motor fault diagnosis using voltage spectrum of an auxiliarywinding[C]. International Conference on Electrical Machines and Systems,2007:1028-1032.
    [53]武玉才,李永刚,李和明,等.基于线圈探测的笼型异步电机转子断条故障诊断初探[J].华北电力大学学报(自然科学版),2012,39(3):1-5.
    [54]Wu G N, Park D H. On-line monitoring instrument of fault discharge in large generators[C].Eleventh International Symposium on High Voltage Engineering,1999:340-343.
    [55]Wang Z Z, Li C R, Peng P, et al. Partial discharge recognition of stator winding insulationbased on artificial neural network[C]. Conference Record of the IEEE InternationalSymposium on Electrical Insulation,2000:9-12.
    [56]Penman J, Dey M N, Tait A J, et al. Condition monitoring of electrical drives[J]. IEEProceedings B Electric Power Applications,1986,133(3):142-148.
    [57]Lipo T A, Chang K C. A new approach to flux and torque-sensing in induction machines[J].IEEE Transactions on Industry Applications,1986,IA-22(4):731-737.
    [58]Penman J, Sedding H G, Lloyd B A, et al. Detection and location of interturn short circuits inthe stator windings of operating motors[J]. IEEE Transactions on Energy Conversion,1994,9(4):652-658.
    [59]Thomson W T. On-line MCSA to diagnose shorted turns in low voltage stator windings of3-phase induction motors prior to failure[C]. IEEE International Electric Machines andDrives Conference,2001:891-898.
    [60]Gentile G, Meo S, Ometto A. Induction motor current signature analysis to diagnostics, ofstator short circuits[C]. IEEE International Symposium on Diagnostics for Electric Machines,Power Electronics and Drives, Atlanta,CA,USA,2003:47-51.
    [61]Stavrou A, Sedding H G, Penman J. Current monitoring for detecting inter-turn short circuitsin induction motors[J]. IEEE Transactions on Energy Conversion,2001,16(1):32-37.
    [62]Zouzou S E, Sahraoui M, Ghoggal A, et al. Detection of inter-turn short-circuit and brokenrotor bars in induction motors using the Partial Relative Indexes: Application on theMCSA[C]. XIX International Conference on Electrical Machines,2010:1-6.
    [63]Sharifi R, Ebrahimi M. Detection of stator winding faults in induction motors usingthree-phase current monitoring[J]. ISA Transactions,2011,50(1):14-20.
    [64]王洪希,刘诤,田伟.基于互高阶谱MUSIC法的电机定子匝间短路故障特征分量提取[J].电力系统保护与控制,2010,38(23):117-120.
    [65]Cardoso A J M, Cruz S M A, Fonseca D S B. Inter-turn stator winding fault diagnosis inthree-phase induction motors, by Park's vector approach[J]. IEEE Transactions on EnergyConversion,1999,14(3):595-598.
    [66]侯新国,夏立,吴正国,等.基于Clarke变换的感应电机定子故障检测方法[J].振动、测试与诊断,2004,24(3):44-47.
    [67]夏立,侯新国,吴正国.基于空间矢量法的感应电机定子线圈故障检测方法研究[J].电机与控制学报,2004,8(1):22-24.
    [68]Cruz S M A, Cardoso A J M. Multiple reference frames theory: a new method for thediagnosis of stator faults in three-phase induction motors[J]. IEEE Transactions on EnergyConversion,2005,20(3):611-619.
    [69]Wu S, Chow T W S. Induction machine fault detection using SOM-based RBF neuralnetworks[J]. IEEE Transactions on Industrial Electronics,2004,51(1):183-194.
    [70]Darwish H A, Taalab A M I, Kawady T A. Development and implementation of anANN-based fault diagnosis scheme for generator winding protection[J]. IEEE Transactionson Power Delivery,2001,16(2):208-214.
    [71]Diallo D, Benbouzid M E H, Hamad D, et al. Fault detection and diagnosis in an inductionmachine drive: a pattern recognition approach based on concordia stator mean currentvector[J]. IEEE Transactions on Energy Conversion,2005,20(3):512-519.
    [72]Zidani F, Benbouzid M E H, Diallo D, et al. Induction motor stator faults diagnosis by acurrent Concordia pattern-based fuzzy decision system[J]. IEEE Transactions on EnergyConversion,2003,18(4):469-475.
    [73]陈立平.基于模糊神经网络的电机定子绕组匝间短路故障的在线诊断[J].长沙电力学院学报(自然科学版),2004,19(3):31-34.
    [74]汤红诚,李著信,武华峰,等.基于人工免疫的异步电机故障诊断系统[J].中国电机工程学报,2005,25(23):158-162.
    [75]Stocks M, Medvedev A. On-line estimation of all electrical parameters in inductionmachines subject to stator fault[C]. IEEE International Conference on Control Applications,2007:527-532.
    [76]Bachir S, Tnani S, Trigeassou J C, et al. Diagnosis by parameter estimation of stator androtor faults occurring in induction machines[J]. IEEE Transactions on Industrial Electronics,2006,53(3):963-973.
    [77]Tallam R M, Habetler T G, Harley R G. Transient model for induction machines with statorwinding turn faults[J]. IEEE Transactions on Industry Applications,2002,38(3):632-637.
    [78]Bagheri F, Khaloozaded H, Abbaszadeh K. Stator fault detection in induction machines byparameter estimation, using adaptive kalman filter[C]. Mediterranean Conference on Control&Automation,2007:1-6.
    [79]Toliyat H A, Lipo T A. Transient analysis of cage induction machines under stator, rotor barand end ring faults[J]. IEEE Transactions on Energy Conversion,1995,10(2):241-247.
    [80]Williamson S, Mirzoian K. Analysis of cage induction motors with stator winding faults[J].IEEE Transactions on Power Apparatus and Systems,1985,104(7):1838-1842.
    [81]Kohler J L, Sottile J, Trutt F C. Alternatives for assessing the electrical integrity of inductionmotors[J]. IEEE Transactions on Industry Applications,1992,28(5):1109-1117.
    [82]Kohler J L, Sottile J, Trutt F C. Condition monitoring of stator winding in induction motors:Part I-Experimental investigation of the effective negative-sequence impedance detector[J].IEEE Transactions on Industry Applications,2002,38(5):1447-1453.
    [83]许伯强,李和明,孙丽玲,等.异步电动机定子绕组匝间短路故障检测方法研究[J].中国电机工程学报,2004,24(7):181-186.
    [84]Arkan M, Perovic D K, Unsworth P. Online stator fault diagnosis in induction motors[J]. IEEProceedings-Electric Power Applications,2001,148(6):537-547.
    [85]侯新国,吴正国,夏立,等.瞬时功率分解算法在感应电机定子故障诊断中的应用[J].中国电机工程学报,2005,25(5):112-117.
    [86]Kliman G B, Premerlani W J, Koegl R A, et al. A new approach to on-line turn faultdetection in AC motors[C]. Conference Record of the IEEE Industry ApplicationsConference Thirty-First IAS Annual Meeting,1996:687-693.
    [87]Tallam R M, Habetler T G, Harley R G, et al. Neural network based on-line stator windingturn fault detection for induction motors[C]. Conference Record of the IEEE IndustryApplications Conference,2000:375-380.
    [88]Nandi S. Detection of stator faults in induction machines using residual saturationharmonics[J]. IEEE Transactions on Industry Applications,2006,42(5):1201-1208.
    [89]Nandi S, Toliyat H A. Novel frequency-domain-based technique to detect stator interturnfaults in induction machines using stator-induced voltages after switch-off[J]. IEEETransactions on Industry Applications,2002,38(1):101-109.
    [90]张建文,姚奇,朱宁辉,等.异步电动机定子绕组的故障诊断方法[J].高电压技术,2007,33(6):114-117.
    [91]刘烔,杨家强,黄进.基于断电后残余电压的感应电机定子故障诊断[J].浙江大学学报(工学版),2006,40(8):1361-1364.
    [92]董建园,段志善,熊万里.异步电机定子绕组故障分析及其诊断方法[J].中国电机工程学报,1999,19(3):26-30.
    [93]Kennedy J, Eberhart R. Particle swarm optimization[C]. IEEE International Conference onNeural Networks,1995:1942-1948.
    [94]Shi H Y, Eberhart R C. A modified particle swarm optimizer[C]. IEEE Congress onEvolutionary Computation,1998:63-79.
    [95]Shi H Y, Eberhart R C. Empirical study of particle swarm optimization[C]. IEEE Congresson Evolutionary Computation,1999:1945-1950.
    [96]陈贵敏,贾建援,韩琪.粒子群优化算法的惯性权值递减策略研究[J].西安交通大学学报,2006,40(1):53-56.
    [97]张顶学,关治洪,刘新芝.一种动态改变惯性权重的自适应粒子群算法[J].控制与决策,2008,23(11):1253-1257.
    [98]Clerc M. The swarm and the queen: towards a deterministic and adaptive particle swarmoptimization[C]. IEEE Congress on Evolutionary Computation,1999:1951-1957.
    [99]Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarmoptimizer with time-varying acceleration coefficients[J]. IEEE Transactions on EvolutionaryComputation,2004,8(3):240-255.
    [100]Van den Bergh F. A new locally convergent particle swarm optimiser[C]. IEEE InternationalConference on Systems Man and Cybernetics,2002:94-99.
    [101]曾建潮,崔志华.一种保证全局收敛的PSO算法[J].计算机研究与发展,2004,41(8):1333-1338.
    [102]付国江,王少梅,刘舒燕.含速度变异算子的粒子群算法[J].华中科技大学学报,2005,33(8):48-50.
    [103]Al-Kazemi B S. Velocity analysis for particle swarm optimization[J]. WSEAS Transactionson Information Science and Applications,2006,3(4):751-757.
    [104]胡旺,李志蜀.一种更简化而高效的粒子群优化算法[J].软件学报,2007,18(4):861-868.
    [105]王华秋,曹长修.基于模拟退火的并行粒子群优化研究[J].控制与决策,2005,20(5):500-504.
    [106]王芳,邱玉辉.一种引入单纯形法算子的新颖粒子群算法[J].信息与控制,2005,34(5):517-522.
    [107]Li N, Qin Y Q, Sun D B, et al. Particle swarm optimization with mutation operator[C].International Conference on Machine Learning and Cybernetics, Wuhan, China,2004:2251-2256.
    [108]Matthew S, Terence S. Breeding swarms: a GA/PSO hybrid[C]. Genetic and EvolutionaryComputation,2005:161-168.
    [109]Shi X H, Wan L M, Lee H P, et al. An improved genetic algorithm with variablepopulation-size and a PSO-GA based hybrid evolutionary algorithm[C]. InternationalConference on Machine Learning and Cybernetics, Changchun, China,2003:1735-1740.
    [110]夏平平,吕太之,贾岩峰.免疫粒子群优化算法及性能分析[J].贵州大学学报,2011,28(5):104-107.
    [111]Sun J, Feng B, Xu W B. Particle swarm optimization with particles having quantumbehavior[C]. Congress on Evolutionary Computation, Jiangsu, China,2004:325-331.
    [112]刘玲,钟伟民,锋钱.改进的混沌粒子群优化算法[J].华东理工大学学报,2010,36(2):267-272.
    [113]熊勇,路文初,莫愿斌,等.基于旋转曲面变换的粒子群优化方法[J].浙江大学学报,2005,39(12):1946-1949.
    [114]赫然,王永吉,王青,等.一种改进的自适应逃逸微粒群算法及实验分析[J].软件学报,2005,16(12):2036-2044.
    [115]吕艳萍,李绍滋,陈水利,等.自适应扩散混合变异机制微粒群算法[J].软件学报,2007,18(11):2740-2751.
    [116]Yang G, Zhang R. An enotional particle swarm optimization algorithm[J]. Lecture Notes InComputer Science,2005,36(12):553-561.
    [117]陶新民,徐晶,杨立标,等.改进的多种群协同进化微粒群优化算法[J].控制与决策,2009,24(9):1406-1411.
    [118]孔莉芳,张虹.用于特征子集选择的异步并行微粒群优化方法[J].控制与决策,2012,27(7):967-974.
    [119]Ozcan E, Mohan C K. Analysis of a simple particle swarm optimization system[J].Intelligent Engineering Systems Through Artificial Neural Networks,1998,8:253-258.
    [120]Clerc M, Kennedy J. The particle swarm-explosion, stability, and convergence in amultidimensional complex space[J]. IEEE Transactions on Evolutionary Computation,2002,6(1):58-73.
    [121]Van den Bergh F, Engelbrecht A P. A study of particle swarm optimization particletrajectories[J]. Information Sciences,2006,176(8):937-971.
    [122]潘峰,陈杰,甘明刚,等.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377.
    [123]Wang P, Shi L, Zhang Y, et al. A hybrid simplex search and modified bare-bones particleswarm optimization[J]. Chinese Journal of Electronics,2013,22(1):104-108.
    [124]张勇,巩敦卫,任永强,等.用于约束优化的简洁多目标微粒群优化算法[J].电子学报,2011,39(6):1436-1440.
    [125]岳小斌,练刚.基于粒子群优化神经网络的高压断路器故障诊断[J].电力学报,2011,26(1):41-44.
    [126]王东,罗可.基于变异粒子群的聚类挖掘[J].计算机工程与应用,2011,47(21):130-132.
    [127]王杰,姜念,张毅. SVM算法的区间自适应PSO优化及其应用[J].郑州大学学报,2011,32(1):75-79.
    [128]野田,刘大有.求解流水车间调度问题的混合粒子群算法[J].电子学报,2011,39(5):1087-1093.
    [129]魏星,舒乃秋,张霖,等.基于改进PSO-BP混合算法的电力变压器故障诊断[J].电力自动化设备,2006,26(5):35-38.
    [130]王磊,黄道.基于改进的自组织映射网络的化工过程故障分类辨识[J].华东理工大学学报,2006,32(9):1109-1112.
    [131]毛鸿伟,潘宏侠,刘文礼.基于粒子群优化的小波神经网络及其在齿轮箱故障诊断中的应用[J].振动与冲击,2007,26(5):133-136.
    [132]王晓霞,王涛.基于粒子群优化神经网络的变压器故障诊断[J].高电压技术,2008,34(11):2362-2367.
    [133]贾嵘,洪刚,武桦,等.基于IPSO优化LSSVM的水轮发电机组振动故障诊断[J].水利学报,2011,42(3):373-378.
    [134]于湘涛,卢文秀,褚福磊.基于PSO算法的模糊PSVM及其在旋转机械故障诊断中的应用[J].振动与冲击,2009,8(11):183-186.
    [135]全睿,全书海,黄亮,等.基于支持向量机的车用燃料电池系统故障诊断[J].振动.测试与诊断,2012,32(1):78-83.
    [136]唐明珠,王岳斌,阳春华.一种改进的支持向量数据描述故障诊断方法[J].控制与决策,2011,26(7):967-972.
    [137]胡方霞,谢志江,岳茂雄.混沌粒子群优化模糊聚类的旋转机械故障诊断[J].重庆大学学报,2011,34(6):26-30.
    [138]刘福荣,王宏伟,高晓智.基于粒子群优化聚类的汽轮机组振动故障诊断[J].振动与冲击,2010,29(8):9-12.
    [139]陈平,张钧,鞠萍华,等.汽轮机故障诊断的粒子群优化加权模糊聚类法[J].振动.测试与诊断,2011,31(5):574-577.
    [140]魏秀业,潘宏侠,黄晋英.齿轮箱传感器优化布置研究[J].兵工学报,2010,31(11):1508-1513.
    [141]张超杰,贺国,梁述海,等.基于改进粒子群算法的模拟电路测试点选择[J].华中科技大学学报,2009,37(11):31-34.
    [142]潘宏侠,黄晋英,毛鸿伟,等.粒子群优化技术用于故障诊断中的测点优化配置研究[J].火炮发射与控制学报,2008(2):58-62.
    [143]王灵,俞金寿.混沌耗散离散粒子群算法及其在故障诊断中的应用[J].控制与决策,2007,22(10):1197-1200.
    [144]夏天,王新晴,肖云魁,等.基于离散粒子群优化算法的汽车发动机故障特征选择[J].中国工程机械学报,2010,8(2):219-223.
    [145]潘宏侠,黄晋英,毛鸿伟,等.基于粒子群优化的故障特征提取技术研究[J].振动与冲击,2008,27(10):144-147.
    [146]张弦,王宏力.进化小波消噪方法及其在滚动轴承故障诊断中的应用[J].机械工程学报,2010,46(15):76-81.
    [147]张弦,王宏力.利用粒子群优化的小波简化交叉验证消噪[J].仪器仪表学报,2010,31(5):1184-1189.
    [148]Kennedy J. Bare bones particle swarms[C]. IEEE Swarm Intelligence Symposium,Indiana,USA,2003:80-87.
    [149]Krohling R A, Mendel E. Bare bones particle swarm optimization with gaussian or cauchyjumps[C]. IEEE Congress on Evolutionary Computation, Trondheim, Norway,2009:3285-3291.
    [150]Omran M G H, Engelbrecht A P, Salman A. Bare bones differential evolution[J]. EuropeanJournal of Operational Research,2009,196(1):128-139.
    [151]Zhang H, Kennedy D D, Rangaiah G P, et al. Novel bare-bones particle swarm optimizationand its performance for modeling vapor-liquid equilibrium data[J]. Fluid Phase Equilibria,2011,301(1):33-45.
    [152]Omran M G H, Engelbrecht A, Salman A. Barebones particle swarm for integerprogramming problems[C]. IEEE Swarm Intelligence Symposium,2007:170-175.
    [153]Omran M, Al-Sharhan S. Barebones particle swarm methods for unsupervised imageclassification[C]. IEEE Congress on Evolutionary Computation,2007:3247-3252.
    [154]Nelder J A, Mead R. A simplex method for function minimization[J]. The computer journal,1965,7(4):308-313.
    [155]潘峰,陈杰,甘明刚,等.粒子群优化算法模型分析[J].自动化学报,2006,32(3):368-377.
    [156]安伟刚,李为吉.改进的粒子群优化算法及其工程应用[J].机械科学与技术,2005,24(4):415-417.
    [157]Hsu C C, Gao C H. Particle swarm optimization incorporating simplex search and centerparticle for global optimization[C]. IEEE Conference on Soft Computing in IndustrialApplications, Muroran,Japan,2008:26-31.
    [158]Solis F, Wets R J. Minimization by random search techniques[J]. Mathematics of operationsresearch,1981,6(1):19-30.
    [159]Chen M R, Li X, Zhang X, et al. A novel particle swarm optimizer hybridized with extremaloptimization[J]. Applied Soft Computing,2010,10(2):367-373.
    [160]Vrahatis M N, Boutsinas B, Alevizos P, et al. The new k-windows algorithm for improvingthe k-means clustering algorithm[J]. Journal of Complexity,2002,18(1):375-391.
    [161]Zhao Q H, Urosevi D, Mladenovi N, et al. A restarted and modified simplex search forunconstrained optimization[J]. Computers&Operations Research,2009,36(12):3263-3271.
    [162]Dennis J J, EWoods D J. Optimization in microcomputers: The nelder-meade simplexalgorithm[M]//WOUK A. New computing environments: Microcomputers in large scalecomputing. SIAM Philadelphia: PAUSA,1987.
    [163]Nandi S, Toliyiat H A. Condition monitoring and fault diagnosis of electrical machines: areview[C]. IEEE Industry Application Society Annual Meeting, Phoenix,AZ,1999:197-204.
    [164]刘振兴,张哲,尹项根.异步电动机的状态监测与故障诊断技术综述[J].武汉科技大学学报,2001,24(3):285-289.
    [165]Bellini A, Filippetti F, Franceschini G, et al. Quantitave Evaluation of Induction MotorBroken Bars by Means of Electrical Signature Analysis[J]. IEEE Transactions On IndustryApplications,2001,37(5):1248-1255.
    [166]Filippetti F, Franceschini G, Carla T, et al. AI techniques in induction machines diagnosisincluding the speed ripple effect[J]. IEEE Transactions On Industry Applications,1998,34(1):98-108.
    [167]刘振兴.电机故障在线监测诊断新原理和新技术研究[D].武汉:华中科技大学,2004.
    [168]许伯强,李和明,孙丽玲,等.小波分析应用于笼型异步电动机转子断条在线检测初探[J].中国电机工程学报,2001,21(11):25-29.
    [169]李晓峰,周宁,傅志中.随机信号分析[M].电子工业出版社,2011.
    [170]Andreas S, Howard G S, James P. Current monitoring for detecting inter-turn short circuitsin induction motors[J]. IEEE Transactions On Energy Conversion,2001,16(1):32-37.
    [171]方芳,杨士元,侯新国,等.基于Park矢量旋转滤波的感应电机复合故障检测[J].武汉大学学报,2008,41(5):111-115.
    [172]李和明,孙丽玲,许伯强,等.异步电动机定子绕组匝间短路故障检测新方法[J].中国电机工程学报,2008,28(21):73-79.
    [173]方芳,杨士元,侯新国,等.一种计算负序电流的新方法[J].武汉理工大学学报,2009,33(5):872-875.
    [174]魏云冰.小波变换在电机故障诊断与测试中的应用[D].杭州:浙江大学,2002.
    [175]Mallat S. A theory for multiresolution signal decomposition: the wavelet representation[J].IEEE Transactions on PAMI,1989,11(7):674-693.
    [176]Cusido J, Rosero J A, Ortega J A, et al. Induction motor fault detection by using waveletdecomposition on dq0components[C]. IEEE International Symposium on IndustrialElectronics, Montreal,Quebec,Canada,2006:2406-2411.
    [177]Joksimovic G M, Penman J. The detection of inter-turn short circuits in the stator windingsof operating motors[J]. IEEE Transactions on Industry Applications,2000,47(5):1078-1084.
    [178]方芳,杨士元,侯新国,等.派克矢量旋转变换在感应电机定子故障诊断中的应用[J].中国电机工程学报,2009,29(12):99-103.
    [179]Cortes C, Vapnik V. Support-vector networks[J]. Machine Learning,1995,20(3):273-297.
    [180]Xian G M, Zeng B Q. An intelligent fault diagnosis method based on wavelet packer analysisand hybrid support vector machines[J]. Expert Systems with Applications,2009,36(10):12131-12136.
    [181]Yuan S F, Chu F L. Support vector machines-based fault diagnosis for turbo-pump rotor[J].Mechanical Systems and Signal Processing,2006,20(4):939-952.
    [182]胡清,王荣杰,詹宜巨.基于支持向量机的电力电子电路故障诊断技术[J].中国电机工程学报,2008,28(12):107-111.
    [183]唐发明,王仲东,陈绵云.支持向量机多类分类算法研究[J].控制与决策,2005,20(7):746-749.
    [184]杨俊燕,张优云,赵荣珍.支持向量机在机械设备振动信号趋势预测中的应用[J].西安交通大学学报,2005,39(9):950-953.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700