硼酸镁晶须增强镁基复合材料界面及混杂行为研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
镁基复合材料具有轻质高强高模等优点,在航空、航天、汽车及电子通讯等领域展现了广阔的应用前景。其中,晶须增强镁基复合材料,因其优越的力学性能而备受国内外研究者的关注。然而,晶须与基体的界面问题成为晶须增强镁基复合材料实际应用的关键瓶颈。论文以高性价比硼酸镁晶须为增强相,通过制备工艺及界面的优化设计,成功制备出硼酸镁晶须增强镁基复合材料,并对其微观结构、界面反应层的形成规律及机理和力学性能进行了系统的研究;揭示了MgO界面反应产物的组织形态对复合材料强化机制和断裂行为的影响规律;以此为基础,为进一步提升复合材料的综合性能,研究了碳化硼颗粒的混杂行为对复合材料微观组织和力学性能的影响规律,初步探讨了混杂复合材料的界面形成机制、强化机制及其断裂行为。
     采用挤压铸造法,成功实现20vol.%硼酸镁晶须增强AZ91D镁基复合材料的制备。复合材料微观组织致密,硼酸镁晶须均匀地分布在镁合金基体中。复合材料的力学性能比基体合金有了明显提高,铸态试样的弯曲模量、弯曲强度和维氏硬度分别从42GPa、211MPa和56.5提高到50GPa、407MPa和120.7。
     硼酸镁晶须表面无任何处理时,复合材料中晶须和基体合金界面洁净,未发生化学反应,具有良好的化学相容性。复合材料断口分析发现较多硼酸镁晶须出现脱粘的现象,说明硼酸镁晶须和基体的界面结合强度较低,不利于硼酸镁晶须充分发挥其增强效用。为了优化复合材料界面结构以提高力学性能,对硼酸镁晶须进行表面处理,制备三种具有不同微观形貌的膜层:Al(PO_3)_3膜层、ZnO膜层和TiO_2膜层。三种膜层硼酸镁晶须增强复合材料TEM界面微观结构分析表明,在复合材料的制备过程中三种膜层均与基体合金发生化学反应并形成具有不同微观结构的MgO界面反应层:涂覆Al(PO_3)_3膜层时,晶须/基体界面处MgO颗粒相对较为粗大,且随膜层厚度增加,MgO颗粒逐渐增大;涂覆ZnO膜层时,晶须/基体界面处呈现双层结构,即细小颗粒组成的MgO薄膜层上黏附着较粗大的MgO颗粒;涂覆TiO_2膜层时,晶须/基体界面处呈现织构化MgO组织。
     Al(PO_3)_3、ZnO和TiO_2膜层硼酸镁晶须增强复合材料力学性能测试结果表明,MgO界面反应层厚度及其微观结构对复合材料的弯曲性能具有显著影响。其中,在Al(PO_3)_3膜层硼酸镁晶须增强复合材料中,弯曲强度随MgO界面反应层厚度的增加呈现先增加后减小的趋势,当MgO界面反应层的厚度约为25nm时,弯曲强度达到最高值467MPa,比无膜层处理时提高了15%。对比研究上述三种复合材料界面微观结构和力学性能可以发现:由ZnO膜层生成的细小MgO颗粒比Al(PO_3)_3膜层生成粗大MgO颗粒更能提高复合材料的弯曲性能,而由TiO_2膜层反应生成的织构化MgO能更进一步提高复合材料弯曲性能,其弯曲强度和弯曲模量达到568MPa和66GPa,分别比无膜层时提高了40%和32%。复合材料弯曲性能的提高主要归因于界面结合强度和载荷传递效率的提高。硼酸镁晶须增强复合材料中存在载荷传递强化、位错强化和细晶强化三种强化机制,它们使得复合材料具有较高的强度。并且随着复合材料界面结合强度的不断提高,载荷传递强化逐渐成为主要的强化机制。
     为了进一步提升复合材料的综合性能,在采用Al(PO_3)_3膜层改善界面结合状态的基础上,提出了添加碳化硼颗粒混杂增强的新工艺。结果表明,碳化硼颗粒的混杂可以显著提高复合材料的力学性能。当碳化硼颗粒的混杂体积分数为4%时,复合材料的弯曲强度达到最高值593MPa,比具有相同界面结构的单一硼酸镁晶须增强复合材料提高了35%。
Magnesium matrix composites have exhibited the wide application prospect inaviation, aerospace, automobile and electrommunication fields ascribed to theiradvantages, such as low density, high specific strength and high specific modulus. Amongthem, whisker-reinforced magnesium matrix composites have been received intensiveinterests by the researchers at home and abroad due to their superior mechanical properties.However, interfacial problems between whisker and matrix have been the key bottleneckto the practical application of whisker-reinforced magnesium matrix composites. In thisstudy, the high cost-effective magnesium borate whisker (Mg2B2O5w) is used as thereinforcement. Magnesium matrix composite reinforced with Mg2B2O5w is successfullyfabricated by optimizing preparation technology and interfacial design. Themicrostructures, formation mechanism of the interfacial reaction layers, mechanicalproperties and strengthening mechanism of composites are studied systematically. Basedon these results, in order to further improve the mechanical properties of composites, thehybrid magnesium matrix composites reinforced with boron carbide particles (B4Cp) andMg2B2O5w are successfully prepared. The microstructures, mechanical properties andstrengthening mechanism of hybrid composites are explored.
     AZ91D magnesium matrix composites reinforced with20vol.%Mg2B2O5w aresuccessfully prepared by the squeezing casting technology. The microstructure of the composite is dense, and Mg2B2O5w uniformly distributes in the matrix alloy. The additionof Mg2B2O5w can obviously improve the mechanical properties of the composite. Flexuralmodulus, flexural strength and micro-Vickes' hardness are improved from42GPa,211MPaand56.5to50GPa,407MPa and120.7, respectively.
     The Mg2B2O5w/Mg interface is clean in the as-cast Mg2B2O5w/AZ91D compositesand is chemically stable at the casting temperature. Although, there is plenty of whiskersdebond in fracture surface of as-cast Mg2B2O5w/AZ91D composite. This observationindicates that the interfacial bonding strength between Mg2B2O5w and matrix is relativelylow. To further enhance the mechanical properties of composites, Al(PO_3)_3coating, ZnOcoating and TiO_2coating are formed on the surface of Mg2B2O5w by various surfacetreatment methods. The TEM analysis of interfacial microstructures in the threecomposites show that all these coatings react with the liquid matrix during the fabricationprocesses of composites. The MgO interfacial layers with different microstructures areformed including:
     (a) for Al(PO_3)_3coating, MgO particles are relatively large and their size increaseswith the increase in coating thickness;
     (b) for ZnO coating, there exist a thin bilayer structure which consists of fine MgOparticles and large MgO particles adhering to it;
     (c) for TiO_2coating, the textured MgO interfacial layer is formed.
     The mechanical properties results show the thickness and microstructures of the MgOinterfacial layers have significant influence on the flexural properties of composites. Withthe increase in Al(PO_3)_3coating thickness, the flexural strength ofMg2B2O5w/Al(PO_3)_3/AZ91D composite increases firstly and then decreases. When thethickness of the MgO interfacial layer in Mg2B2O5w/Al(PO_3)_3/AZ91D composite is about25nm, the flexural strength reaches the maximum467MPa, which is enhanced by15%compared with that of composite without any coating. The comparative study on interfacemicrostructures and mechanical properties of composites treated by three coatings show that: fine MgO particles introduced by ZnO coating can be much more effective toimprove the interfacial bonding strength and load transfer efficiency than large MgOparticles introduced by Al(PO_3)_3coating, and thus enhance the flexural properties ofcomposites. The textured MgO interfacial layer can most effectively increase the flexuralproperties of composites. The flexural strength and modulus are568MPa and66GPa,which are enhanced by40%and35%, respectively, compared with that of compositeswithout any coating. This is attributed to the increase in interfacial bonding strength andload transfer efficiency. Various strengthening mechanisms including load transferstrengthening, dislocation strengthening and fine-grain strengthening exist in magnesiummatrix composites reinforced with Mg2B2O5w. Load transfer is the main strengtheningmechanism when the interfacial bonding strength is relatively high.
     To further enhance the overall performance of composites, on the basis of improvingthe interfacial microstructure, the B4Cp is added into Mg2B2O5w and the hybridcomposites are fabricated. The results show that the hybrid of B4Cp remarkably enhancesthe mechanical properties of the composites. The flexural strength reaches the maximum593MPa when the volume fraction of B4Cp is4%, which are improved by35%comparedwith single Mg2B2O5w-reinforced composite.
引文
[1]黄恢元.铸造手册-铸造非铁合金[M].北京:机械工业出版社,2002.
    [2]曾荣昌,柯伟,徐永波,韩恩厚,朱自勇. Mg合金的最新发展及应用前景[J].金属学报,2001,37(7):673-685.
    [3] Y. Kojima. Platform science and technology for advanced magnesium alloys [J]. Mater.Sci. Forum,2000,350-351:3-18.
    [4] B. L. Mordike, T. Ebert. Magnesium Properties-applications-potential [J]. Metall.Mater. Trans A,2001,302(1):37-45.
    [5] E. Aghion, B. Bronfin. Magnesium alloys development towards the21stcentury [J].Mater. Sci. Forum,2000,350-351:19-28.
    [6] Robert L. Edgar, The Magnesium Industry-Past, Present and Future [C].60th AnnualWorld Magnesium Conference May11-12,2003, pp1-4.
    [7] H. Z. Ye, X. Y. Liu. Review of recent studies in magnesium matrix composites [J]. J.Mater. Sci.,2004,39(20):6153-6171.
    [8] K. Suganuma, T. Fujia, S. Nuzuki, K. Niihara. Mechanical Properties of AluminumBorate Whisker Reinforced Aluminum Alloys and Interface Structure [C]. CompositesDesign, Manufacture and Application. Proc. Of ICCM/(1991). ed. by S. W. Tsai and G.S. Springer.19D1-19D12.
    [9] K. Suganuma, T. Fujita, N. Suzuki, K. Niihara. Aluminum Composites Reinforcedwith a New Aluminum Borate Whisker [J]. J. Mater Sci. Lett.,1990,9(6):633-635.
    [10] W. D. Fei, X.D. Jiang, C. Li, C.K. Yao. Effect of Interfacial Reaction on the Young’sModulus of Aluminum Borate Whisker Reinforced Aluminum Composites [J]. J.Mater. Sci. Lett.,1996,15(22):1966-1968.
    [11] J. Hu, W. D. Fei, C. Li, C. K. Yao. Effect of the Interfacial Reaction on the FractureBehavior of Al18B4O33w/Al Composite after T6Treatment [C]. In B. C. Whisker (ed.).Proc. ICCM-10. Canada. August1995.
    [12] G. Sasaki, M. Yoshida, O. Yanagisawa, N. Fuyama, T. Fujii. Mechanical propertiesand microstructure of Al18B4O33w/magnesium alloy composites prepared bycompo-casting [J]. Mater. Sci. Forum,2003,419(4):777-782.
    [13] W. D. Fei, X. D. Jiang, C. Li, C. K. Yao. Effect of interfacial reaction on fracturebehaviour of aluminium borate whisker reinforced aluminium composite [J]. Mater.Sci. Technol.,1997,13(11):918-922.
    [14] X. G. Ning, J. Pan, J. H. Li, K. Y. Hu, H. Q. Ye, H. Fukunaga. The whisker-matrixinterfacial reactions in SiC, Si3N4and Al18B4O33whisker-reinforced aluminium-matrixcomposites [J]. J. Mater. Sci. Lett.,1993,12(20):1644-1647.
    [15] Y. Zheng, H. Yang, W. Fu, L. Qiao, L. Chang, J. Chen. Synthesis of magnesiumBorate (Mg2B2O5) nanowires, growth mechanism and their lubricating properties [J].Mater. Res. Bull.,2008,43(8-9):2239-2247.
    [16]吴人洁.金属基复合材料的现状与展望[J].金属学报,1997,33(1):78-84.
    [17]张国定.金属基复合材料界面问题[J].材料研究学报,1997,11(6):649-657.
    [18] P. Roy, J. F. Patin. Proceedings of International Conference of Spacecraft Structureand Mechanical Testing [C]. The Netherlands,1988,10:19-21.
    [19] T. Donomoto, K. Funamati, N. Miuna, N. Miyake. Ceramic Fiber Reinforced Pistonfor High Performance Diesel Engines [J]. SAE Technical Paper830252,1983.
    [20] V. Gopalakrishna, C. G. Krishnadas Nair, M. R. Krishnadev. Technology forMagnesium Metal Matrix Composites [C]. Proceedings of the3rd IntenrationalMagnesium Conference, Manchester, UK. Edited by G. W. Lorimer, The Institute ofMaterials,10-12, April,1996:575-584.
    [21] J. Schorder, B. L. Mordike, K. U. Kainer. P/M Magnesium Particle Composites [J].Adv. Powder. Metall.,1991:281-292.
    [22] X. Q. Zhang, H. W. Wang, L. H. Liao, X. Y. Teng, N.H. Ma. The mechanicalproperties of magnesium matrix composites reinforced with (TiB2+TiC) ceramicparticulates [J]. Mater. Lett.,2005,59(17):2105-2109.
    [23]张修庆,王浩伟,滕新营,廖利华,马乃恒.原位合成TiC/Mg复合材料的微观组织及阻尼研究[J].稀有金属材料与工程,2005,34(9):1419-1422.
    [24] F. Chmelik, J. Kiehn, P. Lukac, K. U. Kainer, B. L. Mordike. Acoustic Emission andDilatometry for Non-Destructive Characteristation of Microstructural Changes in Mgbased Metal Matrix Composites Submitted to Thermal Cycling [J]. Scripta Metar.,1998,38(1):81-87.
    [25] K. Purazrang, P. Abachi, K. U. Kainer. Investigation of The Mechanical Behavior ofMagnesium Composites [J]. Composites,1994,25(4):296-302.
    [26] K. U. Kainer. Influence of the Production Technique and Type of Reinforcement onthe Properties of Magnesium-Matrix-Composites [J]. Composite MaterialTechnology,1991,37(24):191-197.
    [27] K. Purazrang, P. Abachi, K. U. Kainer. Mechanical Behavior of Magnesium AlloyMMCs Produced by Squeeze Casting and Powder Metallurgical Techniques [J].Composites Eng.,1993,3(6):489-505.
    [28] X. Q. Zhang, L. H. Liao, H. W. Wang, N.H. Ma. Mechanical properties and dampingcapacity of magnesium matrix composites [J]. Composites: Part A,2006,37(11):2011-2016
    [29] M. Y. Zheng, K. Wu, H. C. Liang, S. Kamado, Y. Kojima. Microstructure andmechanical properties of aluminum borate whisker-reinforced magnesium matrixcomposites [J]. Mater. Lett.,2002,57(3):558-564.
    [30] K. U. Kainer. Influence of Heat Treatment on the Properties of Short-fiber reinforcedMagnesium Composites [J]. Mater. Sci. Eng A.,1991,135:243-246.
    [31] P. K. Chaudhury, H. J. Rack, B. A. Mikucki. Effect of Double-Aging on MechanicalProperties of Mg-6Zn Reinforced with SiC Particulates [J]. J. M ater. Sci.,1991,26(9):2343-2347.
    [32] X. Q. Zhang, L. H. Liao, N. H. Ma, H. W. Wang. The effect of heat treatment ondamping characterization of TiC/AZ91composites [J]. Mater. Lett.,2006,60(5):600-604.
    [33] M. Y. Zheng, K. Wu, M. Liang, S. Kamado, Y. Kojima. The effect of thermalexposure on the interface and mechanical properties of Al18B4O33w/AZ91magnesiummatrix composite [J]. Mater. Sci. Eng. A,2004,372(1-2):66-74.
    [34] B. Inem. Dynamic Recrystallization in A Thermomechanically Processed MetalMatrix Composite [J]. Mater. Sci. Eng A,1995, l97(1):91-95.
    [35] B. A. Mikucki, W. E. Mercer, W. G. Green. Extruded Magnesium Alloys Reinforcedwith Ceramic Particles [J]. Light Metal Age,1990,6:12-16.
    [36] C. Y. Wang, K. Wu, M. Y. Zheng. Hot deformation and processing maps ofAl18B4O33w/ZK60composite [J]. Mater. Sci. Eng A,2008,477(1-2):179-184.
    [37] M. Hashish. Tunring with Abrasive Waterjets-A First Investigation [J]. Trans. ASME.Journal of Engineering for Industry,1987,109(4):281-290.
    [38] A. M atin, J. L lorca. Mechanical Behaviour and Failure Mechanisms of A BinaryMg-6%Zn alloy Reinforced with Sic Particulates [J]. Mater. Sci. Eng A,1995,201(1-2):77-87.
    [39] B. Hu, L. M. Peng, B. R. Powell, M. P. Balough, R. C. Kubic, A. K. Sachdev.Interfacial and fracture behavior of short-fibers reinforced AE44Based MagnesiumMatrix Composites [J]. J. Alloys. Compd.,2010,504(2):527-534.
    [40] B. Hallstedt, Z. K. Liu, J. Agren. Reactions in A1203-Mg Metal Matrix Compositesduring Prolonged Heat Treatment at400,550, and600℃[J]. Mater. Sci.Eng A,1993,169(1-2):149-157.
    [41] B. Inem, G. Pollard. Interface Structure and Fractography of A Magnesium-AlloyMetal-Matrix Composite Reinforced with SiC Particles [J]. J. Mater. Sci.,1993,28(16):4427-4434.
    [42] W. Yang, G. C. Weatherly, D. W. Mccomb, D. J. Lloyd. The Structure ofSiC-reinforced Mg Casting Alloys [J]. Jounral of Microscopy,1997,185(2):292-302.
    [43] S. H. Chen, P. P. Jin, G. Schumacher, N. Wanderka. Microstructure and interfacecharacterization of a cast Mg2B2O5whisker reinforced AZ91D magnesium alloycomposite [J]. Compos. Sci. Technol.,2010,70(1):123-129.
    [44] M. Y. Zheng, K. Wu, C. K. Yao. Effect of interfacial reaction on mechanical behaviorof SiCw/AZ91magnesium matrix composites [J]. Mater. Sci. Eng. A,2001,318(1-2):50-56.
    [45] M. Y. Zheng, K. Wu, C. K. Yao. Charactreization of interfacial reaction in squeezecast SiCw/Mg composites [J]. Mater. Lett.,2001,47(3):118-124.
    [46] B. Q. Han, D. C. Dunand. Creep of magnesium strengthened with high volumefractions of yttria dispersoids [J]. Mater. Sci. Eng A,2001,300(1-2):235-244.
    [47] J. Llorca. The Cyclic Stress-Strain Curve of Discontinuously-Reinforced Al and Mg-Based Composites [J]. Scr. Metall. Mater,1994,30(6):755-760.
    [48] J. H. Gu, X. N. Zhang, Y. F. Qiu, M. Y. Gu. Damping behaviors of magnesium matrixcomposites reinforced with Cu-coated and uncoated SiC particulates [J]. Compos. Sci.Technol.,2005,65(11-12):1736-1742.
    [49] S. O. Shook, W. G. Green. Improving Magnesium's Wear Resistance-A CompositeApproach [J]. Light Metal Age,1985,6:28-32.
    [50] B. Hu, L. M. Peng, W. J. Ding. Dry wear behavior of Saffil fiber reinforcedMg-10Gd-3Y-0.5Zr magnesium alloy based composites [J]. J. Compos. Mater.,2011,45(6):683-693.
    [51]张美娟,刘勇兵,杨晓红,罗克帅,安健.石墨及氧化铝增强AZ91D-Cex基复合材料的磨损性能研究[J].摩擦学学报,2008,28(3):230-234.
    [52] T. G. Nieh, A. J. Schwartz, J. Wadsworth. Superplasticity in a17vol.%SiCParticulate-reinforced ZK60A Magnesium Composite (ZK60/SiC/17p)[J]. Mater. Sci.Eng A,1996,208(1):30-36.
    [53] G. E. Metzger. Joining of Metal Matrix Fiber Reinforced Composite Materials [J].Welding Research Council Bulletin,1975,207:171-191.
    [54] C. A. Nunez-Lopez, H. habazaki, P. Skeldon, G. E. Thompson,H. Karimzadeh, P.Lyon, T. E. Wilks. An Investigation of Microgalvanic Corrosion Using a ModelMagnesium-silicon Carbide Metal Matrix Composites [J]. Corrosion,1996,38(10):1721-1729.
    [55] R. T. Whalen, G. G. Doncel, S. L. Robinson. Mechanical properties of particulatecomposites based on a boby-centered-cubic Mg-Li alloy containing boron [J]. ScriptaMater.,1989,23(1):137-140.
    [56] Z. Trojanova, P. LuKac, H. Ferkel. Stability of microstructure in magnesiumreinforced by nanoscaled alumina particles [J]. Mater. Sci. Eng A,1997,234-236:789-891.
    [57]权高峰. SiC颗粒增强镁基复合材料的研究[J].西安交通大学学报,1997,31(6):121-123.
    [58]郗雨林,张文兴,柴东琅,王秀苓.粉末冶金法制备MB15镁基复合材料组织及性能的研究[J].热加工工艺,2002,1:51-53.
    [59] G. G. Doncel, J. Wolfenstine, P. Metenier, O. A. Ruano, O. D. Sherby. The use offoil metallurgy processing to achive ultrafine grained Mg-Li laminates andMg-9Li-5B4C particulate composites [J]. J. Mater. Sci.,1990,25(10):4535-4540.
    [60] J. Wolfenstine, G. G. Doncel, O.D. Sherby. Tension versus compression superplasticbehavior of a Mg-9Li-5wt%B4C composite [J]. Mater. Lett.,1992,15(4):305-308.
    [61] A. Luo. Development of Matrix Grain Structure during The Solidification of AMg(AZ91)/S iCp Composite [J]. Scr. Metall. Mater.,1994,31(3):1253-1258.
    [62] A. Luo. Processing, Microstructure, and Mechanical Behavior of Cast MagnesiumMetal Matrix Composites [J]. Metall. Mater. Trans. A,1994,26(9):2445-2455.
    [63] V. Laurent, P. Jarry, G. Regazzoni, D. Apelian. Processing-MicrostructureRelationships in Compocast Magnesium/SiC [J]. J. Mater. Sci.,1992,27(16):4447-4459.
    [64] W. Zhou, Z. M. Xu. Casting of SiC reinforced metal matrix composites [J]. J. Mater.Process. Technol.,1997,63(1-3):358-363.
    [65] P. Vervoot. Extrusion of Spray Deposited QE22Magnesium Alloy and Composite [J].Powder Metall.,1995,38(2):98-102.
    [66] H. E. Friedrich, B. L. Mordike. Magnesium Technology:Metallurgy, Design Data,Applications [C]. Springer-Verlag Berlin Heidelberg2006, p323.
    [67] J. A. Sekhar. Solidification by pressure application [J]. Scripta Mater.,19,1985(12):1429-1433.
    [68] H. Z. Ye, X. Y. Liu. Review of recent studies in magnesium matrix composites [J]. J.Mater. Sci.,2004,39(20):615-617.
    [69] M. S. Yong, A. J. Clegg. Process optimization for a squeeze cast magnesium alloymetal matrix composite [J]. J. Mater. Process. Technol.,2005,168(2):262-269.
    [70] K. S. Sohn. Mechanical Property and Fracture Behavior of Squeeze-Cast Mg MatrixComposites [J]. Metall. Mater. Trans. A,1998,29(10):2543-2554.
    [71] Z. Trojanova, V. Gartnerova. Mechanical properties of Mg alloys compositesreinforced with short Saffil fibers [J]. J. Alloys. Compd.,2004,378(1-2):19-26.
    [72] M. A. Matin, L. Lu, M. Gupta. Investigation of the reaction between boron andtitanium compounds with magnesium [J]. Scripta Mater.,2001,45(4):479-486
    [73] S. Hwang, C. Nishimura. Compressive mechanical properties of Mg-Ti-Cnanocomposite synthesized by mechanical milling [J]. Scripta Mater.,2001,44(10):2457-2462.
    [74] Q. C. Jiang, X. L. Li, H. Y. Wang. Fabrication of TiC Particulate reinforcedmagnesium matrix composites [J]. Scripta Mater.,2003,48(6):713-717
    [75] M. K. Surappa. Microstructure evolution during solidification of DRMMCs: state ofart [J]. J. Mater. Process. Technol.,1997,63(1-3):325-333.
    [76] B. A. Mikucky, S. O. Shook, W. E. Mercer, W. G. G reen. Magnesium MatrixComposites at Dow: Status Update [J]. Light Metal Age,1986,10:16-20.
    [77] M. R. Krishnadev, R. Angers, N. C. G. Krishnadas, G. Huard. The Structure andProperties of Magnesium-Matrix Composites. JOM,1993,(8):52-54.
    [78] K. U. Kainer. P/M Short Fiber-Reinforced Magnesium [J]. Adv. Powder. Metall.,1991:293-305.
    [79] X. Q. Zhang, L. H. Liao, N. H. Ma, H. W. Wang. Mechanical properties and dampingcapacity of magnesium matrix composites [J]. Composites: Part A,2006,37(11):2011-2016.
    [80] L. H. Liao, X. Q. Zhang, H. W. Wang, X. F. Li, N. H. Ma. Influence of Sb ondampng capacity and mechanical properties of Mg2Si/Mg-9Al composite materials[J]. J. Alloys. Compd.,2007,430(1-2):292-296.
    [81] E. C. Courwright, C. A. Lavender, M. T. Smith. Rapid-solidification ProcessingImproves MMCs Properties [J]. Adv. Mat. Proc.,1990,11:71-73.
    [82]郑明毅. SiCw/AZ91复合材料的界面反应及其对复合材料性能的影响[D].哈尔滨:哈尔滨工业大学.1999.
    [83]胡斌.短纤维增强镁基复合材料的组织、性能和摩擦学行为研究[D].上海:上海交通大学.2010.
    [84] C. Badini, F. Marino, M. Montorsi, X. B. Guo. Precipitation Phenomena inB4C-reinforced Magnesium-based Composites [J]. Mater. Sci. Eng A,1992,157(1):53-61.
    [85] J. F. Mason, C. M. Warwick, P. J. Smith, J. A. Charles, T. W. Clyne.Magnesium-Lithium Alloys in Metal Matrix Composites-A Preliminary Report [J]. J.Mater. Sci.,1989,24(11):3934-3940.
    [86] J. F. Mason, T. W. Clyne. Microstructural Development and Mechanical Behaviourof SiC Whisker-Reinforced Mg-Li Alloys [C]. Proceedings of ECCM3, Bordeaux,1989:213-220.
    [88]蔡叶,黄伯云,苏华钦.铸造SiCp/Mg(AZ81)复合材料界面[J].中国有色金属学报,1997,7(3):108-111.
    [89]蔡叶,苏华钦. SiCp/AZ80镁基复合材料的界面与断口特征[J].复合材料学报,1997,14(2):76-79.
    [90] A. Luo, M. O. Pekguleryuz. Development of Cast Magnesium Matrix Composites [C].Proceedings of International Magnesium Association (IMA), Berlin,1994:74-81.
    [91] A. Luo. Effect of Matrix Alloy Composition on The Interfacial Phenomena andMicrostructure of Cast Mg/SiCp Composites [C]. Proceedings of ICCM-10, Whistler,B. C., Canada, August,1995:287-293.
    [92] K. N. Braszcyńska, L. Lityńska, A. Zyska, W. Bliga. TEM analysis of the interfacesbetween the composites in magnesium matrix composites reinforced with SiCparticles [J]. Mater. Chem. Phys.,2003,81(2-3):326-328.
    [93] J. Lo, G. J. C. Carpenter, M. Charest. Interfacial Characteristics of Squeeze-CastSiC-reinforced AZ91Magnesium-based Composites [C]. Proceedings of DesignFundamentals of Composites Intermetallics/Metal/Ceramic Systems, TMS, USA,1996:29-39.
    [94]郝元恺,杨广平. SiC与镁的化学相容性及润湿性[J].复合材料进展——第届全国复合材料会议,南京,1994,北京:航空工业出版社,1994.
    [95]陈玉喜,李斗星,张国定.(SiCw+B4C)/MB15镁基复合材料的微观结构[J].金属学报,2000,36(11):1229-1232.
    [96]郑明毅,吴坤,赵敏.不连续增强镁基复合材料的制备与应用[J].宇航材料工艺,1997,6:6-9.
    [97] M. Y. Zheng, K. Wu, C. K. Yao, S. Kamado, Y. Kojima. Interfacial Microstructureand Fracture Behavior of SiC whisker reinforced Magnesium Matrix Composites [J].Mater. Sci. Forum,2003,419-422:795-800.
    [98] A. D. Mcleod, C. M. Gabryel. Kinetics of the Growth of Spinel MgAl2O4on AluminaParticulate in Aluminum Alloys Containing Magnesium [J]. Metall. Trans. A,1990,23(4):1279-1283.
    [99]曾毅,张叶方,丁传贤.碳化硼粉末和涂层氧化特性研究[J].陶瓷学报,1998,19(4):183-187
    [100] Y. X. Chen, D. X. Li, G. D. Zhang. Electron microscopy studied of interfacialreaction in (SiCw+B4C)/ZK60A hybrid composite [J]. Scripta Mater.,2000,43(4):337-341.
    [101]吴桢干,顾明元,张国定. B4Cp+SiCw/MB15Mg基复合材料的界面微结构[J].金属学报,1998,34(4):443-448.
    [102] G. Sasaki, M. Yoshida, J. Pan, N. Fuyama, T. Fujii, H. Fukunnaga. Mechanicalproperties and microstructure of magnesium matrix composites fabricated by casting[J]. Mater. Sci. Forum,2000,350-351:215-220.
    [103] K. Purazrang, K. U. Kainer, B. L. M ordike. Fracture Toughness Behavior of AMagnesium Alloy Metal-Matrix Composite Produced by The Infiltration Technique[J]. Composites,1991,22(6):456-462.
    [104] N. Llorca, A. Bloyce, T. M. Yue. Fatigue Behaviour of Short Alumina fiberreinforced AZ91Magnesium Alloy Metal Matrix Composite [J]. Mater. Sci. Eng A,1991,135:247-252.
    [105] G. Sasaki, W. G. Wang, Y. Hasegawa, Y. B. Choi, N. Fuyama, K. Matsugi, O.Yanagisawa. Surface treatment of Al18B4O33whisker and development ofAl18B4O33/ZK60magnesium alloy matrix composite [J]. J. Mater. Process. Technol.,2007,187-188:429-432.
    [106]吴昆. SiC/AZ91镁基复合材料的界面结构和时效行为[D].哈尔滨:哈尔滨工业大学.1995.
    [107] C. Badini, F. Marino, M. Montorsi, X. B. Guo. Precipitation PhenomenainB4C-reinforced Magnesium-based Composites [J]. Mater. Sci. Eng A,1992,157(1):53-61.
    [108] J. Schroder, K. U. Kainer, B. L. Mordike. Proceedings of2nd European Conferenceon Advanced Materials and Processes [C]. Vol.2. T. W. Clyne and P. J. Withers eds.Institute of Materials, London,1992:81-91.
    [109] H. Hino, M. Komatsu, Y. Hirasawa, M. Sasaki. Effects of Reaction Products onMechanical Properties of Alumina Short Fiber Reinforced Magnesium Alloy [C].Proceedings of5th Annual ASM/ESD Advanced Composites, Michigan, September,1989:201-208.
    [110] V. Laurent, P. Jarry, G. Regazzoni, D. Apelian. Processing-MicrostructureRelationships in Magnesium/SiC [J]. J. Mater. Sci.,1992,27(16):4447-4459.
    [111]郑明毅,吴昆,赵敏,姚忠凯.不连续增强镁基复合材料的界面行为[J].兵器材料科学与工程,1998,21(3):45-50.
    [112]陈美怡,秦富生,李自德,王慧敏. Gr(C)纤维增强镁基复合材料的界面结构[J].特种铸造及有色合金,1996,4:1-4.
    [113] R. M. Aikin, L. Christodoulon. The role of equiaxed particles on the yield stress ofcomposites [J]. Scripta Metalurgica et Materiali,1991,25(1):9-14.
    [114] R. T. Arsenault, N. Shi. Dislocation Generation due to differences between thecoefficients of thermal expansion [J]. Mater. Sci. Eng.,1986,25:175-187.
    [115]王广欣,刘慧民.金属基复合材料的制备及力学性能[M].杭州:浙江大学出版社.1996:149-155.
    [116] X. N. Zhang, L. Geng, G. S. Wang. Fabrication of Al-based hybrid compositesreinforced with SiC whiskers and SiC nanoparticles by squeeze casting [J]. J. Mater.Process. Technol.,2006,176(1-3):146-151.
    [117]金头男,聂祚仁,李斗星.浸渗/挤压(SiCw+B4Cp)/Mg(AZ91)复合材料的界面特征[J].中国有色金属学报,2002,12(2):284-289.
    [118] J. Schroder, K. U. Kainer. Magnesium-base Hybrid Composites Prepared by LiquidInfiltration [J]. Mater. Sci. Eng A,1991,135:33-36.
    [119] J. Yang, R. Schaller. Mechanical spectroscopy of Mg reinforced with Al2O3shortfibers and C nanotubes. Mater. Sci. Eng A,2004,370(1-2):512-515.
    [120] M. Svoboda, M. Pahutová, K. Kucha ová, V. Skleni ka, K. U. Kainer.Microstructure and creep behavior of magnesium hybrid composites [J]. Mater. Sci.Eng A,2007,462(1-2):220-224.
    [121] A. Arunachaleswaran, I. M. Pereiraa, H. Dieringaa, Y. Huanga, N. Horta, B. K.Dhindawb, K. U. Kainer. Creep behavior of AE42based hybrid composites [J]. Mater.Sci. Eng A,2007,460-461:268-276.
    [1]李武,靳治良,张志宏.无机晶须材料的合成与应用[J].化学进展,2003,15(4):264-274.
    [2] E. M. Elssfah, A. Elsanousi, J. Zhang, H. S. Song, C. C. Tang. Synthesis ofmagnesium borate nanorods [J]. Mater Lett.,2007,61(22):4358-4361
    [3] Y. Zeng, H. B. Yang, W. Y. Fu, L. Qiao, L. X. Chang, J. J. Chen, H. Y. Zhu, M. H. Li,G. Ti. Zou. Synthesis of magnesium borate (Mg2B2O5) nanowires, growth mechanismand their lubricating properties [J]. Mater. Res. Bull.,2008,43(8-9):2239-2247.
    [4]王俐聪,张旖,王玉琪,黄西平,张雨山.煅烧条件对硼酸镁晶须组成和形貌的影响[J].无机盐工业,2010,42(5):22-23.
    [5]张旖,王俐聪,王玉琪,张雨山,黄西平.苦卤制备硼酸镁(Mg2B2O5)晶须的研究[J].化学工业与工程,2010,27(2):128-131.
    [6]靳治良,李武,张志宏.硼酸镁晶须的合成研究[J].无机盐工业,2003,35(3):22-24.
    [7]赵东宇,李滨耀,余赋生,丁彦滨.碳纤维长度及其分布对复合材料力学性能的影响[J].黑龙江大学自然科学学报,1997,14(4):84-87.
    [8]胡斌.短纤维增强镁基复合材料的组织、性能和摩擦学行为研究[D].上海:上海交通大学.2010.
    [9]潘国如,王顺成. AZ91镁合金挤压组织和性能研究[J].特种铸造及有色合金,2007,27:778-780.
    [10] P. L. Wu, Z. Tian, L. D. Wang, W. D. Fei. Effect of changing rate of residual stress onthermal expansion behavior of magnesium borate whisker-reinforced aluminumcomposite [J]. Thermochim Acta,2007,455(1-2):7-10.
    [11] X. Tao, X. Li. Catalyst-free synthesis, structural, and mechanical characterization oftwinned Mg2B2O5nanowires [J]. Nano lett.,2008,8(2):505-510.
    [12] S. H. Chen, P. P. Jin, G. Schumacher, N. Wanderka. Microstructure and interfacecharacterization of a cast Mg2B2O5whisker reinforced AZ91D magnesium alloycomposite [J]. Compos. Sci. Technol.,2010,70(1):123-129.
    [13] H. E. Friedrich, B. L. Mordike. Magnesium Technology: Metallurgy, Design Data,Applications [C]. Springer-Verlag Berlin Heidelberg2006, p323.
    [14] D. G. L. Prakash, D. Regener. Quantitative characterization of Mg17Al12phase andgrain size in HPDC AZ91magnesium alloy [J]. J. Alloys. Compd.,2008,461(1-2):139-146.
    [15] M. X. Zhang, P. M. Kelly. Crystallography of Mg17Al12precipitates in AZ91D alloy[J]. Scripta Mater.,2003,48(5):647-652.
    [16] H. Z. Ye, X. Y. Liu. Review of recent studies in magnesium matrix composites [J]. J.Mater. Sci.,2004,39(20):615-617.
    [17] G. Sasaki, W. G. Wang, Y. Hasegawa, Y. B. Choi, N. Fuyama, K. Matsugi, O.Yanagisawa. Surface treatment of Al18B4O33whisker and development ofAl18B4O33/ZK60magnesium alloy matrix composite [J]. J. Mater. Process. Technol.,2007,187-188:429-432.
    [18]张宝昌.有色金属及其热处理[M].西安:西北工业大学出版社,1993.
    [19] M. Y. Zheng, K. Wu, S. Kamado, Y. Kojima. Aging behavior of squeeze castSiCw/AZ91magnesium matrix Composite [J]. Mater. Sci. Eng A,2003,348(1-2):67-75.
    [20] S. Celotto. TEM study of continuous precipitation in Mg-9wt%Al-1wt%Zn alloy [J].Acta Mater.,2000,48(8):1775-1787.
    [21]张修庆.重熔稀释原位合成镁基复合材料的制备及其性能[D].上海:上海交通大学.2006.
    [22] M. Y. Zheng, K. Wu, H. C. Liang, S. Kamado, Y. Kojima. Microstructure andmechanical properties of aluminum borate whisker-reinforced magnesium matrixcomposites [J]. Mater. Lett.,2002,57(3):558-564.
    [23] M. Y. Zheng, K. Wu, M. Liang, S. Kamado, Y. Kojima. The effect of thermalexposure on the interface and mechanical properties of Al18B4O33w/AZ91magnesiummatrix composite [J]. Mater. Sci. Eng. A,2004,372(1-2):66-74.
    [24] S. J. Zhu, T. Iizuka. Fabrication and mechanical behavior of Al matrix compositesreinforced with porous ceramic of in situ grown whisker framework [J]. Mater. Sci.Eng. A,2003,354(1-2):306-314.
    [25]郑明毅. SiCw/AZ91复合材料的界面反应及其对复合材料性能的影响[D].哈尔滨:哈尔滨工业大学.2010.
    [1]张国定.金属基复合材料界面问题[J].材料研究学报,1997,11(6):649-657.
    [2]郑明毅. SiCw/AZ91复合材料的界面反应及其对复合材料性能的影响[D].哈尔滨:哈尔滨工业大学.1999.
    [3]王新坤,汪定江,祝长春,郭必新,宋述稳,葛文军.偏磷酸铝粘结剂在真空液相浸渗制备Cf/Al复合材料中的应用研究[J].材料科学与工程学报,2004,22(5):693-696.
    [4] B. C. Pai, S. Ray, K. V. Prabhakar, P. K. Rohatgi. Fabrication of aluminium-alumina(magnesia) particulate composites in foundries using magnesium additions to the melts[J]. Mater, Sci. Eng. A,1976,24(1):31-44.
    [5] W. M. Zhong, G. Lesperance, M. Suery. Interfacial reactions in Al-Mg (5083)/SiCpcomposites during fabrication and remelting [J]. Metall. Trans. A,1998,26(10):2625-2635.
    [6] C. G. Levi, G. J. Abbaschian, R. Mehrabian. Interface interactions during fabrication ofaluminum alloy-alumina fiber composites [J]. Metall. Trans. A,1998,9(5):697-703.
    [7] A. D. McLeod, C. M. Gabryel. Kinetics of the Growth of Spinel, MgAl2O4, onAlumina Particulate in Aluminum Alloys Containing Magnesium [J]. Metall. Trans. A,1998,23(4):1279-1283.
    [8] A. Munitz, M. Metzger, R. Mehrabian. The interface phase in Al-Mg/Al2O3composites[J]. Metall, Trans. A,1998,10(10):1491-1497.
    [9] D. R. Gaskell. Introduction to Metallurgical Thermodynamics [C]. Hemisphere, NewYork,1981, p287.
    [10] S. H. Chen, P. P. Jin, G. Schumacher, N. Wanderka. Microstructure and interfacecharacterization of a cast Mg2B2O5whisker reinforced AZ91D magnesium alloycomposite [J]. Compos. Sci. Technol.,2010,70(1):123-129.
    [11] M. Y. Zheng, K. Wu, H. C. Liang, S. Kamado, Y. Kojima. Microstructure andmechanical properties of aluminum borate whisker-reinforced magnesium matrixcomposites [J]. Mater. Lett.,2002,57(3):558-564.
    [12] M. Y. Zheng, K. Wu, C. K. Yao. Effect of interfacial reaction on mechanical behaviorof SiCw/AZ91magnesium matrix composites [J]. Mater. Sci. Eng. A,2001,318(1-2):50-56.
    [13] M. Y. Zheng, K. Wu, C. K. Yao. Charactreization of interfacial reaction in squeezecast SiCw/Mg composites [J]. Mater. Lett.,2001,47(3):118-124.
    [14] Z. B. Ayadi, L. E. Mir, K. Djessas, S. Alaya. Effect of the annealing temperature ontransparency and conductivity of ZnO:Al thin films [J]. Thin Solid Films,2009,517(23):6305-6309.
    [15] X. Gao, J. F. Nie. Structure and thermal stability of primary intermetallic particles inan Mg-Zn casting alloy [J]. Scripta Mater.,2007,57(7):655-658.
    [16]张向超.掺杂TiO2薄膜的制备、表征及性能[D].长沙:中南大学.2009.
    [17] L. Lefebvre, M. Surey. Particle degradation furing remelting of Al-1%Mg alloyreinforced with SiCp coated with sol-gel0produced TiO2[J]. J. Mater. Sci.,1997,32(15):3987-3994.
    [18] M. Y. Zheng, K. Wu, M. Liang, S. Kamado, Y. Kojima. The effect of thermalexposure on the interface and mechanical properties of Al18B4O33w/AZ91magnesiummatrix composite [J]. Mater. Sci. Eng. A,2004,372(1-2):66-74.
    [19] W. Weng, Y. P. Tang, H. W. Wang, N. H. Ma. Effects of ZnO coating on thedamping and tensile properties of LiNbO3particle-reinforced aluminum composite[J]. Mater. Sci. Eng A,2011,528(10-11):3676-3680.
    [20] D. Webster. Effect of lithium on the mechanical properties and microstructure of sicwhisker reinforced aluminum alloys [J]. Metall. Trans. A,1982,13(8):1511-1519.
    [21] F. Reischer, E. Pippel, J. Woltersdorf, G. Marx. Carbon fibre-reinforced magnesium:Improvement of bending strength by nanodesign of boron nitride interlayers [J].Mater. Chem. Phys.,2007,104(1):83-87.
    [22] H. Y. Yue, W. D. Fei, Z. J. Li, L. D. Wang. Effects of ZnO coating on the wettabilityand tensile properties of aluminum borate whisker-reinforced aluminum composite[J]. Mater. Sci. Eng. A,2006,441(1-2):197-201.
    [23] R. M. Aikin, L. Christodoulon. The role of equiaxed particles on the yield stress ofcomposites [J]. Scripta Metalurgica et Materiali,1991,25(1):9-14.
    [24] R. T. Arsenault, N. Shi. Dislocation generation due to differences between thecoefficients of thermal expansion [J]. Mater. Sci. Eng.,1986,81:175-187.
    [25]王广欣,刘慧民.金属基复合材料的制备及力学性能[M].杭州:浙江大学出版社.1996:149-155.
    [26] M. Y. Zheng, K. Wu, S. Kamado, Y. Kojima. Aging behavior of squeeze cast
    SiCw/AZ91magnesium matrix Composite [J]. Mater. Sci. Eng A,2003,
    348(1-2):67-75.
    [1] X. N. Zhang, L. Geng, G. S. Wang. Fabrication of Al-based hybrid compositesreinforced with SiC whiskers and SiC nanoparticles by squeeze casting [J]. J. Mater.Process. Technol.,2006,176(1-3):146-151.
    [2] X. X. Zhang, C. F. Deng, Y. B. Shen, D. Z. Wang, L. Geng. Mechanical properties ofABOw+MWNTs/Al hybrid composites made by squeeze cast technique [J]. Mater.Lett.,2007,61(16):3504-3506.
    [3] X. Q. Zhang, H. W. Wang, L. H. Liao, X. Y. Teng, N. H. Ma. The mechanicalproperties of magnesium matrix composites reinforced with (TiB2+TiC) ceramicparticulates [J]. Mater. Lett.,2005,59(17):2105-2109.
    [4] J. H. Gu, X. N. Zhang, M. Y. Gu. Mechanical properties and damping capacity of(SiCp+Al2O3.SiO2f)/Mg hybrid metal matrix composite [J]. J. Alloys. Compd.,2004,385(1-2):104-108.
    [5] K. T. Sanjay, T. S. Srivatsan, G. Manoj. Synthesis and mechanical behavior of carbonnanotube-magnesium composites hybridized with nanoparticles of alumina [J]. Mater.Sci. Eng. A,2007,466(1-2):32-37.
    [6] M. J. Zhang, Z. Y. Cao, X. H. Yang, Y. B. Liu. Microstructures and wear properties ofgraphite and Al2O3reinforced AZ91D-Cex composites [J]. Trans Nonferrous Met SOCChina2010,20(2):s471-s475.
    [7] M. J. Zhang, Y. B. Liu, X. H. Yang, K. S. Luo. Effect of graphite particle size on wearproperty of graphite and Al2O3reinforced AZ91D-0.8%Ce composites [J]. TransNonferrous Met SOC China2008,18(1):s273-s277.
    [8] S. Kumar, H. Dieringa, K. U. Kainer. Thermal cycling behaviour of the magnesiumalloy based hybrid composites in the transverse direction [J]. Mater. Sci. Eng. A,2007,454-455:367-370.
    [9] M. A. Aziz, T. S. Mahmoud, A. A. Aal. Modeling and optimizing of factors affectingerosion-corrosion of AA6063-(TiC/Al2O3) hybrid composites by experimental designmethod [J]. Mater. Sci. Eng. A,2008,486(1-2):313-320.
    [10] H. C. Man, C. T. Kwok, T. M. Yue. Cavitation erosion and corrosion behaviour oflaser surface alloyed MMC of SiC and Si3N4on Al alloy AA6061[J]. Surf. CoatTechnol.,2000,132(1):11-20.
    [11] Q. C. Jiang, H. Y. Wang, B. X. Ma, Y. Wang, F. Zhao. Fabrication of B4C particulatereinforced magnesium matrix composite by powder metallurgy [J]. J. Alloys Compd.,2005,386(1-2):177-181.
    [12] C. Z. Nie, J. J. Gu, J. L. Liu, D. Zhang. Investigation on microstructures and interfacecharacter of B4C particles reinforced2024Al matrix composites fabricated bymechanical alloying [J]. J. Alloys Compd.,2008,454(1-2):118-122.
    [13] Y. X. Chen, D. X. Li, G. D. Zhang. Electron microscopy studied of interfacial reactionin (SiCw+B4C)/ZK60A hybrid composite [J]. Scripta Mater.,2000,43(4):337-341.
    [14] H. W. Kim, Y. H. Koh, H. E. Kim. Densification and mechanical properties of B4Cwith Al2O3as a sintering aid [J]. J. Am. Ceram. Soc.,2000,83(11):2863-2865.
    [15]万玺民. B4C颗粒增强AZ91复合材料制备工艺优化及性能研究[硕士学位论文].西安:西安理工大学.2008.
    [16]黄露,刘斌,王浩伟.高体积分数B4C/ZL101复合材料力学性能的研究[J].材料导报,2011,25(4):85-99.
    [17] H. Zhang, M. W. Chen, K. T. Ramesh, J. Ye, J. M. Schoenung, E.S.C. Chin. Tensilebehavior and dynamic failure of aluminum6092/B4C composites [J]. J. Alloys.Compd.,2005,386(1-2):177-181.
    [18] S. Y. Oh, J. A.Cornic, K. C. Russell. Wetting of ceramic particulates with liquidaluminum alloys: Part II. Study of wettability [J]. Metall. Trans. A,1989,20(3):533-541.
    [19] M. Y. Zheng, K. Wu, M. Liang, S. Kamado, Y. Kojima. The effect of thermalexposure on the interface and mechanical properties of Al18B4O33w/AZ91magnesiummatrix composite [J]. Mater. Sci. Eng. A,2004,372(1-2):66-74.
    [20] P. L. Wu, Z. Tian, L. D. Wang, W. D. Fei. Effect of changing rate of residual stress onthermal expansion behavior of magnesium borate whisker-reinforced aluminumcomposite [J]. Thermochim Acta,2007,455(1-2)7-10.
    [21] R. M. Mohanty, K. Balasubramanian, S. K. Seshadri. Boron carbide-reinforcedalumnium1100matrix composites: Fabrication and properties [J]. Mater. Sci. Eng. A,2008,498(1-2):42-52.
    [22] Y. W. Yan, L. Geng, A. B. Li. Experimental and numerical studies of the effect ofparticle size on the deformation behavior of the metal matrix composites [J]. Mater.Sci. Eng. A,2007,448(1-2):315-325.
    [23]王广欣,刘慧民.金属基复合材料的制备及力学性能[M].杭州:浙江大学出版社.1996:149-155.
    [24] R. J. Arsenault, N. Shi. Dislocation generation due to differences between thecoefficients of thermal expansion [J]. Mater. Sci. Eng.,1986,81:175-187.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700