聚合物基因载体与氧化石墨烯复合物的制备及其生物相容性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
伴随着石墨烯在实验中被制备得到,人们对2维结构材料的认识进入新的领域。与此同时,已被发现超过150年的氧化石墨,由于可以低成本大规模的被用来制作石墨烯而重新引起了人们的注意,在此过程中由氧化石墨剥离后得到的氧化石墨烯,由于相较石墨烯增加了许多含氧基团及缺陷而具备了与石墨烯截然不同的性质,也同样吸引了大量科研人员对其可能的应用展开了广泛的研究。这其中,自然不会缺少在生物医药领域中应用的尝试。现有研究已经证明,氧化石墨烯无论在体外还是体内的毒性实验中,均表现出了良好的安全性。此外,由于其具备极大的两亲性的比表面积,使氧化石墨烯可能达到非常高的药物负载率;而其表面上丰富的含氧基团适合用来引入多种功能分子,使氧化石墨烯具备了成为已知的最有效的药物载体的可能。
     伴随着医学及分子生物学的不断进步,人们对疾病的认识已经开始进入基因时代。随着人类基因组测序的完成以及相关检测手段的快速进步,包括癌症在内的许多疾病在基因水平的发病机制被逐渐明确,这为人们提供在基因水平上对疾病进行治疗的可能,但是,这些进步也对药物的传输方法提出了新的要求。由于遗传物质的特殊性,决定了要有效的实现基因药物的功用,需要与传统药物完全不同的给药手段。现有的比较成功的基因药物载体主要包含生物载体及人工合成载体。但生物载体如病毒、细菌等存在变异复毒的风险,人工合成的载体则通常转染率偏低,所以开发高效低毒的基因载体是基因治疗领域的研究热点之一。
     在本文中,我们尝试以氧化石墨烯作为基础材料,通过对其进行化学修饰,实现将氧化石墨烯改造成基因载体的目的。我们还通过细胞转染实验及蛋白吸附实验初步评价了我们制备得到的复合材料做为基因载体的可行性。
     我们首先以改进的Hummers法制备得到了氧化石墨烯(GO)并通过氢氧化钠和氯乙酸对制备得到的氧化石墨烯进行了羧基化改性;为了获得具有较小尺寸的GO,我们比较了长时间超声处理及改变中温氧化时间两种方法;为了实现载体对DNA质粒的负载,我们通过偶氮化学反应,尝试将常用的两种聚合物基因载体聚左旋赖氨酸(PLL)和聚乙烯亚胺(PEI)偶联在羧基化的GO上,通过投料比与产品溶液表面电势之间的关系确定了较优的反应投料比,并通过设计吸附对比实验证明了共价偶联的存在;在载体合成方面,我们还在小分子量PEI与GO的复合物上进一步引入了PEG。在对所有复合物进行定性表征后,我们对复合物的稳定性进行了观察,结果显示只有高分子量的PEI-GO复合物及PEG化的GO-PEI复合物能在高渗NaCl溶液及细胞培养基中稳定存在。在载体自身性质的表征方面,我们还观察了所有载体的UV-vis-NIR光谱以判断制备得到的材料是否可能用于光热治疗。
     因为已有文献报道指出高分子量的GO-PEI是一种比较有效的转染试剂,考虑到高分子量PEI的毒性也较高,在本文中,我们未对GO-PEI_(25k)复合物进行研究,只比较了GO-PLL,低分子量PEI与GO复合物,及PEG化的低分子量PEI与GO复合物的细胞转染能力。所有测试的复合物在实验范围内均表现出了较低的细胞毒性,同时改性后的载体样品均表现出较好的质粒结合能力。在细胞转染实验中,我们发现三种载体材料均能实现转染,其中GO-PLL的转染效果较差,而GO-PEI_(1.3k)-PEG_(5k)无论在载体稳定性及转染效果方面结果均较好,通过与合成基因载体的黄金标准PEI25k的转染效率进行比较发现,GO-PEI_(1.3k)-PEG_(5k)具备了与PEI25k相当的转染效率,但毒性更低。通过近红外光照下的细胞生存率实验我们发现高浓度的GO-PEI_(1.3k)-PEG_(5k)表现出出明显的细胞光热伤杀作用,说明这一材料可能成为一种有效的基因光热复合治疗试剂。
     最后,我们还研究了不同载体与蛋白之间的相互作用,尝试间接的评价几种GO-聚合物复合物载体的生物相容性。选用牛血清蛋白(BSA)作为模型蛋白,我们首先对研究方法进行了探讨,通过综合考虑实验的通用性及影响因素,我们选定Bradford法作为评价溶液中蛋白浓度的方法。由于转染实验中GO-PLL的结果不好,我们未对该样品进行蛋白相互作用研究。在蛋白质浓度对溶液稳定性影响的实验中,我们发现不同载体之间性质差异明显,随着溶液中BSA浓度的增大,GO表现为由聚集到稳定;大分子量PEI与GO的复合物的同类实验结果则与此正相反,在低浓度BSA中稳定,而在高浓度BSA中聚集;小分子量PEI与GO的复合物在实验范围内均不稳定,而PEG化的载体在实验范围内均稳定。通过观察一定浓度的BSA与GO及其聚合物复合物载体上吸附量随时间的变化,我们意外的发现,吸附会在10min之前达到平衡,虽然我们经过多次重复实验均得到相似的结果,但我们认为需要更多实验来确证这一实验现象;通过pH值对吸附量的影响,我们发现,对于GO来说,pH值超高吸附量越大,说明BSA在GO表面的吸附行为是以静电相互作用为主要驱动力;PEG化的载体吸附的蛋白质量则表现出pH值无关的行为,可能是由于BSA在这种载体表面主要是通过疏水相互作用进行吸附;PEI-GO载体吸附蛋白量与pH值之间的关系比前两者复杂,这可能是由于蛋白质及PEI的等电点不同,pH值的变化会带来载体性质的明显变化。此外,通过Langmuir和Freundlich吸附等温式的分析,我们认为在实验范围内GO及GO-PEI-PEG表面发生的均为单分子层吸附,而在GO-PEI表面则为非单分子层吸附,特别要提到的高分量的PEI与GO的复合物,在实验范围内表现出了多分子层吸附的吸附等温线特征。通过对比Freundlich吸附等温线的结果,我们发现,GO-聚合物复合物对蛋白质的理论吸附量均低于GO,PEG化后的样品对蛋白的理论吸附量比其它测试的样品高,但是其与蛋白之间的结合强度最弱,可能因此使其达到吸附平衡时吸附的蛋白更少。由于大部分生物相互作用较由与蛋白质的相互作用开始,对蛋白吸附的越少,意味着应用于体内时的安全性可能越高,而载体与蛋白质之间相互作用的实验说明在所测试的样品中,GO-PEI-PEG样品的生物相容性应该是最高的。
As the discovery of graphene, research about2-D materials encounters newchallenge. As the same time, graphite oxide–after it was discovered for more than150years-has attract great concerns because it can be used as the raw materials forlow cost and large scale produce graphene. After exfoliated, one can get grapheneoxide in solution from graphite oxide. Graphene oxide has lots of oxygen-containinggroups which make the properties of graphene oxide great different from graphene.Recently, a lot of literatures about application of graphene oxide have been published.Among these reports, there are some attempts of using graphene oxide as bio-ormedicine materials. Some reports shows that GO is nontoxic both in vitro and in vivo.GO has impressively drug loading ratio benefits from its large specific surface area.Massive oxygen-containing groups make GO easy to be modified. All these propertiesmake GO a great potential to be a powerful drug carrier.
     In other hand, as the development of medical and molecular biology, theknowledge about disease comes into genome era. After the accomplishment of HumanGenome Project and progress in detection method, causing genes of many diseasesincluding cancers have been identified. As a result, a new technology named genetherapy appears. For design gene vectors using in gene therapy, many new criterianeed to be satisfied. Comparing with traditional drugs, genetic materials have theirspecial natures and need different delivery pathways to make therapeutic gene work.Up to now, there are mainly two types successful gene vectors which arebiology-based vectors and synthesis vectors. For viral or bacteria vectors, its mainbottleneck is their safety concerns. These biology-base vetors might revert towild-type virion and they are inherently immunogenic. So development of novelvectors with high efficient and low toxicity is one of the research focuses in genetherapy.
     In this thesis, we choose GO as starting material. After chemical modification,we get GO-based gene delivery vectors. Both cell transfection and protein absorption experiments were carried out to evaluate its ability as gene vectors.
     At first, GO was gotten using an improved Hummers method. Carboxyl was thenintroduced into GO using NaOH and chloroacetic acid. For endowing GO the abilityof loading gene, two widely used polymer poly-L-lysine(PLL) andpolyethyleneimine(PEI) were conjugated onto GO. PEG molecules was introduce intothe complex of GO and low molecular weight PEI. After characterizing all ofsynthesized complexes, their stabilities in different solution environment wereobserved. Results showed that both high molecular weight PEI-GO conjugation andPEGylated PEI-GO were stable in both high concentration of NaCl solution andDMEM solution.
     Because there was report about high molecular weight PEI-GO complex used astransfection vectors and it was highly toxicity, we did not observe the transfectionefficient of high molecular weight PEI-GO complex in this thesis. Instead, GO-PLL,low molecular weight PEI-GO and PEGylated low molecular weight PEI-GO wasinvestigated. All of the observed sample showed low cytotoxicity but had highly DNAplasmid binding ability. In the cell transfection experiment, GO-PLL showed poorlytransfection efficient while GO-PEI-PEG gave an excellent stability and transfectionefficient.
     At last, we investigated the interaction between our vectors and protein. Bovineserum albumin (BSA) was chosen as model protein. Both Bradford assay and proteininherent absorbance was used for protein quantitative analysis method and the resultswere compared. Bradford assay was chosen as our protein quantitative analysismethod because of its versatility. Because of its low transfection efficient, interactionbetween GO-PLL and protein was not test. Results of relationship between proteinconcentration and vector stability in solution showed that there were obviouslydifferent among our vectors. As BSA concentration increased, GO appeared topartially aggregation at first and became stable in BSA solution of high concentration.High molecular weight PEI-GO complex showed a reversed stability which was stablein BSA solution of low concentration and became aggregation in BSA solution of highconcentration. Low molecular weight PEI-GO complex aggregated in all tested BSAsolution. After PEGylation, GO-PEI-PEG was stable in all tested BSA solution.Relationship between protein amount absorption on vectors and pH value of solutionshowed that protein amount absorption on GO decreased as pH value increased. These results suggested that the interaction between BAS and GO were dominated byelectrostatic interaction. Through Langmuir and Freundlich adsorption isothermformulas, BSA absorbed on GO and GO-PEI-PEG should follow the single layerabsorption model. Both GO-PEI samples did not follow the Langmuir a adsorptionisotherm formula. Especially, high molecular weight PEI-GO complex showed atypical multiple layers absorption behavior. The adsorption isotherms also showedthat the binding ability between protein and PEGylated samples were weaker thanother samples which made less protein absorption on GO-PEI-PEG after adsorptionequilibrium. Because most of biological interaction started from protein interaction,vectors with less protein absorption should more safety in practical usage.
引文
[1] SHINOHARA H. In pursuit of nanocarbons [J]. Chemical Record,2012,12(3):296-305.
    [2] SHI X-Q, VAN HOVE M A, ZHANG R-Q. Survey of structural and electronicproperties of C-60on close-packed metal surfaces [J]. J Mater Sci,2012,47(21):7341-55.
    [3] RAJAVEL K, MINITHA C R, RANJITH K S, et al. Recent Progress on theSynthesis and Applications of Carbon Based Nanostructures [J]. Recent Patentson Nanotechnology,2012,6(2):99-104.
    [4] BAZARGAN A, MCKAY G. A review-Synthesis of carbon nanotubes fromplastic wastes [J]. Chemical Engineering Journal,2012,195(377-91.
    [5] GEIM A K, NOVOSELOV K S, MOROZOV S V, et al. Electric field effect inatomically thin carbon films [J]. Science,2004,306(5696):666-9.
    [6] YOUNG R J, KINLOCH I A, GONG L, et al. The mechanics of graphenenanocomposites: A review [J]. Composites Science and Technology,2012,72(12):1459-76.
    [7] KUILA T, BOSE S, MISHRA A K, et al. Chemical functionalization of grapheneand its applications [J]. Progress in Materials Science,2012,57(7):1061-105.
    [8] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of grapheneoxide [J]. Chem Soc Rev,2010,39(1):228-40.
    [9] ZHU Y, MURALI S, CAI W, et al. Graphene and Graphene Oxide: Synthesis,Properties, and Applications [J]. Adv Mater,2010,22(35):3906-24.
    [10] CUI S, KINLOCH I A, YOUNG R J, et al. The Effect of Stress Transfer WithinDouble-Walled Carbon Nanotubes Upon Their Ability to Reinforce Composites[J]. Adv Mater,2009,21(35):3591-+.
    [11] CHATTERJEE S, NUEESCH F A, CHU B T T. Comparing carbon nanotubesand graphene nanoplatelets as reinforcements in polyamide12composites [J].Nanotechnology,2011,22(27):
    [12] CHEN B, WU P D, GAO H. A characteristic length for stress transfer in thenanostructure of biological composites [J]. Composites Science and Technology,2009,69(7-8):1160-4.
    [13] CAI D, YUSOH K, SONG M. The mechanical properties and morphology of agraphite oxide nanoplatelet/polyurethane composite [J]. Nanotechnology,2009,20(8):
    [14] CELZARD A, MARECHE J F, FURDIN G. Surface area of compressedexpanded graphite [J]. Carbon,2002,40(14):2713-8.
    [15] ZELLER P, DAENHARDT S, GSELL S, et al. Scalable synthesis of graphene onsingle crystal Ir(111) films [J]. Surf Sci,2012,606(19-20):1475-80.
    [16] TSELEV A, LAVRIK N V, VLASSIOUK I, et al. Near-field microwave scanningprobe imaging of conductivity inhomogeneities in CVD graphene [J].Nanotechnology,2012,23(38):385706-.
    [17] BEHNAM A, LYONS A S, BAE M-H, et al. Transport in nanoribboninterconnects obtained from graphene grown by chemical vapor deposition [J].Nano Lett,2012,12(9):4424-30.
    [18] MAO S, PU H, CHEN J. Graphene oxide and its reduction: modeling andexperimental progress [J]. Rsc Advances,2012,2(7):2643-62.
    [19] COLLINS B B. Note sur un nouveau procédé pour la purification et ladésagrégation du graphite [J]. Annales de Chimie,1855,45(351–3.
    [20] BOUKHVALOV D W, KATSNELSON M I. Modeling of graphite oxide [J]. JAm Chem Soc,2008,130(32):10697-701.
    [21] SZABO T, BERKESI O, FORGO P, et al. Evolution of surface functional groupsin a series of progressively oxidized graphite oxides [J]. Chem Mater,2006,18(11):2740-9.
    [22] LI X, CAI W, AN J, et al. Large-Area Synthesis of High-Quality and UniformGraphene Films on Copper Foils [J]. Science,2009,324(5932):1312-4.
    [23] GRANTAB R, SHENOY V B, RUOFF R S. Anomalous Strength Characteristicsof Tilt Grain Boundaries in Graphene [J]. Science,2010,330(6006):946-8.
    [24] ZHU Y, LI X, CAI Q, et al. Quantitative Analysis of Structure and BandgapChanges in Graphene Oxide Nanoribbons during Thermal Annealing [J]. J AmChem Soc,2012,134(28):11774-80.
    [25] LIN C-H, YEH W-T, CHAN C-H, et al. Influence of graphene oxide onmetal-insulator-semiconductor tunneling diodes [J]. Nanoscale Res Lett,2012,7(
    [26] SENA S H R, PEREIRA J M, JR., FARIAS G A, et al. Cyclotron resonance oftrilayer graphene [J]. Phys Rev B,2012,86(8):
    [27] GORBAR E V, GUSYNIN V P, KUZMENKO A B, et al. Magneto-optical andoptical probes of gapped ground states of bilayer graphene [J]. Phys Rev B,2012,86(7):
    [28] GIESBERS A J M, PETERS E C, BURGHARD M, et al. Charge transport gap ingraphene antidot lattices [J]. Phys Rev B,2012,86(4):
    [29] SAHOO N G, PAN Y, LI L, et al. Graphene-Based Materials for EnergyConversion [J]. Adv Mater,2012,24(30):4203-10.
    [30] PAN Z, GU H, WU M-T, et al. Graphene-based functional materials for organicsolar cells Invited [J]. Optical Materials Express,2012,2(6):814-24.
    [31] LIANG Y T, HERSAM M C. Towards Rationally Designed Graphene-BasedMaterials and Devices [J]. Macromol Chem Physic,2012,213(10-11):1091-100.
    [32] HUANG Y, LIANG J, CHEN Y. An Overview of the Applications ofGraphene-Based Materials in Supercapacitors [J]. Small,2012,8(12):1805-34.
    [33] SOLER J M, ARTACHO E, GALE J D, et al. The SIESTA method for ab initioorder-N materials simulation [J]. J Phys-Condens Mat,2002,14(11):2745-79.
    [34] STAUDENMAIER L. Verfahren zur Darstellung der Graphits ure [J]. Berichteder deutschen chemischen Gesellschaft,1899,32(2):1394-9.
    [35] HUMMERS W S, OFFEMAN R E. Preparation of Graphitic Oxide [J]. J AmChem Soc,1958,80(6):1339-.
    [36] HIRATA M, GOTOU T, HORIUCHI S, et al. Thin-film particles of graphiteoxide1: High-yield synthesis and flexibility of the particles [J]. Carbon,2004,42(14):2929-37.
    [37] KOVTYUKHOVA N I, OLLIVIER P J, MARTIN B R, et al. Layer-by-layerassembly of ultrathin composite films from micron-sized graphite oxide sheetsand polycations [J]. Chem Mater,1999,11(3):771-8.
    [38] COMPTON O C, NGUYEN S T. Graphene oxide, highly reduced grapheneoxide, and graphene: versatile building blocks for carbon-based materials [J].Small,2010,6(6):711-23.
    [39] DREYER D R, PARK S, BIELAWSKI C W, et al. The chemistry of grapheneoxide [J]. Chem Soc Rev,2010,39(1):228-40.
    [40] HUMMERS JR. W S. Preparation of graphitic acid.1957-.
    [41] FU LING L H, ZOU YANHONG, LI BO. Technology Research on OxidativeDegree of Graphite Oxide Prepared by Hummers Method [J]. Tangsu,2005,32(4):10-4.
    [42] KOCH K R. Oxidation by Mn207: An impressive demonstration of the powerfuloxidizing property of dimanganeseheptoxide [J]. J Chem Educ,1982,59(11):973.
    [43] TR MEL M, RUSS M. Dimanganheptoxid zur selektiven Oxidation organischerSubstrate [J]. Angewandte Chemie,1987,99(10):1037-8.
    [44] HOFMANN U, HOLST R. über die S urenatur und die Methylierung vonGraphitoxyd [J]. Berichte der deutschen chemischen Gesellschaft (A and BSeries),1939,72(4):754-71.
    [45] RUESS G. über das Graphitoxyhydroxyd (Graphitoxyd)[J]. MONATSHEFTEFüR CHEMIE,1946,76(381-417.
    [46] HOFMANN U, K NIG E. Untersuchungen über Graphitoxyd [J]. Zeitschrift füranorganische und allgemeine Chemie,1937,234(4):311-36.
    [47] NAKAJIMA T, MATSUO Y. Formation process and structure of graphite oxide[J]. Carbon,1994,32(3):469-75.
    [48] LERF A, HE H, FORSTER M, et al. Structure of Graphite Oxide Revisited‖[J]. The Journal of Physical Chemistry B,1998,102(23):4477-82.
    [49] GAO W, ALEMANY L B, CI L J, et al. New insights into the structure andreduction of graphite oxide [J]. Nat Chem,2009,1(5):403-8.
    [50] PACI J T, BELYTSCHKO T, SCHATZ G C. Computational studies of thestructure, behavior upon heating, and mechanical properties of graphite oxide [J].J Phys Chem C,2007,111(49):18099-111.
    [51] CASABLANCA L B, SHAIBAT M A, CAI W W W, et al. NMR-BasedStructural Modeling of Graphite Oxide Using Multidimensional C-13Solid-StateNMR and ab Initio Chemical Shift Calculations [J]. J Am Chem Soc,2010,132(16):5672-6.
    [52] CAI W W, PINER R D, STADERMANN F J, et al. Synthesis and solid-stateNMR structural characterization of (13)C-labeled graphite oxide [J]. Science,2008,321(5897):1815-7.
    [53] ZHANG B, CHEN Y, XU L Q, et al. Growing Poly(N-vinylcarbazole) from theSurface of Graphene Oxide via RAFT Polymerization [J]. J Polym Sci Pol Chem,2011,49(9):2043-50.
    [54] PHAM T A, KIM J S, KIM D, et al. Facile preparation of water-dispersiblegraphene nanosheets by covalent functionalization with poly(3-aminobenzenesulfonic acid)[J]. Polym Eng Sci,2012,52(9):1854-61.
    [55] LIU Z-B, XU Y-F, ZHANG X-Y, et al. Porphyrin and Fullerene CovalentlyFunctionalized Graphene Hybrid Materials with Large Nonlinear OpticalProperties [J]. The Journal of Physical Chemistry B,2009,113(29):9681-6.
    [56] KUILA T, KHANRA P, BOSE S, et al. Preparation of water-dispersible grapheneby facile surface modification of graphite oxide [J]. Nanotechnology,2011,22(30):
    [57] XU C, WU X, ZHU J, et al. Synthesis of amphiphilic graphite oxide [J]. Carbon,2008,46(2):386-9.
    [58] LIU Z, ROBINSON J T, SUN X M, et al. PEGylated nanographene oxide fordelivery of water-insoluble cancer drugs [J]. J Am Chem Soc,2008,130(33):10876-+.
    [59] SUN X M, LIU Z, WELSHER K, et al. Nano-Graphene Oxide for CellularImaging and Drug Delivery [J]. Nano Res,2008,1(3):203-12.
    [60] PAN Y Z, BAO H Q, SAHOO N G, et al. Water-SolublePoly(N-isopropylacrylamide)-Graphene Sheets Synthesized via Click Chemistryfor Drug Delivery [J]. Adv Funct Mater,2011,21(14):2754-63.
    [61] ZHANG L M, XIA J G, ZHAO Q H, et al. Functional Graphene Oxide as aNanocarrier for Controlled Loading and Targeted Delivery of Mixed AnticancerDrugs [J]. Small,2010,6(4):537-44.
    [62] YANG X Y, WANG Y S, HUANG X, et al. Multi-functionalized graphene oxidebased anticancer drug-carrier with dual-targeting function and pH-sensitivity [J].J Mater Chem,2011,21(10):3448-54.
    [63] FENG L Z, ZHANG S A, LIU Z A. Graphene based gene transfection [J].Nanoscale,2011,3(3):1252-7.
    [64] CHEN B A, LIU M, ZHANG L M, et al. Polyethylenimine-functionalizedgraphene oxide as an efficient gene delivery vector [J]. J Mater Chem,2011,21(21):7736-41.
    [65] ZHANG L M, LU Z X, ZHAO Q H, et al. Enhanced Chemotherapy Efficacy bySequential Delivery of siRNA and Anticancer Drugs Using PEI-GraftedGraphene Oxide [J]. Small,2011,7(4):460-4.
    [66] DONG H F, DING L, YAN F, et al. The use of polyethylenimine-graftedgraphene nanoribbon for cellular delivery of locked nucleic acid modifiedmolecular beacon for recognition of microRNA [J]. Biomaterials,2011,32(15):3875-82.
    [67] KIM H, NAMGUNG R, SINGHA K, et al. Graphene Oxide-PolyethylenimineNanoconstruct as a Gene Delivery Vector and Bioimaging Tool [J]. BioconjugateChem,2011,22(12):2558-67.
    [68] BAO H Q, PAN Y Z, PING Y, et al. Chitosan-Functionalized Graphene Oxide asa Nanocarrier for Drug and Gene Delivery [J]. Small,2011,7(11):1569-78.
    [69] YANG K, ZHANG S A, ZHANG G X, et al. Graphene in Mice: Ultrahigh InVivo Tumor Uptake and Efficient Photothermal Therapy [J]. Nano Lett,2010,10(9):3318-23.
    [70] ZHANG W, GUO Z Y, HUANG D Q, et al. Synergistic effect ofchemo-photothermal therapy using PEGylated graphene oxide [J]. Biomaterials,2011,32(33):8555-61.
    [71] HUANG P, XU C, LIN J, et al. Folic Acid-conjugated Graphene Oxide loadedwith Photosensitizers for Targeting Photodynamic Therapy [J]. Theranostics,2011,1(240-50.
    [72] TIAN B, WANG C, ZHANG S, et al. Photothermally Enhanced PhotodynamicTherapy Delivered by Nano-Graphene Oxide [J]. Acs Nano,2011,5(9):7000-9.
    [73] YANG K, WAN J M, ZHANG S A, et al. In Vivo Pharmacokinetics, Long-TermBiodistribution, and Toxicology of PEGylated Graphene in Mice [J]. Acs Nano,2011,5(1):516-22.
    [74] ZHANG X Y, YIN J L, PENG C, et al. Distribution and biocompatibility studiesof graphene oxide in mice after intravenous administration [J]. Carbon,2011,49(3):986-95.
    [75] EISENHABER F. A Decade after the First Full Human Genome Sequencing:When Will We Understand Our Own Genome?[J]. J Bioinf Comput Biol,2012,10(5):
    [76] WALSH C E. Gene therapy Progress and Prospects: Gene therapy for thehemophilias [J]. Gene Ther,2003,10(12):999-1003.
    [77] VAN DEUTEKOM J C T, VAN OMMEN G J B. Advances in Duchennemuscular dystrophy gene therapy [J]. Nat Rev Genet,2003,4(10):774-83.
    [78] FERRARI S, GEDDES D M, ALTON E W F W. Barriers to and new approachesfor gene therapy and gene delivery in cystic fibrosis [J]. Adv Drug Deliver Rev,2002,54(11):1373-93.
    [79] LOWENSTEIN P R, COWEN R, THOMAS C, et al. The basic science ofbrain-tumour gene therapy [J]. Biochem Soc T,1999,27(873-81.
    [80] VERMA I M. Gene therapy: the need for basic science [J]. Mol Ther,2000,2(6):531.
    [81] MULLIGAN R C. The basic science of gene therapy [J]. Science,1993,260(5110):926-32.
    [82] DUARTE S, CARLE G, FANECA H, et al. Suicide gene therapy in cancer:Where do we stand now?[J]. Cancer Lett,2012,324(2):160-70.
    [83] FEICHTINGER G, SCHUETZENBERGER S, HOFMANN A, et al. Non-viralsonoporation gene therapy for orthotopic bone regeneration [J]. J Tissue EngRegen M,2012,6(286-.
    [84] FEDERICI T, BOULIS N M. Gene therapy for amyotrophic lateral sclerosis [J].Neurobiol Dis,2012,48(2):236-42.
    [85] COVELLO G, SIVA K, DENTI A M. Antisense RNA-induced exon-skipping forthe gene therapy of frontotemporal dementia and parkinsonism associated withchromosome17(FTDP-17)[J]. Febs J,2012,279(509-.
    [86] BLAESE R M, CULVER K W, MILLER A D, et al. T lymphocyte-directed genetherapy for ADA-SCID: initial trial results after4years [J]. Science,1995,270(5235):475-80.
    [87] CAVAZZANA-CALVO M, HACEIN-BEY S, BASILE G D, et al. Gene therapyof human severe combined immunodeficiency (SCID)-X1disease.[J]. Blood,2000,96(11):590A-+.
    [88] KAY M A, MANNO C S, RAGNI M V, et al. Evidence for gene transfer andexpression of factor IX in haemophilia B patients treated with an AAV vector [J].Nat Genet,2000,24(3):257-61.
    [89] HEDMAN M, HARTIKAINEN J, YLA-HERTTUALA S. Progress andprospects: hurdles to cardiovascular gene therapy clinical trials [J]. Gene Ther,2011,18(8):743-9.
    [90] AIUTI A, BACHOUD-LEVI A C, BLESCH A, et al. Progress and prospects:gene therapy clinical trials (part2)[J]. Gene Ther,2007,14(22):1555-63.
    [91] ALEXANDER B L, ALI R R, ALTON E W, et al. Progress and prospects: genetherapy clinical trials (part1)[J]. Gene Ther,2007,14(20):1439-47.
    [92] EDELSTEIN M L, ABEDI M R, WIXON J. Gene therapy clinical trialsworldwide to2007--an update [J]. J Gene Med,2007,9(10):833-42.
    [93] NEUMANN E, SCHAEFER-RIDDER M, WANG Y, et al. Gene transfer intomouse lyoma cells by electroporation in high electric fields [J]. The EMBOjournal,1982,1(7):841-5.
    [94] ZUPANIC A, KOS B, MIKLAVCIC D. Treatment planning ofelectroporation-based medical interventions: electrochemotherapy, geneelectrotransfer and irreversible electroporation [J]. Phys Med Biol,2012,57(17):5425-40.
    [95] POTTER H, HELLER R. Transfection by electroporation [J]. Curr ProtocNeurosci,2011, Appendix1(1E.
    [96] PRABHU P, PATRAVALE V. The upcoming field of theranostic nanomedicine:an overview [J]. J Biomed Nanotechnol,2012,8(6):859-82.
    [97] LI X J, SUN L, XIAO L, et al. Gene delivery in peritoneal dialysis relatedperitoneal fibrosis research [J]. Chin Med J (Engl),2012,125(12):2219-24.
    [98] NEAGOE I B, BRAICU C, MATEA C, et al. Efficient siRNA delivery systemusing carboxilated single-wall carbon nanotubes in cancer treatment [J]. JBiomed Nanotechnol,2012,8(4):567-74.
    [99] KENNY G D, VILLEGAS-LLERENA C, TAGALAKIS A D, et al.Multifunctional receptor-targeted nanocomplexes for magnetic resonanceimaging and transfection of tumours [J]. Biomaterials,2012,33(29):7241-50.
    [100] PACK D W, HOFFMAN A S, PUN S, et al. Design and development ofpolymers for gene delivery [J]. Nat Rev Drug Discov,2005,4(7):581-93.
    [101] PARSA S, WANG Y, FULLER J, et al. A comparison between polymericmicrosphere and bacterial vectors for macrophage P388D1gene delivery [J].Pharm Res,2008,25(5):1202-8.
    [102] PALUMBO R N, WANG C. Bacterial invasin: structure, function, andimplication for targeted oral gene delivery [J]. Curr Drug Deliv,2006,3(1):47-53.
    [103] DUNCAN R, RINGSDORF H, SATCHI-FAINARO R. Polymertherapeutics--polymers as drugs, drug and protein conjugates and gene deliverysystems: past, present and future opportunities [J]. J Drug Target,2006,14(6):337-41.
    [104] BEHR J P. Gene transfer with synthetic cationic amphiphiles: prospects forgene therapy [J]. Bioconjug Chem,1994,5(5):382-9.
    [105] EL-ANEED A. An overview of current delivery systems in cancer genetherapy [J]. J Control Release,2004,94(1):1-14.
    [106] WU G Y, WU C H. Receptor-mediated in vitro gene transformation by asoluble DNA carrier system [J]. J Biol Chem,1987,262(10):4429-32.
    [107] KWOH D Y, COFFIN C C, LOLLO C P, et al. Stabilization ofpoly-L-lysine/DNA polyplexes for in vivo gene delivery to the liver [J]. BiochimBiophys Acta,1999,1444(2):171-90.
    [108] CHOI Y H, LIU F, KIM J-S, et al. Polyethylene glycol-grafted poly-l-lysineas polymeric gene carrier [J]. J Control Release,1998,54(1):39-48.
    [109] WARD C M, READ M L, SEYMOUR L W. Systemic circulation ofpoly(L-lysine)/DNA vectors is influenced by polycation molecular weight andtype of DNA: differential circulation in mice and rats and the implications forhuman gene therapy [J]. Blood,2001,97(8):2221-9.
    [110] DASH P R, READ M L, BARRETT L B, et al. Factors affecting bloodclearance and in vivo distribution of polyelectrolyte complexes for gene delivery[J]. Gene Ther,1999,6(4):643-50.
    [111] POUTON C W, LUCAS P, THOMAS B J, et al. Polycation-DNA complexesfor gene delivery: a comparison of the biopharmaceutical properties of cationicpolypeptides and cationic lipids [J]. J Control Release,1998,53(1-3):289-99.
    [112] BYEON J H, KIM H-K, ROBERTS J T. MonodispersePoly(lactide-co-glycolic acid)-Based Nanocarriers for Gene Transfection [J].Macromol Rapid Comm,2012,33(21):1840-4.
    [113] PARK J, PARK J-K, NAM J-P, et al. Preparation of pullulan-g-poly(L-lysine)and it’s evaluation as a gene carrier [J]. Macromol Res,2012,20(7):667-72.
    [114] BOUSSIF O, LEZOUALC'H F, ZANTA M A, et al. A versatile vector forgene and oligonucleotide transfer into cells in culture and in vivo:polyethylenimine [J]. Proc Natl Acad Sci U S A,1995,92(16):7297-301.
    [115] WONG S P, ARGYROS O, HOWE S J, et al. Systemic gene transfer ofpolyethylenimine (PEI)-plasmid DNA complexes to neonatal mice [J]. J ControlRelease,2011,150(3):298-306.
    [116] BAKER A, SALTIK M, LEHRMANN H, et al. Polyethylenimine (PEI) is asimple, inexpensive and effective reagent for condensing and linking plasmidDNA to adenovirus for gene delivery [J]. Gene Ther,1997,4(8):773-82.
    [117] WILLIAMS J H, SIRSI S R, LATTA D R, et al. Induction of dystrophinexpression by exon skipping in mdx mice following intramuscular injection ofantisense oligonucleotides complexed with PEG-PEI copolymers [J]. Mol Ther,2006,14(1):88-96.
    [118] HOBEL S, AIGNER A. Polyethylenimine (PEI)/siRNA-mediated geneknockdown in vitro and in vivo [J]. Methods Mol Biol,2010,623(283-97.
    [119] SUH J, PAIK H J, HWANG B K. Ionization of Poly(ethylenimine) andPoly(allylamine) at Various pH′s [J]. Bioorganic Chemistry,1994,22(3):318-27.
    [120] BENJAMINSEN R V, MATTEBJERG M A, HENRIKSEN J R, et al. ThePossible "Proton Sponge " Effect of Polyethylenimine (PEI) Does Not IncludeChange in Lysosomal pH [J]. Mol Ther,2012,
    [121] KUNATH K, VON HARPE A, FISCHER D, et al. Low-molecular-weightpolyethylenimine as a non-viral vector for DNA delivery: comparison ofphysicochemical properties, transfection efficiency and in vivo distribution withhigh-molecular-weight polyethylenimine [J]. J Control Release,2003,89(1):113-25.
    [122] FISCHER D, BIEBER T, LI Y, et al. A novel non-viral vector for DNAdelivery based on low molecular weight, branched polyethylenimine: effect ofmolecular weight on transfection efficiency and cytotoxicity [J]. Pharm Res,1999,16(8):1273-9.
    [123] WIGHTMAN L, KIRCHEIS R, ROSSLER V, et al. Different behavior ofbranched and linear polyethylenimine for gene delivery in vitro and in vivo [J]. JGene Med,2001,3(4):362-72.
    [124] LIU C, LIU F, FENG L, et al. The targeted co-delivery of DNA anddoxorubicin to tumor cells via multifunctional PEI-PEG based nanoparticles [J].Biomaterials,2013,34(10):2547-64.
    [125] TIAN H, GUO Z, CHEN J, et al. PEI Conjugated Gold Nanoparticles:Efficient Gene Carriers with Visible Fluorescence [J]. Advanced HealthcareMaterials,2012,1(3):337-41.
    [126] KARAKIKES I, HADRI L, RAPTI K, et al. Concomitant intravenousnitroglycerin with intracoronary delivery of AAV1.SERCA2a enhances genetransfer in porcine hearts [J]. Mol Ther,2012,20(3):565-71.
    [127] LOUBOUTIN J P, CHEKMASOVA A A, MARUSICH E, et al. EfficientCNS gene delivery by intravenous injection [J]. Nat Methods,2010,7(11):905-7.
    [128] TZONEVA R, SEIFERT B, ALBRECHT W, et al. Hemocompatibility ofpoly(ether imide) membranes functionalized with carboxylic groups [J]. J MaterSci-Mater M,2008,19(10):3203-10.
    [129] PLANK C, MECHTLER K, SZOKA F C, JR., et al. Activation of thecomplement system by synthetic DNA complexes: a potential barrier forintravenous gene delivery [J]. Hum Gene Ther,1996,7(12):1437-46.
    [130] TAKAKURA Y, NISHIKAWA M, YAMASHITA F, et al. Influence ofphysicochemical properties on pharmacokinetics of non-viral vectors for genedelivery [J]. J Drug Target,2002,10(2):99-104.
    [131] CHEN H, YUAN L, SONG W, et al. Biocompatible polymer materials: Roleof protein-surface interactions [J]. Prog Polym Sci,2008,33(11):1059-87.
    [132] WATAHA J C. Predicting clinical biological responses to dental materials [J].Dent Mater,2012,28(1):23-40.
    [133] KLEEMANN E, NEU M, JEKEL N, et al. Nano-carriers for DNA delivery tothe lung based upon a TAT-derived peptide covalently coupled to PEG-PEI [J]. JControl Release,2005,109(1-3):299-316.
    [134] CHEN S, ZHENG J, LI L, et al. Strong resistance of phosphorylcholineself-assembled monolayers to protein adsorption: insights into nonfoulingproperties of zwitterionic materials [J]. J Am Chem Soc,2005,127(41):14473-8.
    [135] MCARTHUR S L, MCLEAN K M, KINGSHOTT P, et al. Effect ofpolysaccharide structure on protein adsorption [J]. Colloids and Surfaces B:Biointerfaces,2000,17(1):37-48.
    [136] MAZA S, MACCHIONE G, OJEDA R, et al. Synthesis ofamine-functionalized heparin oligosaccharides for the investigation ofcarbohydrate-protein interactions in microtiter plates [J]. Org Biomol Chem,2012,10(10):2146-63.
    [137] FUSSELL G, THOMAS J, SCANLON J, et al. The effect of protein-freeions of PVA/PVP hydrogels [J]. J Biomater Sci Polym Ed,2005,16(4):489-503.
    [138] OSTUNI E, CHAPMAN R G, HOLMLIN R E, et al. A survey ofstructure-property relationships of surfaces that resist the adsorption of protein[J]. Langmuir,2001,17(18):5605-20.
    [139] HEUBERGER M, DROBEK T, VOROS J. About the role of water insurface-grafted poly(ethylene glycol) layers [J]. Langmuir,2004,20(22):9445-8.
    [140] ZHENG J, LI L, CHEN S, et al. Molecular simulation study of waterinteractions with oligo (ethylene glycol)-terminated alkanethiol self-assembledmonolayers [J]. Langmuir,2004,20(20):8931-8.
    [141] PERTSIN A J, GRUNZE M. Computer Simulation of Water near the Surfaceof Oligo(ethylene glycol)-Terminated Alkanethiol Self-Assembled Monolayers[J]. Langmuir,2000,16(23):8829-41.
    [142] RYAN S M, MANTOVANI G, WANG X, et al. Advances in PEGylation ofimportant biotech molecules: delivery aspects [J]. Expert Opin Drug Deliv,2008,5(4):371-83.
    [143] MORPURGO M, VERONESE F M. Conjugates of peptides and proteins topolyethylene glycols [J]. Methods Mol Biol,2004,283(45-70.
    [144] HONG J W, PARK J H, HUH K M, et al. PEGylated polyethylenimine for invivo local gene delivery based on lipiodolized emulsion system [J]. J ControlRelease,2004,99(1):167-76.
    [145] BERGSTRAND A, RAHMANI-MONFARED G, STLUND, et al.Comparison of PEI-PEG and PLL-PEG copolymer coatings on the prevention ofprotein fouling [J]. J Biomed Mater Res A,2009,88A(3):608-15.
    [146] KIM H C, JEON S, KIM H I, et al. Effects of Oxyfluorinated GrapheneOxide Flake on Mechanical Properties of PMMA Artificial Marbles [J].Polym-Korea,2012,36(3):251-61.
    [147] CHEN K H, LU G H, CHANG J B, et al. Hg(II) Ion Detection UsingThermally Reduced Graphene Oxide Decorated with Functionalized GoldNanoparticles [J]. Anal Chem,2012,84(9):4057-62.
    [148] YU L, LIM Y S, HAN J H, et al. A graphene oxide oxygen barrier filmdeposited via a self-assembly coating method [J]. Synthetic Met,2012,162(7-8):710-4.
    [149] LI Y X, PAN Z, FU Y Y, et al. Soluble reduced graphene oxide functionalizedwith conjugated polymer for heterojunction solar cells [J]. J Polym Sci Pol Chem,2012,50(9):1663-71.
    [150] RADICH J G, KAMAT P V. Origin of Reduced Graphene OxideEnhancements in Electrochemical Energy Storage [J]. Acs Catal,2012,2(5):807-16.
    [151] HUANG P J J, LIU J W. Molecular Beacon Lighting up on Graphene Oxide[J]. Anal Chem,2012,84(9):4192-8.
    [152] CHENG H K F, SAHOO N G, TAN Y P, et al. Poly(vinyl alcohol)Nanocomposites Filled with Poly(vinyl alcohol)-Grafted Graphene Oxide [J].Acs Appl Mater Inter,2012,4(5):2387-94.
    [153] BAI S, SHEN X P, ZHU G X, et al. In situ Growth of NixCo100-xNanoparticles on Reduced Graphene Oxide Nanosheets and Their Magnetic andCatalytic Properties [J]. Acs Appl Mater Inter,2012,4(5):2378-86.
    [154] HAUBNER K, MURAWSKI J, OLK P, et al. The Route to FunctionalGraphene Oxide [J]. Chemphyschem,2010,11(10):2131-9.
    [155] GENG Z G, LIN Y, YU X X, et al. Highly efficient dye adsorption andremoval: a functional hybrid of reduced graphene oxide-Fe3O4nanoparticles asan easily regenerative adsorbent [J]. J Mater Chem,2012,22(8):3527-35.
    [156] JOHARI P, SHENOY V B. Modulating Optical Properties of GrapheneOxide: Role of Prominent Functional Groups [J]. Acs Nano,2011,5(9):7640-7.
    [157] LU W B, LUO Y L, CHANG G H, et al. Synthesis of functional SiO2-coatedgraphene oxide nanosheets decorated with Ag nanoparticles for H2O2andglucose detection [J]. Biosens Bioelectron,2011,26(12):4791-7.
    [158] UHM S, TUYEN N H, LEE J. Controlling oxygen functional species ofgraphene oxide for an electro-oxidation of L-ascorbic acid [J]. ElectrochemCommun,2011,13(7):677-80.
    [159] SINGH S K, SINGH M K, KULKARNI P P, et al. Amine-ModifiedGraphene. Thrombo-Protective Safer Alternative to Graphene Oxide forBiomedical Applications [J]. Acs Nano,2012,6(3):2731-40.
    [160] SHEN H, ZHANG L M, LIU M, et al. Biomedical Applications of Graphene[J]. Theranostics,2012,2(3):283-94.
    [161] ZHANG X, YANG R, WANG C, et al. Cell Biocompatibility ofFunctionalized Graphene Oxide [J]. Acta Phys-Chim Sin,2012,28(6):1520-4.
    [162] WANG K, RUAN J, SONG H, et al. Biocompatibility of Graphene Oxide [J].Nanoscale Res Lett,2011,6(
    [163] LIU J B, LI Y L, LI Y M, et al. Noncovalent DNA decorations of grapheneoxide and reduced graphene oxide toward water-soluble metal-carbon hybridnanostructures via self-assembly (vol20, pg900,2010)[J]. J Mater Chem,2010,20(48):10944-5.
    [164] LIU F, CHOI J Y, SEO T S. Graphene oxide arrays for detecting specificDNA hybridization by fluorescence resonance energy transfer [J]. BiosensBioelectron,2010,25(10):2361-5.
    [165] DONG H F, ZHANG J, JU H X, et al. Highly Sensitive Multiple microRNADetection Based on Fluorescence Quenching of Graphene Oxide and IsothermalStrand-Displacement Polymerase Reaction [J]. Anal Chem,2012,84(10):4587-93.
    [166] BI S, ZHAO T T, LUO B Y. A graphene oxide platform for the assay ofbiomolecules based on chemiluminescence resonance energy transfer [J]. ChemCommun,2012,48(1):106-8.
    [167] WU C K, ZHOU Y M, MIAO X M, et al. A novel fluorescent biosensor forsequence-specific recognition of double-stranded DNA with the platform ofgraphene oxide [J]. Analyst,2011,136(10):2106-10.
    [168] HE S J, SONG B, LI D, et al. A Graphene Nanoprobe for Rapid, Sensitive,and Multicolor Fluorescent DNA Analysis [J]. Adv Funct Mater,2010,20(3):453-9.
    [169] XU F Z, SHI H, HE X X, et al. A facile graphene oxide-based DNApolymerase assay [J]. Analyst,2012,137(17):3989-94.
    [170] JEONG J H, KIM S W, PARK T G. Molecular design of functional polymersfor gene therapy [J]. Prog Polym Sci,2007,32(11):1239-74.
    [171] SIU Y S, LI L, LEUNG M F, et al. Polyethylenimine-based amphiphiliccore-shell nanoparticles: study of gene delivery and intracellular trafficking [J].Biointerphases,2012,7(1-4):16-.
    [172] LIANG S, YU H, XIANG J, et al. New naphthalimide modifiedpolyethylenimine nanoparticles as fluorescent probe for DNA detection [J].Spectrochimica acta Part A, Molecular and biomolecular spectroscopy,2012,97(359-65.
    [173] ZHOU D, LI C, HU Y, et al. Glycopolymer modification on physicochemicaland biological properties of poly(L-lysine) for gene delivery [J]. InternationalJournal of Biological Macromolecules,2012,50(4):965-73.
    [174] GAO W, FENG B, LU X, et al. Characterization and cell behavior oftitanium surfaces with PLL/DNA modification via a layer-by-layer technique [J].J Biomed Mater Res A,2012,100A(8):2176-85.
    [175] KASYANENKO N A, LYSYAKOVA L A, DRIBINSKII B A, et al.DNA-polymer complexes for gene therapy [J]. Polym Sci Ser C+,2012,54(1):57-68.
    [176] SCHAFFERT D, WAGNER E. Gene therapy progress and prospects:synthetic polymer-based systems [J]. Gene Ther,2008,15(16):1131-8.
    [177] ZHANG G Y, LIU J, YANG Q Z, et al. Disulfide-Containing BrushedPolyethylenimine Derivative Synthesized by Click Chemistry for Nonviral GeneDelivery [J]. Bioconjugate Chem,2012,23(6):1290-9.
    [178] LI S, WANG Y, ZHANG J, et al. Biodegradable cross-linked poly(aminoalcohol esters) based on LMW PEI for gene delivery [J]. Mol Biosyst,2011,7(4)1254-62.
    [179] SIRSI S R, SCHRAY R C, GUAN X Y, et al. Functionalized PEG-PEIcopolymers complexed to exon-skipping oligonucleotides improve dystrophinexpression in mdx mice [J]. Hum Gene Ther,2008,19(8):795-806.
    [180] MALEK A, MERKEL O, CZUBAYKO F, et al. PEG-PEI/siRNA andPEI/siRNA complexes for siRNA delivery to induce RNA interference (RNAi)[J]. N-S Arch Pharmacol,2007,375(70-.
    [181] LIN H, LI Y, ZHOU H, et al. PEGylation ofdeuterohaemin–alanine–histidine–threonine–valine–glutamic acid–lysine and itsinfluence on activity, stability, and aggregation [J]. J Appl Polym Sci,2012,n/a-n/a.
    [182] PENG H D, MENG L J, NIU L Y, et al. Simultaneous Reduction and SurfaceFunctionalization of Graphene Oxide by Natural Cellulose with the Assistance ofthe Ionic Liquid [J]. J Phys Chem C,2012,116(30):16294-9.
    [183] GUO F, SILVERBERG G, BOWERS S, et al. Graphene-BasedEnvironmental Barriers [J]. Environ Sci Technol,2012,46(14):7717-24.
    [184] MA J, LIU C H, LI R, et al. Properties and structural characterization ofoxide starch/chitosan/graphene oxide biodegradable nanocomposites [J]. J ApplPolym Sci,2012,123(5):2933-44.
    [185] HUANG X, QI X Y, BOEY F, et al. Graphene-based composites [J]. ChemSoc Rev,2012,41(2):666-86.
    [186] LI Z Y, ZHANG W H, LUO Y, et al. How Graphene Is Cut upon Oxidation?[J]. J Am Chem Soc,2009,131(18):6320-+.
    [187] SHEN J H, ZHU Y H, CHEN C, et al. Facile preparation and upconversionluminescence of graphene quantum dots [J]. Chem Commun,2011,47(9):2580-2.
    [188] JIA S, MO Z, DAI Y, et al. Computational Study on the Conformation andVibration Frequencies of beta-Sheet of epsilon-Polylysine in Vacuum [J]. Int JMol Sci,2009,10(8):3358-70.
    [189] ZHANG W N, HE W, JING X L. Preparation of a Stable GrapheneDispersion with High Concentration by Ultrasound [J]. J Phys Chem B,2010,114(32):10368-73.
    [190] KAMINSKA I, KOTULSKA M, STECKA A, et al. Electroporation-inducedchanges in normal immature rat myoblasts (H9C2)[J]. Gen Physiol Biophys,2012,31(1):19-25.
    [191] GUO Y, ZHANG Y, JIN N, et al. Electroporation-Mediated TranscatheterArterial Chemoembolization in the Rabbit VX2Liver Tumor Model [J]. InvestRadiol,2012,47(2):116-20.
    [192] JOHANSSON D X, LJUNGBERG K, KAKOULIDOU M, et al. IntradermalElectroporation of Naked Replicon RNA Elicits Strong Immune Responses [J].Plos One,2012,7(1):
    [193] BYRNE B J, FALK D J, CLEMENT N, et al. Gene Therapy Approaches forLysosomal Storage Disease: Next-Generation Treatment [J]. Hum Gene Ther,2012,23(8):808-15.
    [194] PHILIPPIDIS A. Gene Therapy Briefs [J]. Hum Gene Ther,2012,23(8):791-2.
    [195] TRONO D. Gene therapy: too much splice can spoil the dish [J]. J ClinInvest,2012,122(5):1600-2.
    [196] WONG S Y, PELET J M, PUTNAM D. Polymer systems for genedelivery-past, present, and future [J]. Prog Polym Sci,2007,32(8-9):799-837.
    [197] KIRCHEIS R, WIGHTMAN L, ROBITZA B, et al. Polymer-based systemsfor tumor-targeted gene delivery [J]. Cancer Gene Ther,2000,7(8):1206-.
    [198] SHEWRING L, COLLINS L, LIGHTMAN S L, et al. A nonviral vectorsystem for efficient gene transfer to corneal endothelial cells via membraneintegrins [J]. Transplantation,1997,64(5):763-9.
    [199] OGRIS M, BRUNNER S, SCHULLER S, et al. PEGylatedDNA/transferrin-PEI complexes: reduced interaction with blood components,extended circulation in blood and potential for systemic gene delivery [J]. GeneTher,1999,6(4):595-605.
    [200] ZHUANG B X, ZHANG Y D, PENG J, et al. Effect of Recombinant PlasmidpEGFP-AFP-hTNF on Liver Cancer Cells (HepG2Cells) in vitro whenDelivered by PEG-PEI/Fe3O4Nanomagnetic Fluid [J]. J Formos Med Assoc,2011,110(5):326-35.
    [201] HOBEL S, PRINZ R, MALEK A, et al. Polyethylenimine PEI F25-LMWallows the long-term storage of frozen complexes as fully active reagents insiRNA-mediated gene targeting and DNA delivery [J]. Eur J Pharm Biopharm,2008,70(1):29-41.
    [202] CHERNG J Y. Investigation of DNA Spectral Conformational Changes andPolymer Buffering Capacity in Relation to Transfection Efficiency ofDNA/Polymer Complexes [J]. J Pharm Pharm Sci,2009,12(3):346-56.
    [203] HATTORI Y, MAITANI Y. Low-molecular-weight polyethylenimineenhanced gene transfer by cationic cholesterol-based nanoparticle vector [J]. BiolPharm Bull,2007,30(9):1773-8.
    [204] KIRCHEIS R, SCHULLER S, BRUNNER S, et al. Polycation-based DNAcomplexes for tumor-targeted gene delivery in vivo [J]. J Gene Med,1999,1(2):111-20.
    [205] LU J, DO I, FUKUSHIMA H, et al. Stable Aqueous Suspension andSelf-Assembly of Graphite Nanoplatelets Coated with Various Polyelectrolytes[J]. J Nanomater,2010,
    [206] SHAN C S, YANG H F, HAN D X, et al. Water-Soluble GrapheneCovalently Functionalized by Biocompatible Poly-L-lysine [J]. Langmuir,2009,25(20):12030-3.
    [207] FREIRE E, BARROSO M M S, KLIER R N, et al. Biocompatibility andStructural Stability of a Laminin Biopolymer [J]. Macromol Biosci,2012,12(1):67-74.
    [208] RATNER B D, BRYANT S J. Biomaterials: Where we have been and wherewe are going [J]. Annu Rev Biomed Eng,2004,6(41-75.
    [209] LIU Z, ROBINSON J T, TABAKMAN S M, et al. Carbon materials for drugdelivery&cancer therapy [J]. Mater Today,2011,14(7-8):316-23.
    [210] MU Q X, SU G M, LI L W, et al. Size-Dependent Cell Uptake ofProtein-Coated Graphene Oxide Nanosheets [J]. Acs Appl Mater Inter,2012,4(4):2259-66.
    [211] SHAO Q, WU P, XU X Q, et al. Insight into the effects of graphene oxidesheets on the conformation and activity of glucose oxidase: towards developing ananomaterial-based protein conformation assay [J]. Phys Chem Chem Phys,2012,14(25):9076-85.
    [212] LU C H, LI J, ZHANG X L, et al. General Approach for MonitoringPeptide-Protein Interactions Based on Graphene-Peptide Complex [J]. AnalChem,2011,83(19):7276-82.
    [213] LANGE M, BRAUNE S, LUETZOW K, et al. Surface Functionalization ofPoly(ether imide) Membranes with Linear, Methylated Oligoglycerols forReducing Thrombogenicity [J]. Macromol Rapid Comm,2012,33(17):1487-92.
    [214] KAINTHAN R K, GNANAMANI M, GANGULI M, et al. Bloodcompatibility of novel water soluble hyperbranched polyglycerol-basedmultivalent cationic polymers and their interaction with DNA [J]. Biomaterials,2006,27(31):5377-90.
    [215] MERKEL O M, URBANICS R, BEDOCS P, et al. In vitro and in vivocomplement activation and related anaphylactic effects associated withpolyethylenimine and polyethylenimine-graft-poly(ethylene glycol) blockcopolymers [J]. Biomaterials,2011,32(21):4936-42.
    [216] TODA M, KITAZAWA T, HIRATA I, et al. Complement activation onsurfaces carrying amino groups [J]. Biomaterials,2008,29(4):407-17.
    [217] NGUYEN A T, BAGGERMAN J, PAULUSSE J M J, et al. Bioconjugationof Protein-Repellent Zwitterionic Polymer Brushes Grafted from Silicon Nitride[J]. Langmuir,2012,28(1):604-10.
    [218] ZHANG Y R, REN L, TU Q, et al. Fabrication of ReversiblePoly(dimethylsiloxane) Surfaces via Host-Guest Chemistry and Their RepeatedUtilization in Cardiac Biomarker Analysis [J]. Anal Chem,2011,83(24):9651-9.
    [219] NISOL B, POLEUNIS C, BERTRAND P, et al. Poly(ethylene glycol) FilmsDeposited by Atmospheric Pressure Plasma Liquid Deposition and AtmosphericPressure Plasma-Enhanced Chemical Vapour Deposition: Process, ChemicalComposition Analysis and Biocompatibility [J]. Plasma Process Polym,2010,7(8):715-25.
    [220] VEJBORG R M, BERNBOM N, GRAM L, et al. Anti-adhesive properties offish tropomyosins [J]. J Appl Microbiol,2008,105(1):141-50.
    [221] FENG W, BRASH J L, ZHU S P. Non-biofouling materials prepared by atomtransfer radical polymerization grafting of2-methacryloloxyethylphosphorylcholine: Separate effects of graft density and chain length on proteinrepulsion [J]. Biomaterials,2006,27(6):847-55.
    [222] HENCH L L, POLAK J M. Third-generation biomedical materials [J].Science,2002,295(5557):1014-+.
    [223] LIN F S, CHIEN C T, CHIU W C, et al. Chemical auxiliary-freepolymerization yielding non-linear PEG for protein-resistant application [J]. RscAdvances,2012,2(18):7174-9.
    [224] CHEN H, ZHANG Y X, LI D, et al. Surfaces having dual fibrinolytic andprotein resistant properties by immobilization of lysine on polyurethane througha PEG spacer [J]. J Biomed Mater Res A,2009,90A(3):940-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700