山药不同基因型地下块茎糖类和酚类物质形成、调控及相关基因分离的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
山药(Dioscorea spp.)为薯蓣科(Dioscoreaceae)薯蓣属中多年生缠绕性草质植物,其地下块茎富含糖类和酚类物质,普遍用作粮食、药物和生物质能源的原料。迄今已知约有600个山药物种,其中世界上广泛种植的约有10个,而我国大陆地区仅有田薯(D.alata L.)、普通山药(D.opposite Thunb.)和日本山药(D.japonica Thunb.)等3个。山药地下块茎化学成分的组成和含量因基因型和生长环境而异,所以,收集和分类我国主栽山药品种并阐明它们地下块茎糖类和酚类物质形成机理,对人类获得更多高品质山药产品予以消费具有重要意义。本研究以‘紫小’、‘紫大’、‘白扁’、‘白柱’、‘普通’、‘野生’等六种山药基因型为材料,首先,应用山药形态特征多态性、地下块茎可溶性蛋白多态性和SRAP分子标记多态性对它们进行分类评价;其次,运用生理生化手段对它们地下块茎主要糖类和酚类物质的含量及其形成的主要酶活性进行了测定和比较,同时,利用分子生物学技术从六种基因型地下块茎中分离了编码这些主要酶结构基因的cDNA序列,其中重点对‘紫小’的相关基因全长cDNA序列进行了克隆和描述;最后,运用生理生化手段分析了‘紫小’、‘白扁’和‘普通’分别经0.5、1.0、5.0 mmol·L~(-1)的SA叶喷后地下块茎主要糖类和酚类物质的含量及其形成的主要酶活性;此外,还初步分析了山药糖类和酚类物质形成的可能关系。通过上述研究,获得了以下主要结果:
     (1)形态学特征多态性、地下块茎可溶性蛋白多态性和SRAP分子标记多态性等三种方法都能以鉴别率为100%的效果将六种山药基因型完全区分为结果相同的3类;‘紫小’、‘紫大’、‘白扁’、‘白柱’属于山药田薯种(D.alata L.),其中还可分为田薯紫色类型和田薯白色类型,前者包括‘紫小’和‘紫大’,后者包含‘白扁’和‘白柱’;‘普通’和‘野生’分别属于普通山药(D.opposite Thunb.)和日本山药(D.japonica Thunb.)。比较这三种分类方法,它们的多态性比率依次为65.45%、67.70%、89.32%,基因型间的遗传相似性系数为0.63~0.96、0.54~0.94、0.36~0.73,遗传距离为0.04~0.37、0.06~0.46、0.27~0.64,其中4个田薯的平均遗传距离分别是0.11、0.15、0.39,这些结果表明SRAP分子标记对上述六种基因型的分类更精细,更适用于山药种质资源的遗传多样性分析和分类。
     (2)六种山药基因型地下块茎干物质都一直增加,其中田薯白色类型最早积累,‘普通’最迟;AM、AP、Cel和TSS构成地下块茎DW的50%以上,其中仅AM、AP收获时分别占Dw的28.3%~39.1%、34.7%~43.7%;AM、AP的演进总趋势和DW的一样,但Cel、TSS、Suc、TRS、Glc、Frc、TS表现相反;尽管‘野生’的DW、各种可溶性糖、Cel含量都为最小,但是在DC、TS、AM、AP的含量在盛中期前为最大;‘普通’在盛中期前TS、AM和AP的含量最低,但是收获时最大;田薯除Suc含量一直最大外,其他糖类物质含量介于‘普通’和‘野生’间;与可溶性糖和AM相反,DW、TS、AP和Cel在田薯白色品种中较在紫色品种中有更多的含量。SAI、IAI和NI的活性总趋势都是降低,而SuSy增至盛期最大后再降低;转化酶活性都低于SuSy活性,尤其块茎形成初期后;在整个取样时期里,与SAI相反,NI和IAI的活性在‘普通’和‘野生’中高过在田薯中;SuSy活性在‘野生’中都为最低,虽然在块茎形成初期田薯都大于‘普通’,但‘普通’收获时达最大;与IAI、SuSy相反,SAI、NI在田薯紫色品种中的活性大于田薯白色品种的。AGPase、SSS的活性演进模式在同基因型中相似,即‘普通’的一直递增,而其他基因型的增至块茎形成初期或盛期最大后再减至收获;GBSS、SBE的活性变化总趋势在各基因型中均随生育进程而增加,其中在‘普通’、‘野生’中一直递增,虽然田薯在块茎盛后期前也一直递增,但此后SBE与GBSS不同,表现稍有减少。各时期AGPase、SSS、GBSS、SBE的活性在‘野生’中都是最低,在初期虽然‘普通,/小于‘田薯’,但后期则反之;除SBE外,其他三种酶都是田薯的白色品种大于紫色品种。上述除Cel外的糖类化合物含量和相关酶活性在田薯类型内都是‘紫大’大于‘紫小’和‘白扁’大于‘白柱’。方差分析结果显示上述生理生化指标在种间和田薯类型间大多数时期差异显著,但是在田薯类型内大多数时期不显著。同时,Suc虽然和SuSy及淀粉合成相关的酶活性相关性不显著,但是Suc/TSS、Suc/TRS和这些酶活性的正相关性大部分显著。这些结果表明,六种山药基因型地下块茎干物质主要由AM、AP、Cel和TSS构成;各基因型山药地下块茎转化酶和SuSy的活性都存在,转化酶尤其SAI在块茎形成初期有较高的活性,此后SuSy一直是蔗糖裂解的优势酶而导致地下块茎库力的不同;淀粉的基因型著异主要由AGPase、SSS活性的基因型差异所致;各种糖类物质与相关酶活性密切相关,其中蔗糖通过Suc/TSS、Suc/TRS的形式正调控SuSy和淀粉合成相关酶;根据干物质和淀粉积累情况,各基因型熟期依次为田薯白色品种(‘白扁’和‘白柱’)、田薯紫色品种(‘紫大’和‘紫小’)、‘野生’、‘普通’。
     (3)设计三对简并引物和一些特异引物,运用传统RT-PCR和RACE技术从六种基因型山药地下块茎中都能克隆到SuSy、AGPase和SSS的同源基因cDNA片段,而且三者在各基因型的长度分别为830 b p、784 bp和1 104 bp,可推定编码276、261和367个氨基酸,分别利用这三类同源基因的cDNA序列片段进行同源性比对和系统聚类分析,结合前面基因型分类结果显示,SuSy、AGPase、SSS同源基因的分子系统进化关系一定程度上能反映了山药六种基因型间亲缘关系的远近和进化的快慢。同时,重点对‘紫小’地下块茎的SuSy同源基因cDNA全长进行克隆和分析,DaSuSy1全长cDNA序列大小为2 673bp,其中最大开放阅读框(ORF)、5’端和3’端的非翻译区分别含有2 445 bp、7bp和221 bp,而且3’端的非翻译区含一个24 nt的Poly(A~+)尾;最大ORF可编码814个氨基酸,分子量为92.76 kDa,等电点为6.42,含有SuSy和葡糖基转移酶两个保守功能域及两个磷酸化位点,即N端的Ser~(10)和C端的SNLDRRET~(781)RR(Ser~(774)~Thr~(781))。该基因在全长cDNA序列、编码区cDNA序列及其编码氨基酸序列的水平上与GenBank中所选已知物种SuSy基因相应序列的同源性分别达45.3%~71.3%、45,8%~74.8%和50.0%~84.7%,与禾本科植物SuSy基因家族中一些成员亲缘关系最近。利用RT-PCR和Northern杂交技术对‘紫小’的DaSuSy1、DaAGPase1和DaSSS1进行表达分析,三个基因在叶片中均没有表达,但是在地下块茎中均有较高丰度的表达;在茎蔓和根中DaSuSy1有微弱表达,DaAGPase1、DaSSS1则完全不表达;DaAGPase1和DaAGPase1可能在转录后水平上受到调控,而DaSSS1可能主要在转录水上受到调控。
     (4)用0、0.5、1.0、5.0 mmol·~(-1)的SA在山药地下块茎形成初期和盛后期对‘紫小’、‘白扁’和‘普通’进行叶喷后,通过对TSS、Suc、Glc、Frc、TS、AM、AP、Cel的含量和SuSy、AGPase、GBSS的活性进行测定,结果显示0.5 mmol·L~(-1)SA提高了所试山药基因型叶片合成Suc及其通过茎基部的量,从而提高了地下块茎除Cel外的所测生理生化参数的含量,尤其在块茎形成初期叶喷效果明显,5.0mmol·L~(-1)则反之,而1.0 mmol·L~(-1)在2个田薯品种中显现抑制,在‘普通’中表现促进;同基因型所测参数年间差异大多数不显著;在各基因型中虽然1.0 mmol·L~(-1)的相关参数与对照的差异也多不显著,但是0.5、5.0 mmol·L~(-1)和对照的差异大多数显著,而且同SA浓度基因型间也基本显著。这些结果表明,0.5 mmol·L~(-1)有利于叶片Suc的合成、转运和在地下块茎中向淀粉转化,5.0 mmol·l~(-1)则反之,1.0mmol·l~(-1)的作用因基因型而异;三种SA浓度对相关生理生化参数都起平行协同促进或抑制的作用。SA对地下块茎干物质和淀粉积累的影响是通过凋控叶片合成蔗糖和运输而实现,而且蔗糖作为信号分子以Suc/TSS的形式来协同正调控地下块茎的SuSy、AGPase和GBSS的活性;SA各浓度在不同时间里叶喷对糖类物质形成也存在细微差异,为了有利于山药地下块茎干物质和淀粉的积累,适宜浓度的SA应在块茎形成的初期开始每隔30天左右连续叶面喷施,而且普通山药响应SA施用的剂量要高于田薯。
     (5)设计一对简并引物和一些特异引物,运用普通PCR、RACE和TAIL-PCR技术,从六种基因型山药地下块茎中都能克隆到PAL同源基因cDNA的中间片段序列,利用这些序列进行同源性比对和系统分析,结合前面基因型分类结果显示,虽然可以将‘野生’、‘普通’和田薯的PAL同源基因区分开来,但是田薯4个品种得不到很好的分类,所以该基因不适合用来评价山药基因型的系统进化。同时,从‘紫小’地下块茎中克隆到一个长度为2 376 bp的PAL基因全长cDNA序列,该序列含有一个1 986 bp的最大ORF,一个28 bp的5’端非翻译区,一个362 bp中含25 nt的Poly(A~+)尾的3’端非翻译区;最大ORF可推测编码一个包括PAL酶活性中心特征(GTITASGDLVPLSYIA)在内的661个氨基酸的多肽,分子量为71.974 kDa,等电点为6.310;DAPAL1和GenBank中已报道其他物种的PAL在全长cDNA序列、编码区序列及其编码氨基酸序列水平上有较高的同源性,都达到50%以上,而且DaPAL1在核苷酸水平上与双子叶植物的更接近,而在氨基酸水平上与单、双子叶植物的接近度著不多;通过用RT-PCR和Northern杂交对DaPAL1的表达进行分析表明,DaPAL1仅在地下块茎特异表达,而且在块茎形成的不同时期所表达的丰度有差异,在块茎形成的初前期表达量最大,此后表达有递减的趋势,直至收获时表达量又有所增加。各期表达丰度和PAL酶活性及总酚含量有正向协同性,说明DaPAL1可能主要在转录水平上受到调控。
     (6)设计两对简并引物和一些特异引物,运用传统RT-PCR和RACE技术从六种基因型山药地下块茎中都能克隆到CHS和ANS的同源基因cDNA片段,两者在各基因型的长度分别为800 bp、280bp,可推定编码273、93个氨基酸,分别利用这两类同源基因的cDNA序列片段进行同源性比对和系统聚类分析,与前面基因型分类结果相比显示,尽管CHS同源基因的分子系统进化关系一定程度上能反映了山药六种基因型间亲缘关系,但是4NS同源基因不适合。同时,重点对‘紫小’地下块茎的ANS同源基因cDNA全长进行克隆和分析,DaANS1大小为1 387 bp,最大ORF、5’端和3’端的非翻译区分别由1 077 bp、9 bp和301 bp组成;DaANS1最大ORF可编码358个氨基酸,其分子量和等电点分别为40.4 kDa、5.26,并含有依赖于2-酮戊二酸和Fe~(2+)氧化的保守结构域,其中包括与2-酮戊二酸特异结合的精氨酸2个(Arg~(295、304))及与Fe~(2+)结合的保守组氨酸5个(His~(238、243、249、276、294))和天冬氨酸3个(Asp~(240、260、279));DaANS1与所选被子植物ANS基因的同源性均远高于与裸子植物的同源性,而且与被子植物中双子叶旋花科植物ANS基因的亲缘关系最近,但仅能将属、种间植物合理分类,可评价属、种间植物的亲缘关系。利用RT-PCR和Northern杂交技术分析DaCHS1和DaANS1在‘紫小’中的表达显示,DaCHS1仅‘紫块茎和根中表达,在地下块茎中各时期表达均较强烈,在盛前期表达丰度最高;DaANS1在‘紫小’各个器官中均有表达,但地下块茎的表达总丰度要比根、地上茎和叶片的要强烈得多;DaCHS1、DaANS1可能在转录水平上受到调控。
     (7)在整个生长发育过程中,TFD、TPA和TTN是山药地下块茎TPC的主要三大构成,分别是总酚的0.64~0.93、0.10~0.25、0.06~0.22,其中TAN和TFL构成大部分TFD;TAN、TFL在田薯紫色类型中分别占TFD的0.53~0.75、0.13~0.34,占TPC的0.49~0.68、0.11~0.29,而在其他基因型中则分别占TFD的0.02~0.1 8、0.55~0.86,占TPC的0.02~0.12、0.38~0.62;这些酚类化合物总变化趋势与干物质和淀粉变化趋势相反,随生育进程而下降,但是和TAC有密切协同性;田薯紫色类型含有高于其他基因型的TPC、TFD,其次是‘普通’和田薯白色类型,‘野生’最低;尽管田薯紫色类型仍含有最高的TAN,但是其TFL和TPA的含量仅稍大于‘野生’,反而是‘普通’和田薯白色类型有相对较高的TFL和TPA,说明山药地下块茎TPA和TFD及TAN和TFL有着竞争性的积累关系;这些酚类化合物在山药种间和田薯类型间差异也在大多数时期差异显著,但是在田薯类型内多数时期不显著。PAL、ANS的酶活性不但在变化趋势上而且在基因型比较结果上都类似于TPC、TAN。不同浓度SA对‘紫小’、‘白扁’和‘普通’的酚类化合物和相关酶的活性在变化总趋势上没有显著影向,但在叶喷后30天左右对这些生理参数的大小有一定作用,而且对各酚类化合物的含量及PAL和ANS的活性都是平行协同影响,其中0.5 mmol·L~(-1)SA有促进作用,5.0 mmol·L~(-1)则反之,而1.0 mmol·L~(-1)在田薯中显现抑制,在‘普通’中表现促进;‘紫小’、‘白扁’和‘普通’的酚类化合物及其相关酶活性不但年间大多数时期差异显著,而且同处理基因型间的差异都显著,同基因型不同处理间的差异也多显著。同基因型的淀粉与各种酚类物质、PAL和ANS的酶活性极显著负相关,说明酚类物质和淀粉在形成时对蔗糖提供的碳素存在着竞争;酚类物质、PAL和ANS也受到蔗糖的调控,而且蔗糖作为信号分子通过Suc/TSS、Suc/TRS而作用;与SuSy的作用相反,转化酶尤其SAI似乎有利于酚类物质形成;SA处理后山药地下块茎糖类物质和酚类化合物的相互关系进一步说明酚类化合物种间差异是由于叶喷SA影响叶片蔗糖合成和转运所致。
Yams (Dioscorea spp.) are twining and herbaceous perennials belonging to Dioscorea genus ofDioscoreaceae family,containing many of both carbohydrates and phenols in underground tubers,and areusually utilized as the materials for the productions of subsistence food,druggery,and biomass energy.Sofar,species of about 600 in genus Dioscorea have been reported,of which about 10 species have beengenerally cultivated in the world and only 3 species as D.alata L.,D.opposite Thunb.,and D.japonicaThunb.in land areas of China.Because phytochemicals in underground yam tubers usually vary in bothconstituents and contents with genotypes and ambient growth conditions,both collections and classificationsof cultivated-mainly yam varieties in China and the elucidations of their biosynthesis mechanisms of maincarbohydrates and phenols in underground tubers will be very important significances in yielding moreproducts with higher quality for mankind's consumptions.In this present study,six genotypic yams namedrespectively‘Zixiao’,‘Zida’,‘Baibian’,‘Baizhu’,‘Putong’,and‘Yesheng’were studied.Firstly,they weresorted and evaluated in the light of their polymorphisms at the levels of morphological characteristics,soluble proteins in tubers,and SRAP molecular markers.Secondly,both contents of major constituents ofcarbohydrates and phenols and the enzyme activities involved in their biosyntheses were measured byphysiological and biochemical methods,meanwhile,the structural gene cDNA sequences coding for the keyenzymes related to the formation of carbohydrates and phenols were isolated from the underground tubers ofsix genotypes,of which full-length cDNA sequences of the related genes in underground tubers of‘Zixiao’were emphasizedly cloned and characterized.Lastly,both contents of major constituents of carbohydratesand phenols and the enzyme activities involved in their biosyntheses in underground tubers were assayed byphysiological and biochemical methods after three genotypic yams as‘Zixiao’,‘Baibian’,and‘Putong’werefoliarly sprayed with SA at concentrations of 0.5,1.0,5.0 mmol.L~(-1),respectively.Additionally,the putativerelationships on the biosyntheses of carbohydrates and phenols in yams were assayed.The results obtainedthrough the aforementioned studies were as follows.
     (1) Based on polymorphisms at the levels of morphological characteristics,soluble proteins in tubers,and SRAP molecular markers,six genotypes of yams were not only all completely differentiated into threeclasses at identification percentage of 100%,but also the same sorted results were obtained by threeclassification methods.Four genotypic yams of‘Zixiao’,‘Zida’,‘Baibian’,and‘Baizhu’belong to D.alataL.,and was also divided into two types named respectively as purple type of yams comprising‘Zixiao’and‘Zida’,and white type of yams containing‘Baibian’and‘Baizhu’.‘Putong’and‘Yesheng’was attributed to D.opposite Thunb.and D.japonica Thunb.,respectively.By comparisons of three classification methods interms of polymorphisms of morphological characteristics,soluble proteins in tubers,and SRAP molecularmarkers,they had respectively polymorphism ratios of 65.45 %,67.7 %,89.32 % for theabovementioned 6 genotypes of yams,and genetic similarity coefficients of 0.63~0.96,0.54~0.94,0.36~0.73,and genetic distance values of 0.04~0.37,0.06~0.46,0.27~0.64,and average genetic distancevalues of 0.11,0.15,0.39 between 4 genotypes of D.alata L.were obtained,These results indicated thatSRAP molecular marker more contributed to both analysis of genetic diversity and classification for yarngermplasms on account of its more accurate classification to the aforesaid 6 genotypes of yams.
     (2) Dry matters in underground tubers of six genotypic yams straightly increased during growth anddevelopment,and accumulated earliest in white type ofD.alata L and latest in‘Putong’.AM,AP,Cel,andTSS totally accounted for more than 50% of DW in tubers,and AM and AP were 28.3~39.1%,34.7~43.7% of DW at harvesting,respectively.As opposed to Cel,TSS,Sue,TRS,Glc,Frc,TSP,AM and AP hadgenerally the same trends in contents as DW.Although having the smallest contents in DW,each of assayedsoluble sugars,and Cel,in tubers,‘Yesheng’contained the highest ones of DC,TS,AM,AP before the partof the rapidly-bulking stage.Contents of TS,AM and AP in‘Putong’were the smallest before the part of therapidly-bulking stage,and were the largest at harvesting.Four D.alata L.ranged between‘Putong’and‘Yesheng’in the contents of other saccharides except Suc.As opposed to AM and soluble sugars,DW,TS,AP,and Cel presented more contents in purple varityies ofD.alata L.than in white varityies of D.alata L..In studied yam genotypes,general patterns of SAI,IAI,and NI activities all reduced,while SuSy activitiesdecreased to harvesting after straightly increasing to the high point at rapidly-bulking stage.lnvertase werelower in activities than SuSy,especially at the early stage of tuber bulking.By contrast to SAI,IN and IAIhad higher activities in‘Putong’and‘Yesheng’than in four D.alata L during the sampling times.Ascompared to‘Yesheng’with the lowest SuSy activities,four D.alata L.showed higher activities of SuSythan‘Putong’which had the highest activities at harvesting.SAl and NI other than IAI and SuSy were higheractivities in purple varityies ofD.alata L.than in white varityies ofD.alata L..AGPase and SSS activitiesin the same yam had the similar change patterns,namely,both activities of the other yam genotypes except‘Putong’with straight increases in their activities fell to the harvesting after increasing to the highest pointsat the early or rapidly-bulking stage of tuber formation.GBSS and SBE increased in general change trendsof all checked genotypes during growth and development,and straightly increased in‘Putong’and‘Yesheng’Albeit GBSS and SBE in four D.alata L also straightly enhanced before the end of rapidly-bulking stage,thereafter,changes in activities of SBE other than GBSS reduced.‘Yesheng’had the lowest activities ofAGPase,SSS,GBSS,and SBE,and‘Putong’was lower in activities of these enzymes than four D.alata L atthe early stage and vice versa at the later stage.With the exception of SBE,AGPase,SSS,and GBSS hadhigher activities in purple varityies of D.alata L.than in white varityies of D.alata L..The contents of other saccharide except Cel and the above-mentioned enzyme activities were higher in‘Zida’than in‘Zixiao’,andin‘Baibian’than in‘Baizhu’.ANOVA results showed differences in the aforesaid physiological andbiochemical parameters were significant between yam species and between types of D.alata L at themajorities of times,but insignificant for intra-types of D.alata L.At the same time,Suc contentsinsignificantly correlated with activities of both SuSy and the enzymes related to starch biosynthesis,butcorrelation coefficients of ratios of both Suc/TSS and Suc/TRS with them were significant at majorities oftimes.The above-mentioned results indicated that,dry matters in underground tubers of six yam genotypeswere mainly composed of AM,AP,Cel,and TSS;invertase and SuSy had activities in underground tubers ofeach of yam genotypes at every stage,and invertase especially SAI had higher activities at the early stage oftuber formations,and thereafter SuSy was promidant enzyme which caused different sink sizes of six yamgenotypes;the differences in starch between yams mainly attributed to differences in activities of bothAGPase and SSS;saccharide contents were closely relate to the related enzyme activities,of which Sucpossibly up-regulated both SuSy and the aforesaid and starch-related enzymes in forms of Suc/TSS andSuc/TRS;as to the maturing stage of underground tubers,the orders of six genotypes were white type of D.alata L.(‘Zixiao’and‘Zida’),purple type of D.alata L.(‘Baibian’and‘Baizhu’),‘Yesheng’,and‘Putong’.(3) Homologous gene cDNA segments coding for SuSy,AGPase,and SSS were respectively isolatedfrom the underground tubers of six genotypic yams with RT-PCR and RACE techniques,and were 830 bp,784 bp,and 1 104 bp in sizes for putative amino acid sequences of 276,261,and 367,respectively.Theresults of both sirnilarities and systemic analyses of these cDNA segment sequences in combinations of theresults of yam classifications showed that SuSy,AGPase,SSS genes could all used to evaluate therelationship among six yam genotypes.At the same time,SuSy gene complete cDNA sequence was clonedfrom the underground tubers of yam‘Zixiao’.DaSuSyl full-length cDNA sequence was 2 673 bp in size,which comprised a 2 445-bp largest open reading frame (ORF),a 7-bp 5'noncoding region and a 221-bp 3'noncoding region with a 24-nt poly (A~+) tailor.A polypeptide of 814 amino acids with a 92.76-kDamolecular weight and a theoretical pI of 6.42 was putatively encoded by the largest ORF,containing bothtwo conserved functional regions as SuSy and glucosyl-transferase and two phosphorylated sites as Ser~(10) atN-end of and SNLDRRET~(781) RR(Ser~(774)~Thr~(781)) at C-end of amino acid sequence.At the levels of completecDNA sequences,coding regions and its deduced amino acid sequences,DaSuSyl shared the similarities of45.3 %~71.3 %,45.8 %~74.8 %,50.0 %~84.7 %,respectively,with SuSy genes of the selected andknown species in GenBank,and had the closest genetic relationship with some members of SuSy genefamilies of gramineous plants.DaSuSyl expressed only in non-photosynthetic organs of yam was not onlystrongly expressed in the underground tubers,but also its expression abundances progressively increasedfrom the initiation of early stage to the part of middle stage of the underground tuber bulking,and thereaftergradually decreased.Expressions of DaSuSyl,DaAGPasel,and DaSSS1 by RT-PCR and Northern hybridization showed that,three genes did not expressed in leaves of‘Zixiao’,but expressed more highly inunderground tubers;although DaSuSy1 expressed a little in stems and roots,DaAGPasel and DaSSS1 didnot completely;DaAGPase1 and DaAGPasel were possibly regulated after transcription and DaSSS1 atlevels of transcription.
     (4) After‘Zixiao’,‘Baibian’,and‘Putong’were foliarly sprayed with salicylic acid (SA) at the levels of0、0.5、1.0、5.0 mmol.L~(-1) at the earlier stage and the termination of rapidly-bulking stage of the formation ofunderground yam tubers,respectively,both contents ofTSS,Suc,Glc,Frc,TS,AM,AP,Cel and activities ofSuSy,AGPase,GBSS were assayed.The results showed that,as opposed to5.0 mmol.L~(-1) SA,0.5mmol.L~(-1)could enhance amounts of both Suc synthesized in leaves and its mobilization through stem base ofthe studied yam genotypes,and further increased contents of the physiological and biochemical parametersassayed,especially,these effects showed evidently on spraying at the earlier stage of tuber formations,while1.0 mmol.L~(-1) had negative effects on two cultivars of D.alata L.and positive actions on‘Putong’;differences in the majorities of the assayed parameters in the same yam genotypes were insignificantbetween years;although the aforesaid parameters also bulkly had insignificant differences between 1.0mmol.L~(-1) and the control,but were usually significant between 0.5 mmol.L~(-1) or 5.0 mmol.L~(-1) and the control.These results indicated that,0.5 mmol.L~(-1)SA contributed to Suc biosynthesis in leaves and its transport andits convesion into starch in underground tubers as opposed to 5.0 mmol·L~(-1),wherea effects of 1.0mmol.L~(-1)varied with genotypes;SA at three levels had paralelled and consistent positive or negative actionson the assayed parameters;the effects of SA on accumulations of dry matters and starch were realized by theregulations of SA to Suc biosynthesis in leaves and transport in stem,and Suc as signal molecularconsistently up-regulated activities of SuSy,AGPase,and GBSS in the forms of Suc/TSS;because SA ofeach concentrations sprayed at different times produced slight and different influences,SA of proper levelsshould be continuously and foliarly sprayed once at every about 30 days from the early stage of tuberformations in order to facilitate accumulations of dry matters and starch in underground tubers,and also D.opposite Thunb.could endure higher levels of SA than D.alata L.
     (5) Partial cDNA of PAL homologous genes were amplified from underground tubers of six genotypicyams using traditional PCR,RACE-PCR and TAIL-PCR with both a pairs of degenerate primers and somespecific primers.The results of both similarities and systemic analyses of these cDNA segment sequences incombinations of the results of yam classifications showed that,although‘Putong’,‘Yesheng’,and D.alata L.were differentiated in items of PAL homologous genes partial sequences,four cultivars ofD.alata L did not,so PAL gene was not suitable to evaluate phylogeny of yam genotypes.Meantime,A 2 376-bp full-lengthcDNA of PAL gene were isolated from the tubers of‘zixiao',which contains a 1 986-bp ORF,a 28-bp5'UTR and a 362-bp 3'UTR with a 25-bp ploy (A~+) tailor.The ORF encodes a 661 AA putative peptide withthe MW of 71.974 kDa and a pl of 6.310.Sequence characters for enzyme active site (GTITASGDLVPLSYIA) was observed in the amino acid sequence.DaPAL1 shared over 50 % similaritywith its homologous genes in other species at the levels of complete cDNA sequences,coding regions and itsdeduced amino acid sequences.DaPAL1 were closer to dicot PAL at the nucleotide sequences,and equallycloser to dicot or monocot PAL at amino acid sequences.RT-PCR and Northern blot analysis showed thatDaPAL1 was expressed only in the tubers and its abundance fluctuates in different stages of the life span.Amaximum expression of DaPAL1 was observed at the initiation of the early stage of tuber formation,thereafter,DaPAL1 expression decreased before the harvesting with slight increase.DaPAL1 expression andits enzyme activity and TPC had the same change patterns,which indicated that DaPAL1 was possiblyregulated at transcription level.
     (6) Homologous genes cDNA segments coding for CHS and ANS were isolated from the undergroundtubers of six genotypic yams with RT-PCR and RACE techniques,which were 800 bp,280 bp in sizes forputative amino acid sequences of 273,93,respectively.The results of both similarities and systemic analysesof these cDNA segment sequences in combinations of the results of yam classifications showed that,although CHS genes could used to evaluate the relationship among six yam genotypes,ANS genes could not.At the same time,ANS gene complete cDNA sequence was cloned from the underground tubers of yam‘Zixiao’,which wasl 387 bp containing a 1 077-bp largest ORF,a 9-bp 5' noncoding region and a 301-bp 3'noncoding region.DaANS1 could encode a polypeptide of 358 amino acids with a 40.4-kDa molecularweight and a theoretical pI of 5.26,in which had the 2-oxoglutarate- and Fe~(2+)-dependent conservedoxidation regions containing two of conserved Arginine (Arg~(295,304)) related to the combination of2-oxoglutarate and the Fe~(2+) combination-related amino acid residues as both five of conserved Histidine(His~(238,243,249,276,294)) and three of Aspartate (Asp~(240,260,279)).DaANS1 shared the higher similarities with ANSgenes of the selected angiosperm species than gymnosperm ANS genes at the levels of complete cDNAsequences,coding regions and its deduced amino acid sequences,and had the closest genetic relationshipwith ANS genes of convolvulaceae plants in dicots of angiosperms,but was used to reasonably sort onlybetween genus or species plants.Expressions of DaCHS1 and DaANS1 by RT-PCR and Northernhybridization showed that,DaCHS1 expressed only in both underground tubers and roots,and had highexpression abundance at every stage,of which most strongly expressed at the former part of rapidly-bulkingstage;DaANS1 expressed in all organs,but more strongly expressed in tubers than in the other organs.DaCHS1 and DaANS1 were possibly regulated at levels of transcription.
     (7) During growth and development,TPC in underground yam tubers was composed of TFD,TPA,andTTN,which were respectively 0.64~0.93,0.10~0.25,0.06~0.22 of TPC.TAN and TFL mainlyconstituting TFD had respectively 0.53~0.75,0.13~0.34 of TFD in underground tubers of purple type of D.alata L.and 0.49~0.68,0.11~0.29 of TPC,while having respectively 0.49~0.68,0.11~0.29 of TFD inthe other yam tubers and 0.02~0.12,0.38~0.62 of TPC.General change trends of these phenol contents reduced with growth and development of tubers as opposed to ones of starch,and closely cooperated withTAC.Purple type of D.alata L.had higher TPC and TFD contents than the other genotypes,followed byones of‘Putong’and white type of D.alata L.,and‘Yesheng’was the lowest contents of TPC and TFD.Albeit having the highest content of TAN,purple type of D.alata L.was only higher contents of TFL andTPA than‘Yesheng’,and lower than‘Putong’and white type of D.alata L.,which indicated that there wascompetitive relationship between TPA and TFD and between TAN and TFL.Significant differences incontents of these phenols between yam species and between types of D.alata L were observed at themajorities of stage,but did not for intra-types.The change trends of PAL and ANS activities were not onlythe same as ones of TPC and TAN,but also the results of comparisons in PAL and ANS activities betweengenotypes were similar with those of TPC and TAN.As compared with the control,general change trends ofphenol contents and the related enzyme activities did not have markedly differences after foliar spray of SAat different levels,their values would have somewhat changes about 30 days after spray,furthermore,SAshowed the synergistic actions on all kinds of phenols and activities of PAL and ANS,namely,0.5 mmol.L~(-1)SA had positive effects by contrast to 5.0 mmol.L~(-1),and 1.0 mmol.L~(-1) was positive to D.alata L andnegative to‘Putong’.The aforesaid parameters of‘Zixiao’,‘Baibian,and‘Putong’at the majorities of stageshad significant differences between years,between genotypes,and between treatments.Starch content inunderground tubers had strikingly significant and negative correlations to each of phenol contents,activitiesof both PAL and ANS in the same yam genotype,which phenol biosynthesis competed with starch formationfor requirements of sucrose.Phenol formations,activities of PAL and ANS were regulated by sucrose,andalso sucrose as signal molecular affected them in the forms of Suc/TSS,Suc/TRS.As opposed to SuSy,invertase especially SAI seemed to facilitate phenol biosynthesis,After SA treatment,the interrelationshipsof carbohydrates with phenols in underground yam tubers further indicated that differences in phenolcontents between yam species were caused by the effects of foliar-spray SA on biosynthesis and transport ofsucrose in leaves.
引文
蔡汉,李卫东,陈颖,赵梁军.水杨酸预处理对低温胁迫下茉莉幼苗光合作用及相关生理特性的影响.中国农业大学学报,2007,12(5):29~33
    蔡金辉,严渐子,黄晓辉,叶淑静,蒋伦伟,顾之中.山药品种的分类研究.江西农业大学学报,1999,21(1):53~57
    常胜合,舒海燕,秦广雍,李宗伟,李宗义,王雁萍,杨天佑,陈林海.凝胶电泳蛋白质染色方法研究进展.河南农业科学,2006,5:8~12
    陈俊伟,张良诚,张上隆.果实中的糖分积累机理.植物生理学通讯,2000,36(6):497~503
    陈文强,邓百万,丁锐,吴三桥,李新生.天麻3种变型过氧化物酶的同工酶研究.应用植物学报,2005,25(8):1665~1668
    程水源,陈昆松,刘卫红,杜何为.植物苯丙氨酸解氨酶基因的表达调控与研究展望.果树学报,2003,20(5):351~357
    崔瑾,李式军.水杨酸对芋试管球茎发育的影响.南京农业大学学报,2003,26(1):97~99
    德背特斯S,旺达姆EJ,斯泰因比歇尔A.生物高分子(第6卷)多糖Ⅱ——真核生物多糖,北京:化工出版社,2004,8:344~398
    佃蔚敏.水稻淀粉合成酶基因家族基因组成结构、进化、功能及其表达调控.杭州:浙江大学博士论文,2004
    方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001
    方忠祥,倪元颖.花青素生理功能研究进展.广州食品工业科技.2001,67:60~62
    冯婷,何聪芬,赵华,董银卯.植物多糖研究概况.北京工商大学学报(自然科学版),2004,22(4):1~4
    巩庆平,程广,袁良敏.山药标准化栽培技术.北京:中国农业出版社,2004
    贺学礼.植物学.北京:科学出版社,2008,1:227~229
    黄科.利用CYP86MF反义基因转化创建青花菜与芥蓝雄性不育植株的研究.杭州:浙江大学博士论文,2004
    黄梅丽,王俊卿.食品色香味化学.北京:中国轻工业出版社,2008
    黄文华.山药无公害标准化栽培.北京:中国农业出版社,2005
    贾士奇,都恒春.几种山药的质量比较.中国中药杂志,1991,16(6):360~361
    简海丽.淮山定向结薯栽培技术.广西热带农业,2007,111(4):27~28
    江力,袁怀波,张世杰,江汉湖.山药苯丙氨酸解氨酶特性的研究.食品科学,2006,27(10):36~40
    姜立智,林长发,梁宗锁,卫春,杨金水.水稻蔗糖转化酶基因的克隆及其功能的初步探讨.复旦学报(自然科学版),2003,42(4):588~592
    赖慧珊.探讨山药加工产品对第2型糖尿病患者及血脂异常者血糖、血脂之影响.台湾:静宜大学硕士论文,2003
    李春香,杨军,王树才,夏凯,李式军,周燮.水杨酸在大蒜鳞茎膨大中的作用.园艺学报,2000,27(3):220~222
    李春燕,封超年,张容,郭文善,朱新开,彭永欣.作物籽粒淀粉结构的形成与相关酶关系的研究进展.生命科学,2005,17(5):449~455
    李德葆,周雪平,何祖华,许建平.基因工程操作技术.上海:上海科学技术出版社,1996
    李明辉.三种山药的鉴别.时珍国医国药,2004,15(6):345
    李明军.怀山药组织培养及其应用.北京:科学出版社,2004
    李亚男,陈大清.水杨酸对甘薯的生理效应和块根产量的影响.湖北农学院学报,1996,16(3):190~193
    廖俊奎.台湾产薯蓣属(薯蓣)科之分类研究.台湾:国立中山大学生物科学系硕士论文,2000
    林忠旭,张献龙,聂以春,新型标记SRAP在棉花F2分离群体及遗传多样性评价中的适用性分析.遗传学报,2004,31(6):622~626
    凌关庭.抗氧化食品与健康.北京:化学工业出版社,2004
    刘立军,蒙祖庆,刑秀龙,彭定祥.苎麻基因组SRAP扩增体系的优化研究.分子植物育种,2006,4(5):726~730
    刘文欣,孔繁玲,郭志丽,张群远,彭惠茹,付小琼,杨付新.建国以来我国棉花品种遗传基础的分子标记分析.遗传学报,2003,30(6):560~570
    刘新裕,赖瑞声,林义恭,陈淑芬,罗慧龄,王昭月,高瑞隆.山药之生产潜力与抗氧化酶活性的比较.中华农业研究,2001.50:40~58
    刘新裕,赖瑞声,林义恭,王昭月.保健植物闪山药之安全性与机能性.农业世界,2000,208:1~56.
    刘新裕,王昭月,宋丽梅,徐原田.重要药用植物山药之生产与品质研究.中医药杂志,1994,5:167~183
    刘新裕,张同吴,林义恭,陈淑芬,王昭月,朱戬良,王顺成.山药之品种特性、生产潜力、物化性质与抗氧化研究.中华农业研究,1999,48:1~22
    刘新裕.药食两用之山药.科学发展,2003,364:10~15
    柳李旺,龚义勤,黄浩.新型分子标记——SRAP与TRAP及其应用.遗传,2004,26(5):777~781
    卢崇如.基隆山药区分物对大白鼠血糖与血脂之影响.台湾:台湾大学食品科技研究所硕士论文,2003
    卢合全,沈法富,刘凌霄,孙维方.植物蔗糖合成酶功能与分子生物学研究进展.中国农学通报,2005,21(7):34~38
    卢训.山药之营养价值及其加工用途介绍.食品资讯,2001,186:68~71
    吕政义,蔡秀玲.山药块根及种子淀粉理化性质之探讨.食品科学,1985,12(3~4):201~212
    毛景英,闫振领.植物生长调节剂调控原理和应用技术.北京:中国农业出版社,2005,1:72~73
    毛燕.苦竹叶水溶性糖提取最佳方案的设计和纯度的鉴定.竹子研究汇刊,2002,3:46~50
    潘书毓.台湾产山药之酚类含量及抗氧化特性与加工的影响.台湾:中国文化大学硕士论文,2003
    裴鉴,丁志遵,秦慧贞,舒璞,唐世蓉,张涵庆.中国薯蓣属根状组系统分类的初步研究.植物分类学报,1979,17(3):61~72
    秦慧贞,张美珍,凌苹苹,丁志遵,窦方平.中国薯蓣属细胞分类的研究——染色体数与该属起源和演化.植物分类学报,1985,23(1):11~18
    任羽,王得元,张银东,李颖,王恒明.辣椒SRAP-PCR反应体系的建立与优化.分子植物育种.2004,2(5):689~693
    石碧,狄莹.植物多酚.北京:科学出版社,2000
    史霖,宫长荣,毋丽丽,代丽,沈剑波,陈长清,杨少杰.植物多糖的提取分离及应用研究进展.中国农学通报,2007,23(9):192~195
    司丽珍,储成才.植物中蔗糖酶的研究进展.高技术通讯,2002,8:101~105
    苏廷雅,林钰翎,张珍田,王铭富,詹吟菁.民间长红山药对小白鼠学习记忆能力与抗氧化能力之影响.台湾中华民国营养学会第二十八届年会壁报论文,2002
    谭仁祥,孟军才,陈道峰,焦庆才.植物成分分析.北京:科学出版社,2002
    王斌,翁曼丽.AFLP的原理及其应用.杂交水稻,1996,5:27~30
    王传堂,张建成,杨新道,徐建芝,禹山林.花生序列相关扩增多态性(SRAP)标记的研究.花生学报.2005,34(3):11~15
    王飞,刘红彦,鲁传涛,白自伟,王天亮,张宝华.5个山药品种资源的农艺性状和营养品质比较.河南农业科学,2005,3:58~60
    王芙蓉,刘勤红,刘任重,张军.农作物遗传育种中的分子标记及其应用.山东棉业,2002,1:5~6
    王光亚.保健食品功效成分检测方法.北京:中国轻工业出版社,2002
    王利.银杏种质资源遗传多样性的AFLP研究,泰安:山东农业大学博士学位论文,2006
    王学利.喜树叶、枝水溶性糖提取的研究.中国野生植物资源,2001,4:17~18,25
    王泽政,台湾本土栽培山药之物化与营养特性研究.台湾:静宜大学食品营养学系硕士论文,2003
    翁忙玲,吴震,刘霞.水杨酸对山葵试管根茎形成的影响.植物生理学通讯,2005,41(2):178~180
    吴洁,谭文芳,何俊蓉,蒲志刚,王大一,张正圣,詹付风,阎文昭.甘薯SRAP连锁图构建淀粉含量QTL检测.分子植物育种,2005,3(6):841~845
    谢彩侠,高山林,张重义,黄晓书.山药地方品种的化学成分和淀粉酶同工酶分析.植物资源与环境学报,2004,13(2):21~24
    徐庆琳.山药粉之特性及产品开发之研究.台湾:国立嘉义大学食品科学系硕士论文,2003
    杨继,顾红雅.查尔酮合酶超家族(chalcone synthase superfamily)基因重复和分化的式样.科学通报,2006,51(7):745~749
    杨国志,张明方.植物蔗糖代谢参与酶的表达及调控.北方园艺,2006,5:45~47
    杨好伟,李翠香.打孔和管道栽培怀山药的产量和经济效益.河南农业大学学报,2002,36(1):89~90.
    杨秀娟,赵晓燕,马越,吴秋波,马荣山.花青素研究进展.中国食品添加剂,2005,4:40~42,17
    袁坤.植物花粉与柱头间识别研究进展.江苏林业科技,2004,31(3):49~51
    袁亮,潘光堂,张志明,谭登峰.植物中淀粉的代谢及其调控研究进展.分子植物育种,2006,4(6):65~72
    张永平,乔永旭,喻景权,赵智中.园艺植物果实糖积累的研究进展.中国农业科学2008,41(4):1151~1157
    张重义,都恒春.施麦饭石和阳起石对怀山药产量和品质的影响.河南农业学报,1991,5:22~23
    赵冰.薯芋类蔬菜高产优质栽培技术.北京:中国林业出版社,2000
    赵国华,李志孝,陈宗道.山药多糖PDRS~I组分的纯化及理化性质的研究,食品与发酵工业,2002a,28(9):1~4
    赵国华,王洱,李志孝,陈宗道.山药多糖的免疫调节作用.营养学报,2002b,24:187~188
    赵纪峰,王海军,苏晶,高太平.中药多糖的提取分离工艺研究.重庆中草药研究,2007,1:29~32
    赵新亮,陈士林.采用SRAP标记技术划分河南省常用玉米自交系类群的研究.安徽农业科学,2007,35(7):1921~1922,1938
    赵新亮,马强.玉米SRAP反应体系的建立与优化.安徽农业科学.2006,34(15):3619~3620
    郑心娴.不同鼓类为糖类来源对高胆固醇血症大白鼠脂质代谢之影响.中国农业化学杂志,1994,32(6):575~588
    中国科学院上海植物生理研究所,上海市植物生理学会.现代植物生理学实验指南,北京:科学出版社,1999
    中国农科院蔬菜花卉研究所.中国蔬菜品种志.北京:中国农业科技出版社,2001
    邹喻苹,葛颂,王晓东.系统进化植物学中的分子标记.北京:科学出版社,2001
    Achnine L,Blancaflor EB,Rasmussen S,Dixon RA.Colocalization of L-Phenylalanine Ammonia-Lyase and Cinnamate 4-Hydroxylase for Metabolic Channeling in Phenylpropanoid Biosynthesis.The Plant Cell,2004,16:3 098~3 109
    Aderiye BI,Ogundana SK,Adesanya SA,and Roberts MF.Antifungal properties of yam (Dioscorea alata) peel extract.Folia Microbiologica,1996,41(5):407~412
    Aida R,Yoshida K,Kondo T,Kishimoto S,Shibata M.Copigmentation gives bluer flowers on transgenic torenia plants with the antisense dihydroflavonol-4-reductase gene.Plant Science,2000,160:49~56
    Amiot MJ,Fleuriet A,Cheynier V,Nicolas J.Phenolic compounds and oxidative mechanisms in fruit and vegetables.Phytochemistry of Fruits and Vegetables (Edited by Tom(?)s-Barber(?)n and Robins),1997:52~85
    Ananieva EA,Charistov KN,Popova LP.Exogenous treatment with salicylic acid leads to increased antixidant capacity in leaves of barley plants exposed to paraquat.Journal of.Plant Physiology,2004,161:319~328
    Anderson RA,Reddy JM,Oswald C,Zaneveld L J D.Enzymic determination of fructose in seminal plasma by initial rate analysis.Clinical Chemistry,1979,25:1 780~1 782
    Andersson L,Andersson R,Andersson RE,Rydberg U,Larsson H,Aman P.Characterisation of the in vitro products of potato starch branching enzymes Ⅰ and Ⅱ.Carbohydrate Polymers,2002,50:247~257
    Asemota HN,Ramser J,Lopez-Peralta C,Weising K,Kahl G.Genetic variation and cultivar identification of Jamaican yam germplasm by random amplified polymorphic DNA analysis.Euphytica,1996,92:341~351
    Asp NG,Johansson CG,Hallmer H,Siljestrom M.Rapid enzymatic assay of insoluble and soluble dietary fiber.Journal of Agricultural Food Chemistry,1983,31:476~482
    Avraham K.Occurrence of hexaploid males in Dioscorea alata L.Euphytica,1998,99 (1):5~7
    Awad MA,de Jager A,van Westing LM.Flavonoid and chlorogenic acid levels in apple fruit:characterisation of variation.Scientia Horticulturae,2000,83:249~263
    Babb VM and Haigler CH.Sucrose phosphate synthase activity rises in correlation with high-rate cellulose synthesis in three heterotrophic systems.Plant Physiology,2001,127:1 234~1 242
    Bae JM,Liu JR.Molecular cloning and characterization of two novel isoforms of the small subunit of ADP glucose pyrophosphorylase from sweet potato.Molecular Genetics and Genomics,1997,254:179~185
    Baga M,Glaze S,Mallard CS,Chibbar RN.A starch-branching enzyme gene in wheat produces alternatively spliced transcripts. Plant Molecular Biology, 1999, 40: 1 019-1 130
    Balasundram N, Sundram K, Samman S. Phenolic compounds in plants and agri-industrial by-products: antioxidant activity, occurrence, and potential uses. Food Chemistry, 2006, 99(1): 191-203
    Ball S, Guan HP, James M, Myers A, Keeling P, Mouille G, Buleon A, Colonna P, Preiss J. From glycogen to amylopectin: a model for the biogenesis of the plant starch granule. Cell, 1996, 86: 349-352
    Ball S, van de Wai M, Visser R. Progress in understanding biosynthesis of amylose. Trends in Plant Science, 1998, 3: 462-467
    Barratt DHP, Barber L, Kruger NJ, Smith AM, Wang TL, Martin C. Multiple, distinct isoforms of sucrose synthase in pea. Plant Physiology, 2001, 127: 655-664
    Bartz JA, Brecht JK. Postharvest Physiology and Pathology of Vegetables (Second Edition).New York: Marcel Dekker, Inc, 2003:361-643
    Baud S, Vaultier MN, Rochat C. Structure and expression profile of the sucrose synthase multigene family in Arabidopsis. Journal of Experimental Botany, 2004, 55 (396): 397- 409
    Bianco RL, Rieger M, Sung SS. Carbohydrate metabolism of vegetative and reproductive sinks in the late-maturing peach cultivar 'Encore'. Tree Physiology, 1999, 19:103-109
    Bilyk A, Sapers GM..Distribution of Quercetin and Kaempferol in Lettuce, Kale, Chive, Garlic Chive, Leek, Horseradish, Red Radish, Red Cabbage Tissues. Journal of Agricultural and Food Chemistry, 1985, 33: 226-228
    Blauth SL, Yao Y, Klucinec JD, Shannon JC, Thompson DB, Guiltinan MJ. Identification of mutator insertional mutants of starch-branching enzyme 2a in corn. Plant Physiology, 2001, 125(3): 1396-1405
    Bologa KL, Fernie AR, Leisse A, Loureiro ME, Geigenberger P. A bypass of sucrose synthase leads to low internal oxygen and impaired metabolic performance in growing potato tubers. Plant Physiology, 2003, 132: 2 058-2 072
    Bostein D, White RL, Skolnick M, Davis RW. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. The American Journal of Human Genetics, 1980, 32: 314-331
    Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytic Biochemistry, 1976, 72: 248-254
    Budak H, Shearman RC, Parmaksiz Ⅰ, Gaussoin RE, Riordan TP, Dweikat Ⅰ. Molecular characterization of buffalograss germplasm using sequence-related amplified polymorphism markers. Theoretical and Applied Genetics, 2004, 108:328-334
    Burton RA, Bewley JD, Smith AM, Bhattacharyya MK, Tatge H, Ring S, Bull V, Hamilton WD, Martin C. Starch branching enzymes belonging to distinct enzyme families are differentially expressed during pea embryo development. The Plant Jouranl, 1995, 7(1): 3-15
    Burton RA, Johnson PE, Beckles DM, Fincher GB, Jenner HL, Naldrett MJ, Denyer K. Characterization of the Genes Encoding the Cytosolic and Plastidial Forms of ADP-Glucose Pyrophosphorylase in Wheat Endosperm. Plant Physiology, 2002, 30: 1 464-1 475
    Bustos R, Fahy B, Hylton CM, Seale R, Nebane NM, Edwards A, Martin C, Smith AM. Starch granule initiation is controlled by a heteromultimeric isoamylase in potato tubers. Proceedings of the National Academy of Sciences, 2004, 101: 2 215-2 220 Carlson SJ, Chourey PS. A Re-Evaluation of the Relative Roles of Two Invertases, INCW2 and IVR1, in Developing Maize Kernels and Other Tissues. Plant Physiology, 1999, 121: 1025-1035
    Carlson SJ, Chourey PS. Are-evaluation of the relative roles of two invertases, INCW2 and IVR1, in developing maize kernels and other tissues. Plant Physiology, 1999, 121: 1 025-1 035
    Cavener DR, Ray SQ. Eukaryotic start and stop translation sites. Nucleic Acids Research, 1991, 19:3 185-3 192
    Chang C, Yang M, Wen H, Chern J. Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food Drug Analaysis, 2002, 10: 178-182
    Chang CW. Starch and its component ratio in developing cotton leaves. Plant physiology, 1979, 63: 973-977
    Chavez-Barcenas AT, Valdez-Alarcdn JJ, Martinez-Trujillo M, Chen L, Xoconostle- Ca'zares B, Lucas WJ, Herrera-Estrella L. Tissue-Specific and Developmental Pattern of Expression of the Rice spsl Gene. Plant Physiology, 2000, 124: 641-653
    Chen BY, Wang Y, Janes HW. ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit. Plant Physiology, 1998 116: 101-106
    Chen CY, Pan LK. Trace elements of Taiwanese Dioscorea spp. Using instrumental neutron activation analysis. Food Chemistry, 2001, 72(2): 255-260
    Chen HL, Wang CH, Chang CT, Wang TC. Effects of Taiwanese yam {Dioscorea alata L. cv.Tainung No. 2) on the mucosal hydrolase activities and lipid metabolism in Balb/c mice. Nutrition Research, 2003, 23: 791-801
    Chinnasamy G, Bal AK. Seasonal changes in carbohydrates of perennial root nodules of beach pea. Journal of Plant Physiology 2003,160(8): 1 185-1 192
    Choi EM, Hwang JK. Enhancement of oxidative response and cytokine production by yam mucopolysaccharide in murine peritoneal macrophage. Fitoterapia, 2002, 73(7-8): 629-637
    Chourey PS, Taliercio EW, Carlson SJ, Ruan YL. Genetic evidence that the two isozymes of sucrose synthase present in developing maize endosperm are critical, one for cell wall integrity and the other for starch biosynthesis. Molecular Genetics and Genomics, 1998, 259: 88-96
    Chun OK, Kim DO, Smith N, Schroeder D, Han JT, Lee CY. Daily consumption of phenolics and total antioxidant capacity from fruit and vegetables in the American diet. Journal of Science Food Agriculture, 2005, 85:1 715-1 724
    Cieresko I, Kleczkowski L. Glucose and mannose regulate the expression of a major sucrose synthase gene in Arabidopsis via hexokinase-dependent mechanisms. Plant Physiology and Biochemistry, 2002,40: 907-911
    Commuri PD, Keeling PL. Chain-length specificities of maize starch synthase I enzymes: studies of glucan affinity and ctalytic properties. The Plant Journal, 2001, 25: 475-486
    Comparot S, Lingiah G, Martin T. Function and specificity of 14-3-3 proteins in the regulation of carbohydrate and nitrogen metabolism. Journal of Experimental Botany, 2003, 54: 595-604
    Cooper-Driver GA. Contributions of Je.rey Harborne and co-workers to the study of anthocyanins. Phytochernistry. 2001, 56:208 229-236
    Coupe SA, Sinclair BK, Greer LA, Gapper NE, Watson LM, Hurst PL. Analysis of acid invertase gene expression during the senescence of broccoli florets. Postharvest Biology and Technology, 2003, 28: 27-37
    Craig J, Lloyd JR, Tomlinson K, Barber L, Edwards A, Wang TL, Martin C, Hedley CL, Smith AM. Mutations in the gene encoding starch synthaseⅡprofoundly alter amylopectin structure in pea embryos. Plant Cell, 1998, 10: 413-426
    Cramerm CL, Edwards K , Dron M, Liang X, Dildine SL, Bolwell P, Dixon RA, Lamb CJ, Schuch W. Phenylalanine ammonia lyase gene organization and structure. Plant Molecular Biology, 1989, 12: 367-383
    Dahlqvist A. Method for assay of intestinal disaccharidases. Analytical Biochemistry, 1964, 7: 18-25
    Dansi A, Mignouna II D, Zoundjihekpon J, Sangare A, Ahoussou N,.Asiedu R. Identification of some Benin Republic's Guinea yam (Dioscorea cayenensis / Dioscorea rotundata complex) cultivars using Randomly Amplified Polymorphic DNA. Genetic Resources and Crop Evolution , 2000, 47(6): 619-625(7)
    Dat JF, Lopez-Delgado H, Foyer CH, Scott IM. Parallel Changes in H_2O_2 and Catalase during Thermotolerance Induced by Salicylic Acid or Heat Acclimation in Mustard Seedlings. Plant Physiology, 1998, 116: 1 351-1 357
    Davies C, Robinson SP. Sugar Accumulation in Grape Berries: Cloning of Two Putative Vacuolar Invertase cDNAs and Their Expression in Grapevine Tissues. Plant Physiology, 1996, 111: 275-283
    Davies KM, Schwinn KE. Transcriptional regulation of secondary metabolism. Functional Plant Biology, 2003, 30: 913-925
    De Gaulejac NSC, Glories Y, Vivas N. Free radical scavenging effect of anthocyanins in red wines.Food Research International, 1999,32:327-333
    Denyer K, Barber LM, Edwards EA, Smith AM, Wang TL. Two isoforms of the GBSSI class of granule-bound starch synthase are differentially expressed in the pea plant (Pisum satibum L.). Plant, Cell and Environment, 1997, 20: 1566-1572
    Denyer K, Hylton CM, Jenner CF, Smith AM. Identification of multiple isoforms of soluble and granule-bound starch synthase in developing wheat endosperm. Planta, 1995, 196: 256-265
    Devries JW, Prosky L, LI B, Cho S. A Historical Perspective on Defining Dietary Fiber .Cereal Foods World, 1999, 44 (5):367-369
    Dian WM, Jiang HW, Chen QS, Liu FY, WU P. Cloning and characterization of the granule-bound starch synthase Ⅱgene in rice: gene-expression is regulated by the nitrogen level, sugar and circadian rhythm. Planta, 2003a, 218: 261-268
    Dian WM, Jiang HW, Wu P. Soluble isoform of starch branching enzyme 3 occurs within starch granules in developing rice endosperms. Journal of Plant Physiology and Molecular Biology, 2003, 29: 581-584
    Dinges JR, Colleoni C, James MG, and Myers AM, Mutational analysis of the pullulanase-type debranching enzyme of maize indicates multiple functions in starch metabolism, Plant Cell, 2003, 15: 666- 680
    Dixon RA, Paiva NL. Stress-induced phenylpropanoid metabolism. Plant Cell, 1995, 7: 1 085-1 097
    Dong M, Feng XZ, Wu LJ, Wang BX, Ikejima T. Two new steroidal saponins from the rhizomes of Dioscorea panthaica and their cytotoxic activity. Planta Medica, 2001, 67(9): 853-857
    Duncan KA, Hardin SC, Huber SC. The three maize sucrose synthase isoforms differ in distribution, localization, and phosphorylation. Plant and Cell Physiology, 2006, 47(7): 959-971
    Durbin ML, McCaig B, Clegg MT. Molecular evolution of the chalcone synthase multigene family in the morning glory genome. Plant Molecular Biology, 2000, 42: 79-92
    Dweck AC. The Wild Yam - review of Dioscorea species. Personal Care Magazine, 2002, 3(3):7-9
    Edwards A, Fulton DC, Hylton C M, Jobling SA, Gidley A, Rossner U, Martin C, Smith AM. A combined reduction in activity of starch synthases Ⅱ and Ⅲof potato has novel effects on the starch of tubers. The Plant Journal, 1999, 17(3): 251-261
    Egesi CN, Asideu R, Ude G, Ogunyemi S.Egunjobi JK. AFLP marker diversity in water yam (Dioscorea alata L.). Plant genetic resources, 2006, 4:181-187.
    Enyi BAC. Effect of staking nitrogen and potassium on growth and development in lesser yam: Dioscorea esculental. Annals of Applied Biology, 1973,72:211-219
    Enzo G, Wang YJ, Chen PY. Effects of solvent, temperature, time, solvent-to-sample ratio, sample size, and defatting on the extraction of soluble sugars in soybean. Journal of food science, 2006, 71 (1): 59-64
    Escarpa A, Gonzalez MC. Approach to the content of total extractable phenolic compounds from different food samples by comparison of chromatographic and spectrophotometric methods. Analytica Chimica Acta, 2001, 427:119-127
    Espley RV, Hellens RP, Putterill J. Stevenson DE, Kutty-Amma S, Allan AC. Red colouration in apple fruit is due to the activity of the MYB transcription factor, MdMYBlO. The Plant Journal, 2007, 49: 414-427 FAO. FAO production yearbook. FAO, 2002, 56: 10-105
    Farombi EO, Nwankwo JO, Emerole GO. Modulation of carbon tetrachloride-lipid peroxidation and xenobiotic-metabolizing enzymes in rats fed browned yam flour diet. African Journal of Medicine and Medical Sciences, 2000, 29(2): 127-132
    Farombi EO, Nwankwo JO, Emerole GO. Possible modulatory effect of browned yam flour diet on chemically-induced toxicity in the rat. Food and Chemical Toxicology, 1997, 35(10-11): 975-979
    Farre EM, Geigenberger P, Willmitzer L, Trethewey RN. A Possible Role for Pyrophosphate in the Coordination of Cytosolic and Plastidial Carbon Metabolism within the Potato Tuber. Plant Physiology, 2000,123: 681-688
    Fernie AR, Willmitzer L,Trethewey RN. Sucrose to starch: a transition in molecular plant physiology. Trends in plant scicence , 2002, 7: 35-41
    Ferriol M, Pico B, Nuez F. Genetic diversity of a germplasm collection of Cucurbita pepo using SRAP and AFLP markers. Theoretical and Applied Genetics, 2003, 107: 271-282
    Fossen T, Andersen (?)M. Cyanidin 3-(2' 3 '-digalloylglucoside) from red leaves of Acer platanoides. Phytochemistry, 1999, 52:1 697-1 700
    Foyer C, Kingston-Smith A, Pollock C. Sucrose and Invertase, An Uneasy Alliance. Iger Innovations, 1997: 17-21
    Frei M, Siddhuraju P, Becker K. Studies on the in vitro starch digestibility and the glycemic index of six different indigenous rice cultivars from Philippines. Food chemistry, 2003, 83: 395-402
    Freytlog C, Slimestad R, Andersen (?)M. Combination of chromatographic techniques for the preparative isolation of anthocyanins-applied on blackcurrant (Ribes nigrum). Journal of chromatography A. 1998, 825: 89-95
    Fu H, Park WD. Sink- and vascular-associated sucrose synthase functions are encoded by different gene classes in potato. Plant Cell, 1995, 7: 1369-1385
    Fujita N, Kubo A, Francisco PB Jr, Nakakita M, Harada K, Minaka N, Nakamura Y. Purification, characterization, and cDNA structure of isoamylase from developing endosperm of rice. Planta, 1999, 208(2): 283-293
    Fulton DC, Edwards A, Pilling E, Robinson HL, Fahy B, Seale R, Kate L, Donald AM, Geigenberger P, Martin C, Smith AM. Role of granule-bound starch synthase in determination of amylopectin structure and starch granule morphology in potato. Journal of Biology Chemistry, 2002, 277: 1 0834-1 0841
    Geigenberger P, Kolbe A, Tiessen A. Redox regulation of carbon storage and partitioning in response to light and sugars. Journal of Experimental Botany, 2005, 56 (416): 1 469-1 479
    Geigenberger P, Stamme C, Tjaden J, Schulz A, Quick PW, Betsche T, Kersting HJ, Neuhaus HE. Tuber Physiology and Properties of Starch from Tubers of Transgenic Potato Plants with Altered Plastidic Adenylate Transporter Activity. Plant Physiology, 2001, 125: 1667-1678
    Geigenberger P, Stitt M. Diurnal changes in sucrose, nucleotides, starch synthesis, and AGPS transcript in growing potato tubers that are suppressed by decreased expression of sucrose phosphate synthase. The Plant Journal, 2000, 23: 795-806
    Geigenberger P. Regulation of sucrose to starch conversion in growing potato tubers. Journal of Experimental Botany (Regulation of Carbon Metabolism Special Issue), 2003, 54: 457- 465
    Geiger M, Sttit M, Geigenberger P. Metabolism in slices from growing potato tubers responds differently to addition of sucrose and glucose. Planta, 1998, 206: 234-244
    Ghosh D, Konishi T. Anthocyanins and anthocyanin-rich extracts: role in diabetes and eye function. Asia Pacific Journal of Clinical Nutrition, 2007,16 (2): 200-208
    GlaPgen WE, Rose A, Madlung J, Koch W, Gleitz J, Seitz HU. Regulation of enzymes involved in anthocyanin biosynthesis in carrot cell cultures in response to treatment with ultraviolet light and fungal elicitors. Planta, 1998, 204: 490-498
    Godt DE, Roitsch T. Regulation and tissue-specific distribution of mRNAs for three extracellular invertase isoenzymes of tomato suggest an important function in establishing and maintaining sink metabolism. Plant Physiology, 1997, 115:273-282
    Gollop R, Farhi S, Perl A. Regulation of the leucoanthocyanidin dioxygenase gene expression in Vitis vinifera. Plant Science, 2001,161:579-588
    Gomez L, Rubio E, Augd M. A new procedure for extraction and measurement of soluble sugars in ligneous plants. Journal of the Science of Food and Agriculture, 2002, 82 (4):360-369
    Goni I, Garcia-Diz GL, Manas E, Saura-Calixto F. Analysis of resistant starch: a method for foods and food products. Food chemistry, 1996, 56 (4):445-449
    Goto-Yamamoto N, Wana GH, Masaki K, Kobayashi S. Structure and transcription of three chalcone synthase genes of grapevine (Vitis vinifera). Plant Science, 2002, 162 : 867-872
    Graham TL. Flavonoid and flavonol glycoside metabolim in Arabidopsis. Plant physiol. Biochen. 1998, 36 (1-2): 135-144.
    Guan H P, Preiss J. Differentiation of the properties of the branching isozymes from maize (Zea mays). Plant Physiology, 1993, 102: 1 269-1 273
    Guan HP, Janes HW. Light Regulation of Sink Metabolism in Tomato Fruit II. Carbohydrate Metabolizing Enzymes. Plant Physiology, 1991,96:922-927
    Haagenson DM, Klotz KL, McGrath JM. Sugarbeet sucrose synthase genes differ in organ-specific and developmental expression. Journal of Plant Physiology, 2006,163:102-106
    Hagen L, Khadari B, Lambert P, Audergon JM, Genetic diversity in apricot revealed by AFLP markers: Species and cultivar comparisons. Theoretical and Applied Genetics, 2002, 105: 298-305
    Hagiwara A, Miyashita K, Nakanishi T, Sano M, Tamano S, Kadota T, Koda T, Nakamura M, Imaida K, Ito N, Shirai T. Pronounced inhibition by a natural anthocyanin, purple corn color, of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP)-associated colorectal carcinogenesis in male F344 rats pretreated with 1,2-dimethylhydrazine. Cancer Letters, 2001,171:17-25
    Hajirezaei MR, Bornke F, Peisker M, Takahata Y, Lerchl J, Kirakosyan A, Sonnewald U. Decreased sucrose content triggers starch breakdown and respiration in stored potato tubers {Solanum tuberosum). Journal of Experimental Botany ( Regulation of Carbon Metabolism Special Issue), 2003, 54: 477- 488
    Hakkinen S H, Karenlampi S O, Marina H I, Mykkanen H M, Riitta T A. Content of the flavonols quercetin, myricetin, and kaempferol in 25 edible Berries. Journal of Agricultural and Food Chemistry, 1999,47: 2 274-2 279
    Hakkinen S. Flavonols and Phenolic Acids in Berries and Berry Products. Finland: Doctoral dissertation of Kuopio University, 2000, 10
    Hamada S, Ito H, Hiraga S, Inagaki K, Nozaki K, Isono N, Yoshimoto Y, Takeda Y, Matsui H. Differential characteristics and subcellular localization of two starch-branching enzyme isoforms encoded by a single gene in Phaseolus vulgaris L. Journal of Biological Chemistry, 2002, 277: 16 538-16 546
    Hamon P, Toure B, Characterization of traditional yam varieties belonging to the Dioscorea cayenensis-rotundata complex by their isoenzymic patterns. Euphytica, 1990a, 46: 101-107
    Hamon P, Toure B. The classification of the cultivated yams (Dioscorea cayenensis-rotundata complex) of West Africa . Euphytica, 1990b, 47: 179-187
    Handley LW, Pharr DM, Mcfeeters RF. Carbohydrate changes during maturation of cucumber fruit- mplications for sugar metabolism and transport. Plant Physiology, 1983, 72: 498-502
    Harada T, Satoh S, Yoshioka T, Ishizawa K. Expression of Sucrose Synthase Genes Involved in Enhanced Elongation of Pondweed (Potamogeton distinctus) Turions under Anoxia. Annals of Botany, 2005,96: 683- 692
    Haralampu SG Resistant starch-a review of the physical proprties and biological impacts of RS3 carbohydrate polymers. Carbohydrate Polymers, 2000, 41: 285-292
    Harn C, Knight M, Ramakrishnan A, Guan H, Keeling PL, Wasserman BP. Isolation and characterization of the zSSIIa and zSSIIb starch synthase cDNA clones from maize endosperm. Plant Molecular Biology, 1998, 37: 639- 649
    Hatayama T, Takeno K. The metabolic pathway of salicylic acid rather than of chlorogenic acid is involved in the stress-induced flowering of Pharbitis nil. Journal of Plant Physiology, 2003, 160: 461-467
    He Y, Liu YL, Cao WX, Huai MF, Xu BG, Huang BG Effects of salicylic acid on heat tolerance associated with antioxidant metabolism in Kentucky Bluegrass. Crop Science, 2005,45: 988-995
    Heitholt JJ, Schmidt JH, Mulrooney JE. Effect of foliar-applied salicylic acid on cotton flowering, boll retention, and yield. Journal of the Mississippi Academy of Sciences, 2001, 46(2): 105-109
    Heldt HW. Plant Biochemistry. Burlington: Elsevicr Acedemic Press, 2005
    
    Helmerhorst E, Stockes GB, Microcentrifuge desalting: rapid quantitative method for desalting small amounts of protein. Analytical Biochemistry, 1980, 104: 130-135
    Hendriks JH, Kolbe A, Gibon Y, Stitt M, Geigenberger P. ADP-glucose pyrophosphorylase is activated by posttranslational redox-modification in response to light to sugars in leaves of Arabidopsis and other plant species. Plant Physiolog;.; 2003, 133:838-849.
    Hikin H, Honno C, Takahashi M, Murakami M, Kato Y, Karikura M, Hayashi T. Isolation and hypoglycemic activity of dioscorans A, B, C, D, E, and F; glycans of Dioscorea japonica rhizophors. Planta Medica, 1986, 3:168-171
    Hirayama M. Novel physiological functions of oligosaccharides. Pure and Applied Chemistry, 2002, 74 (7): 1 271-1 279
    Hou WC, Hsu FL, Lee MH. Yam {Dioscorea batatas) tuber mucilage exhibited antioxidant activities in vitro. Planta Medica, 2002,68(12): 1072-1076
    Hsu FL.Lin YH, Lee MH, Lin CL, Hou WC. Both dioscorin, the tuber storage protein of yam (Dioscorea alata cv. Tainong No. 1), and its peptic hydrolysates exhibited angiotensin converting enzyme inhibitory activities. Journal of Agricultural and Food Chemistry, 2002, 50(21): 6 109-6 113
    Hu K, Dong A, Yao X, Kobayashi H, Iwasaki S. Antineoplastic agents I. Three spirostanol glycosides from rhizomes of Dioscorea collettii var. hypoglauca. Planta Medica, 1996, 62(6): 573-575
    Huanga KL, Miyajima I, Okuboa H, Shenb TM, Huang TS. Flower colours and pigments in hybrid tuberose {Polianthes). Scientia Horticulturae, 2001, 88: 235-241
    Hurkman WJ, McCue KF, Altenbach SB, Koma A, Tanaka CK, Kothari KM, Johnson EL, Bechtel DB, Wilson JD,ei son OD, DuPont FM. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science, 2003, 164: 873-881
    Hussein MM, Balbaa LK, Gaballah MS. Salicylic acid and salinity effects on growth of maize plants. Research Journal of Agriculture and Biological Sciences, 2007, 3(4): 321-328.
    Iglesias I, Salvia J, Torguet L, Cab(?)s C. Orchard cooling with overtree microsprinkler irrigation to improve fruit colour and quality of 'Topred Dlicious' apples. Scientia Horticulturae, 2002,93: 39-51
    Isshiki M, Nakajima M, Satoh H, Shimamoto K. dull: rice mutants with tissue-specific effects on the splicing of the waxy pre-mRNA. The Plant Journal, 2000, 23: 451-460
    Ito M, Ichinose Y, Kato H, Shiraishi T, Yamada T. Molecular evolution and functional relevance of the chalcone synthase genes of pea. Molecular Genetics and Genomics, 1997,255: 28-37
    Iwu MM, Okunji CO, Akah P, Tempesta MS, Corley D. Dioscoretine: the hypoglycemic principle of Dioscorea dumetorum. Planta Medica, 1990, 56(1): 119-120
    #12
    James MG, Denyerz K, Myers AM. Starch synthesis in the cereal endosperm. Current Opinion in Plant Biology, 2003, 6:215-222
    Ji X, den Ende WV, Laere AV, Cheng S, Bennett J. Structure, evolution, and expression of the two invertase gene families of rice. Journal of Molecular Evolution, 2005, 60: 615- 634
    Jia L, Zhang B, Mao C, Li J, Wu Y, Wu P, Wu Z. OsCYT-INVl for alkaline/neutral invertase is involved in root cell development and reproductivity in rice {Oryza sativa L). Planta, 2008, 228: 51-59
    Jiang HW, Dian WM, Liu FY, Wu P. Molecular cloning and expression analysis of three genes encoding starch synthase Ⅱ in rice. Planta, 2004, 218 (6):1062~1070
    Jiang HW, Dian WM, Wu P. Effect of high temperature on fine structure of amylopectin in rice endosperm by reducing the activity of the starch branching enzyme. Phytochemistry, 2003a, 63: 53-59
    Jiang HW, DianWM, Liu F, and Wu P. Isolation and characterization of two fructokinase cDNA clones from rice. Phytochemistry, 2003b, 62: 47-52
    Jiang Y, Joyce DC, Terry LA. 1-Methylcyclopropene treatment affects strawberry fruit decay. Postharvest Biology and Technology, 2001, 23: 227-232
    Jing P, Noriega V, Schwartz SJ, Giusti MM. Effects of growing conditions on purple corncob (zea mays 1.) anthocyanins. Journal of Agriculture and Food Chemistry, 2007, 55 (21): 8 625-8 629
    Kader F, Rovel B, Girardin M, Mctche M. Fractionation and identification of the phenolic compounds of Highbushblueberries(Vaccinium corymbosum L.). Food Chemistry, 1996, 55 (1): 35- 40
    Kalloo G, Bergh BO. Genetic improvement of vegetable crops (1st edition). New York: Pergamon Press, 1993: 717-733
    Kanazawa T, Terui K, Oikawa R. Seed germination and subsequent development of male and female Chinese yam (Dioscorea opposita Thunb.). Journal of the Japanese Society for Horticultural Science, 2002, 71(1): 87- 93.
    Kao YY, Harding SA, Tsai CJ. Differential Expression of two distinct phenylalanine ammonia-lyase genes in condensed tannin-accumulating and lignifying cells of Quaking Aspen. Plant Physiology, 2002, 130:7 96-807
    Kassinee S, Matsui T, Okuda N. Changes in acid invertase activity and sugar distribution during postharvest senescence in vegetable soybean. Asian Journal of Plant Sciences, 2004, 3 (4): 433- 438
    Kaur P, Ghai N, Sangha MK. Induction of thermotolerance through heat acclimation and salicylic acid in Brassica species. African Journal of Biotechnology, 2009, 8 (4): 619- 625
    Kaydan D, Yagmur M, Okut N. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Tarim Bilimleri Dergisi, 2007, 13 (2): 114-119
    Kim DO, Jeong SW, Lee CY. Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chemistry, 2003, 81: 321-326
    Kim DO, Lee KW, Lee HJ, Lee CY. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals. Journal of Agriculture and Food chemistry, 2002a,50: 3 713-3 717
    Kim JY, Mahda A, Brangeon J, Prioul JL. A maize vacuolar invertase, IVR2, is induced by water stress organ/tissue specificity and diurnal modulation of expression. Plant Physiology, 2000b, 124: 71-84
    Kim JY, Mahda A, Guy S, Brangeon J, Roche O, Chourey PS, Prioul JL. Characterization of two members of the maize gene family, Incw3 and Incw4, encoding cell-wall invertases. Gene, 2000a, 245: 89-102
    Kishida T, Nogami H, Ogawa H, Ebihara K. The hypocholesterolemic effect of high amylose cornstarch in rats is mediated by an enlarged bile acid pool and increased fecal bile acid excretion, not by cecal fermented products. Journal of Nutrition, 2002, 132(9): 2 519-2 524
    Kitamura Y, Ohta M, Ikcnaga T, Watanabe M. Responses of anlhocyanin-producing and non-producing cells of Glehnia Iittoralis to radical generators. Phytochemistry. 2002, 59: 63-68
    Klann EM, Hall B, Bennett AB. Antisense acid invertase (TIV1) gene alters soluble sugar composition and size in transgenic tomato fruit. Plant Physiology, 1996: 112: 1321-1330
    Knuth R. Dioscoreaceae. In Engl. Das Pflanzenreich, 1924, 87 (IV. 43): 1-387
    Koda Y, Takahasi K, Kikuta Y. Potato tuber-inducing activities of aslicylic acid and related compounds. Journal of plant growth regulation, 1992, 11:215-219
    Koes R, Verweij W, Quattrocchio F. Flavonoids: a colorful model for the regulation and evolution of biochemical pathways. Trends in Plant Science, 2005, 10(5): 236-242
    Koes RE, Quattrocchio F, Mol JNM. The flavonoid biosynthetic pathway in plants: Function and evolution. BioEssays, 1994 , 16: 123-132
    Koes RE, Spelt CE, Mol JNM. The chalcone synthase multigene family of Petunia hybrida (V30): differential, light regulated expression during flower development and UV light induction. Plant Molecular Biology, 1989,12: 213- 225
    Koller A, Washburn MP, Lange BM, Andon NL, Deciu C, Haynes PA, Hays L, Schieltz D, Ulaszek R, Wei J, Wolters D, Yates JR. Protcomic survey of metabolic pathways in rice. Proceedings of the National Academy of Sciences, 2002, 99: 11 969-11 974
    Komatsu A, Moriguchi T, Koyama K, Omura M, Akihama T. Analysis of sucrose synthase genes in citrus suggests different roles and phylogenetic relationships. Journal of Experimental Botany, 2002, 53:61-71
    Konieczny A, Ausubel F. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR based markers. The Plant Journal, 1993, 4: 403-410
    Kossmann J, Abel GJW, Springer F, Lloyd JR, Willmitzer L. Cloning and functional analysis of a Cdna encoding a starch synthase from potato (Solatium tubemsum L.) that is predominantly expressed in leaf tissue. Planta, 1999, 208: 503-511
    Koukol J, Conn EE. The metabolism of aromatic compounds in higher plants IV: Purification and properties the phenylalanirie deaminase of Herdeum vulagare. Journal of Biology and Chemistry, 1961, 236: 2 692-2 698
    Kozak M. An analysis of 5'-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Research, 1987, 15:8 125-8 148
    Kozak M. Point mutations close to the AUG initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature, 1984,308:241-246
    Kubo A, Fujita N, Harada K, Matsuda T, Satoh H, Nakamura Y. The starch-debranching enzyme isoamylasc and pullulanase are both involved in amylopectin biosynthesis in rice endosperm. Plant Physiology, 1999, 121: 399- 409
    Kumar A, Ellis BE. The phenylalanine ammonia-lyase gene family in raspberry. Structure, expression, and evolution. Plant Physiology, 2001, 127: 230-239
    Kung TL, Wu ST, Thseng FS. Intra-species variation of DNA polymorphism of cultivated yam Dioscorea alata and D. batatas in Taiwan. Journal of agriculture and forestry, 2000, 49(1): 1-13
    Kurata H, Mochizuki A, Okuda N, Seki M, Furusaki S. Intermittent light irradiation with second- or hour-scale periods controls anthocyanin production by strawberry celts. Enzyme and Microbial Technology, 2000, 26: 621-629
    Lafta AM, Lorenzen JH. Effect of high temperature on plant growth and carbohydrate metabolism in potato. Plant Physiology, 1995,109:637-643
    Lasztity R, Hidvegi M, Bata A. Saponins in food. Food Reviews International, 1998, 14(4): 371-390
    Lee HS, Sturm A. Purification and characterization of neutral and alkaline invertasc from carrot. Plant Physiology, 1996, 112: 1 513-1 522
    Lee SC, Tsai CC, Chen JC, Lin JG, Lin CC, Hu ML, Lu S. Effects of Chinese yam on hepato-nephrotoxicity of acetaminophen in rats. Acta Pharmacologica Sinica, 2002, 23(6): 503-508
    Lee SW, Robb J, Nazar RN. Truncated phenylalanine ammonia-lyase expression in tomato (Lycopersicon esculentum). The Journal of Biological Chemistry, 1992, 267: 11 824-11 830
    Lenga P, Itamurab H, Yamamurab H, Deng XM. Anthocyanin accumulation in apple and peach shoots during cold acclimation. Scientia Horticulturae, 2000, 83: 43-50
    Leopoldini M, Marino T, Russo N, Toscano M. Antioxidant properties of phenolic compounds: H-atom versus electron transfer mechanism. Journal of Physical Chemistry, 2004, 108:4 916-4 922
    Leopoldini M, Russo N, Chiodo S, Toscano M. Iron chelation by the powerful antioxidant flavonoid quercetin. Journal of Agricultural and Food Chemistry, 2006, 54: 6 343-6 351
    Leunufna S, Keller ERJ. Investigating a new cryopreservation protocol for yams(Dioscorea spp.). Plant Cell Reports, 2003 , 21:1 159-1 166
    Lewis CE, Lancaster JE, Meredith P, Walker JL. Starch metabolism during growth and storage of tubers of two new Zealand potato cultivars. New Zealand Journal of Crop and Horticultural Science, 1994, 22: 295-304
    Li G, Quiros CF. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical arrd Applied Genetics, 2001, 103: 455- 461
    Liang J, Zhang J, Cao X. Grain sink strength may be related to the poor grain filling of indica-japonica rice (Oryza sativa) hybrids. Physioligia Plantarum, 2001, 112: 470- 477
    Liu HT, Liu YY, Pan QH, Yang HR, Zhan JC, Huang WD. Novel interrelationship between salicylic acid, abscisic acid, and PIP2-specific phospholipase C in heat acclimation-induced thermotolerance in pea leaves. Journal of Experimental Botany, 2006, 57(12): 3 337-3 347
    Liu SY, Chang TW, Lin YK, Chen SF, Wang JY, Zu GL, Wang SC. Studies on the varietal characters, production potential, phytochemical properties, and antioxidant effect of Dioscorea spp. Journal of agricultural research of China, 1999, 8:1-22
    Liu SY. Cultivation techniques for enhancing productivity and processing quality of yam (Dioscorea alata L.) Coconut-Lisbon. Journal of agricultural research of china, 1989, 38(3): 312-325
    Lloyd JR, Blennow A, Burhenne K, Kossmann J. Repression of a novel isoform of disproportionating enzyme (stDPE2) in potato leads to inhibition of starch degradation in leaves but not tubers stored at low temperature. Plant Physiology, 2004, 134: 1347-1354
    Lloyd JR, Landschutze V, Kossmann J. Simultaneous antisense inhibition of two starch synthase isoforms in potato tubers leads to accumulation of grossly modified amylopectin. Biochemical Journal, 1999, 338: 515-521
    Loef I, Sitt M, Geigenberger P. Increased levels of adenine nucleotides modify the interaction between starch synthesis and respiration when adenine is supplied to discs from growing potato tubers. Planta, 2001, 212: 782-791
    Lois R, Dietrich A, Hehlbrock K, Schulz W. A phenylalanine ammonia lyase gene from parsley structure regulation and identification of elicitor and light responsive cis acting elements. The EMBO Journal, 1989, 8: 1641-1648
    Lopez HW, Levrat-verny MA, Coudray C, Besson C, Krespine V, Messager A, Demigne C, Remesy C. Class 2 resistant starches lower plasma and liver lipids and improve mineral retention in rats. Journal of Nutrition, 2001, 131(4): 1 283-1 289
    Lopez-Delgado H, Jimcnez-Casas M, Scott IM. Storage of potato microplants in vitro in the presence of acetylsalicylic acid. Plant Cell, Tissue and Organ Culture, 1998, 54: 145-152
    Lopez-Delgado H, Scott IM. Induction of in vitro tuberization of potato microplants by acetylsalicylic acid. Journal of Plant Physiology, 1997, 151:74-78
    Loschke DC, Hadwiger LA. Effects of light and of fusarium solani on synthesis and activity of phenylalanine ammonia-lyase in Peas. Plant Physiology, 1981, 68: 680- 685
    Lu QN, Yang Q. cDNA cloning and expression of anthocyanin biosynthetic genes in wild potato (Solanum pinnatisectum). African Journal of Biotechnology, 2006, 5 (10): 811-818
    Lu YQ, Rausher MD. Evolutionary rate variation in anthocyanin pathway genes. Molecular Biology and Evolution, 2003, 20(11): 1 844-1 853
    Maddelein ML, Libessart N, Bellanger F, Delrue B, D'Hulst C, Van den Koornhuryse N, Fontaine T, Wieruszeski JM, Decq A, Ball S. Toward an understanding of the biogenesis of the starch granule. Determination of granule-bound and soluble starch synthase functions in amylopectin synthesis. Journal of Biological Chemistry, 1994, 269: 25 150-25 157
    Manach C, Scalbert A, Morand C, R(?)me(?)y C, Jim(?)nez L. Polyphenols: food sources and bioavailability.The American Journal of Clinical Nutrition, 2004, 79: 727-47
    Marialeonor VC, Andre's CH, Octavio PL. Isolation of functional RNA from cactus fruit. Plant Molecular Biology Reporter, 2002,20: 279-286
    Martin F.W, Ruberte R. The polyphenol of Dioscorea alata (yam) tuber associated with oxidative browning. Journal of Agricultural and Food Chemistry, 1976, 24: 67
    Martin FW. Prolonging the storage life of yams by removal of shoots and by treatment with gibberellic acid and waxes. Trop Root Tuber Newslett, 1977, 10: 39-44
    Martinez C, Pons E, Prats G, Leon J. Salicylic acid regulates flowering time and links defense responses and reproductive development. The plant Journal, 2004, 37, 209-217
    Matta-Riihinen KR, Kahkonen MP, To rronen AR, Heionen MI. Catechins and procyanidins in berries of vaccinium species and their antioxidant activity. Journal of Agricultural and Food Chemistry, 2005, 53: 8 485-8 491
    Mattila P, Kumpulainen J. Determination of free and total phenolic acids in plant-derived foods by HPLC with diode-array detection. Journal of Agricultural and Food Chemistry, 2002, 50: 3 660-3 667
    Mavandad M, Edwards R, Liang X, Lamb CJ, Dixon RA. Effects of trans-cinnamic acid on expression of the bean phenylalanine ammonia-lyase gene family. Plant Physiology, 1990, 94: 671-680
    McAnuff MA, Omoruyi FO, Morrison EY, Asemota HN. Changes in some liver enzymes in streptozotocin-induced diabetic rats fed sapogenin extract from bitter yam (Dioscorea polygonoides) or commercial diosgenin. West Indian Medical Journal, 2005, 54(2): 97-101
    Merzlyak MN, Chivkunova OB. Light-stress-induced pigment changes and evidence for anthocyanin photoprotection in apples. Journal of Photochemistry and Photobiology B: Biology, 2000, 55 :155-163
    Merzlyak MN, Solovchenko AE, Chivkunova OB. Patterns of pigment changes in apple fruits during adaptation to high sunlight and sunscald development. Plant Physiology and Biochemistry, 2002,40: 679-684
    Metwally A, Finkemeier I, Georgi M, Dietz KJ. Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiology, 2003, 132: 272-281
    Miyanaga K, Seki M, Furusaki S. Quantitative determination of cultured strawberry-cell heterogeneity by image analysis: effects of medium modification on anthocyanin accumulation. Biochemical Engineering Journal, 2000, 5: 201-207
    Mizuno K, Kawasaki T, Shimada H, Kobayashi E, Okumura S, Arai Y, Baba T. Alteration of the structural properties of starch components by the lack of an isoform of starch branching enzyme in rice seeds. Journal of Biological Chemistry, 1993,268: 19 084-19 091
    Mizuno K, Kimura K, Arai Y, Kawasaki T, Shimada H, Baba T. Starch branching enzymes from immature rice seeds. The Journal of Biochemistry, 1992,112: 643-651
    Mizuno K, Kobayashi E,Tachibana M, Kawasaki T, Fujimura T, Funane K, Kobayashi M, Baba T. Characterization of an isoform of rice starch branching enzyme, RBE4, in developing seeds. Plant and Cell Physiology, 2001, 42: 349-357
    Moor U, Karp K, Poldma P, Pae A. Cultural systems affect content of anthocyanins and vitamin C in strawberry fruits. European Journal of Horticultural Science, 2005, 70(4), 195-201
    Morell MK, Kosar-Hashemi B, Cmiel M, Samuel MS, Chandler P, Rahman S, Buleon A, Batey IL, Li Z. Barley sex6 mutants lack starch synthase Ha activity and contain a starch with novel properties. The Plant Journal, 2003, 34: 173-185
    Mori T, Sakurai M, Sakuta M. Effects of conditioned medium on activities of PAL, CHS, DAHP synthase (DS-Co and DS-Mn) and anthocyanin production in suspension cultures of Fragaria ananassa. Plant Science, 2001, 160: 355-360
    Morris K, Mackerness SAH, Page T, John CF, Murphy AM, Carr JP, Buchanan-Wollaston V. Salicylic acid has a role in regulating gene expression during leaf senescence. The Plant Journal, 2000, 23, 677-685
    Mu-Forster C, Huang R, Harriman RW. Physical association of starch biosynthetic enzymes with starch granules of maize endosperm, (granule-associated forms of starch synthase I and starch branching synthase II). Plant Physiology, 1996, 111(3): 821-829
    Mutisya J, Sathish P, Sun C, Andersson L, Ahlandsberg S, Baguma Y, Palmqvist S, Odhiambo B, Arnan P, Jansson C. Starch branching enzymes in sorghum (Sorghum bicolor) and barley (Hordeum vulgare): Comparative analyses of enzyme structure and gene expression. Journal of Plant Physiology, 2003, 160: 921-930
    N'tchobo: II, Dali N, Nguyen-Ouoc B, Foyer CH, Yelle S. Starch synthesis in tomato remains constant throughout fruit development and is dependent on sucrose supply and sucrose synthase activity. Journal of Experimental botany, 1999, 50 (338):1 457-1 463
    Nagai N, Kitauchi F, Shimosaka M, Okazaki M. Cloning and sequencing of a full-Length cDNA coding for phenylalanine ammoriia-lyase from tobacco cell culture. Plant Physiology, 1994,104: 1 091-1 092
    Nagai T, Suzuki N, Tanoue Y, Kai N, Nagashima T. Antioxidant and antihypertensive activities of autolysate and enzymatic hydrolysates from yam (Dioscorea opposita Thunb.) ichyoimo tubers. Journal of Food, Agriculture and Environment, 2007,5:64-68
    Nagaraj VJ, Galati V, Luscher M, Boiler T, Wiemken A. Cloning and functional characterization of a cDNA encoding barley soluble acid invertase (HvINVl). Plant Science, 2005, 168: 249-258
    Nakajima J, TanakaY, Yamazaki M, Saito K. Reaction mechanism from leucoanthocyanidin to anthocyanidin 3-glucoside, a key reaction for coloring in anthocyanin biosynthesis.The Journal of Biological Chemistry, 2001, 276(28): 25 797-25 803
    Nakamura T, Vrinten P, Hayakawa K, Ikeda J. Characterization of a granule-bound starch synthase isoform found in the pericarp of wheat. Plant Physiology, 1998, 118: 451-459
    Nakamura Y, Umemoto Y, Takahata Y, Komae K, Amano E, Satoh H. Changes in structure of starch and enzyme activities affected by sugary mutations in developing rice endosperm: possible role of starch debranching enzyme (R enzyme) in amylopectin biosynthesis. Physiologia Plantarum, 1996, 97: 491-498
    Nakamura Y, Yuki K, Park SY. Carbhydrate metabolism in the developing endosperm of rice grains. Plant and Cell Physiology, 1989,30:833-839
    Nakamura Y. Towards a better understanding of the metabolic system for amylopectin biosynthesis in plants: rice endosperm as a model tissue. Plant and Cell Physiology, 2002, 43: 718-725
    Nei M, Li WH. Mathematical models for studying genetic variation in terms of restriction endonucleases. Proceedings of the National Academy of Sciences, 1979 ,76: 5269-5273
    Nielsen TH, Baunsgaard L, and Blennow A, Intermediary glucan structures formed during starch granule biosynthesis are enriched in short side chains, a dynamic pulse labelling approach, Journal of Biological Chemistry, 2002, 277(23): 20 249-20 255
    Nishi A, Nakamura Y, Tananka N, Satoh. Biochemical and genetic analysis of the effects of amylose-extender mutation in rice endosperm. Plant Physiology, 2001, 127: 459-472
    Norman C, Howell KA, Millar AH, Whelan JM, Day DA. Salicylic acid is an uncoupler and inhibitor of mitochondrial electron transport. Plant Physiology, 2004, 134: 492-501
    Okamoto T, Umezaki T, Nagaya Y, Taniyama T. Effects of seed rhizophore weight and planting density on the yield of a high yielding variety of Chinese yam (Dioscorea opposita Thunb.). Japanese Journal of Crop Science, 2000, 69(2):153-158
    Okamoto T, Umezaki T, Nagaya Y, Taniyama T. Selection of high yielding lines of Chinese yam (Dioscorea opposita Thunb.). Japanese Journal of Crop Science, 1999, 68(4):5I5-518
    Olayemi JO, Ajaiycoba EO. Anti-inflammatory studies of yam (Dioscorea esculenta) extract on wistar rats. African Journal of Biotechnology, 2007, 6 (16): 1 913-1 915
    Onjo M, Hayashi M, Matsuo T. Comparison of tuber proteins of yam introduced from the Pohnpei Island and Yap Proper, the Federated States of Micronesia.Occasional Papers, Kagoshima University Research Center for the Pacific Islands, 2003, 39: 55-58
    Oren-Shamir M, Shaked-Sachray L, Nissim-Levi A, Ecker R. Anthocyanin pigmentation of lisianthus flower petals. Plant Science, 1999, 140: 81-86
    Osorio-Diaz P, Bello-P(?)reza LA, Agama-Acevedo E, Vargas-Torres A, Tovar J, Paredes-Lopez O. In vitro digestibility and resistant starch content of some industrialized commercial beans (Phaseolus vulgaris L.). Food Chemistry, 2002, 78:333-337
    Pall RE, Chen NJ. Compositional change in yam bean during storage. HortScience, 1988, 23: 194-196
    Pang YZ, Peel GJ, Wright E, Wang ZY, Dixon RA. Early steps in proanthocyanidin biosynthesis in the model legume Medicago truncatula. Plant Physiology, 2007, 145: 601-615
    Paran I, Kesseli R, Michelmore RW. Identification of restitriction fragment length polymorphism and random amplified polymorphic DNA markers linked to downy mildew resistance genes in lettuce using near-isogenic lines. Genome, 1991, 34, 1 021-1 027
    Patron NJ, Greber B, Fahy BF, Laurie DA, Parker ML, Denyer K. The Iys5 mutations of barley reveal the nature and importance of plastidial adp-glc transporters for starch synthesis in cereal endosperm. Plant Physiology, 2004, 135: 2 088-2 097
    Paul Barratt DH, Barber L, Kruger NJ, Smith AM, Wang TL, Martin C. Multiple, Distinct isoforms of sucrose synthase in pea. Plant Physiology, 2001, 127: 655-664
    Pelacho AM, Martin-closas L and Sanfeliu JLI. In vitro induction of potato tuberization by organic acids. Potato Research, 1999,42:585-591
    Porter LJ, hrstich LN, Chan, BG The conversion of procyanidins and prodelphinidins to cyanidin and delphinidin. Phytochemistry, 1986, 25 (1): 223-230
    Pozueta-Romero J, Frehner, M, Viale AM, Akazawa T. Direct transport of ADP-glucose by an adenylate translocator is linked to starch biosynthesis in amyloplast. Proceedings of the National Academy of Sciences, 1991, 88: 5 769-5 773
    Prema P, Devi KS, Kurup PA. Effect of purified starch from common India edible tubers on lipid metabolism in rarts fed atherogenic diet. Indian J Biochem Biophys, 1978, 15(5): 423-425
    Pujar S, Tamhankar SA, Rao VS, Gupta VS, Naik S, Ranjekar PK, Arbitrarily primed-PCR based diversity assessment reflects hierarchical groupings of Indian tetraploid wheat genotypes. Theoretical and Applied Genetics, 1999, 99: 868-876
    Rahman A, Wong KS, Jane JL, Myers AM, James MG Characterization of SU1 isoamylase, a determinant of storage starch structure in maize. Plant Physiology, 1998, 117(2): 425-435.
    Rahman S, Regina A, Li ZY, Mukai Y, Yamamoto M, Kosar-Hashemi B, Abrahams S, Morell M K. Comparison of starch branching enzyme gene reveals evolutionary relationships among isoforms. Characterization of a gene for starch-branching enzymeⅡa from the wheat D genome donor Aegilops tauschii. Plant Physiology, 2001, 125: 1 314-1 324
    Ramesh HP, Tharanathan RN. Carbohydrates-the renewable raw materials of high biotechnological value. Critical Review in Biotechnology, 2003, 23 (2): 149-173.
    Ramirez-Tortosa C, Andersen OM, Gardner PT, Morrice PC, Wood SG, Duthie SJ, Collins AR, Duthie GG. Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radical Biology and Medicine, 2001,31(9): 1033-1037
    Ranwala AP, Miller WB. Sucrose-cleaving enzymes and carbohydrate pools in Lilium longiflorum floral organs. Phyeiologia Plantarum, 1998,103:541-550
    Rao MV, Paliyath G, Ormrod DP, Murr DP, Watkins CB. Influence of salicylic acid on H_2O_2 production, oxidative stress, and H_2O_2-metabolizing enzymes. Plant Physiology, 1997, 115: 137-149
    Rausher MD, Miller RE, Tiffin P. Patterns of evolutionary rate variation among genes of the anthocyanin biosynthetic pathway. Molecular Biology and Evolution, 1999, 16(2): 266-274
    Ray H, Yu M, Auser P, Blahut-Beatty L, McKersie B, Bowley S, Westcott N, Coulman B, Lloyd A, Gruber MY.. Expression of anthocyanins and proanthocyanidins after transformation of alfalfa with maize Lc. Plant Physiology, 2003, 132: 1 448-1 463
    Revilla Ⅰ, Perez-Magarino S, Gonzalez-SanJose ML, Beltran S. Identification of anthocyanin derivatives in grape skin extracts and red wines by liquid chromatography with diode array and mass spectrometric detection. Journal of Chromatography A, 1999, 847: 83-90
    Riesmeier JW, Willmitzer L, Frommer WB. Evidence for an essential role of the sucrose transporter in phloem loading and assimilate partitioning. The EMBO Journal, 1994,13: 1-7
    Roitsch T. Source-sink regulation by sugars and stress. Current Opinion in Plant Biology, 1999,2: 198-206
    Roman ID, Thewles A, Coleman R. Fractionation of livers following diosgenin treatment to elvevate biliary cholesterol. Biochimica et Biophysica Acta, 1995, 1255 (1): 77- 81
    Rook F, Corke F, Card R, Munz G, Caroline Smith and Michael W. Bevan. Impaired sucrose-induction mutants reveal the modulation of sugar-induced starch biosynthetic gene expression by abscisic acid signaling. The Plant Journal, 2001, 26 (4): 421-433
    Rosa M, Hilal M, Gonzalez JA, Prado FE. Changes in soluble carbohydrates and related enzymes induced by low temperature during early developmental stages of quinoa {Chenopodium quinoa) seedlings. Journal of Plant Physiology, 2004, 161:683- 689
    Rosati C, Cadic A, Duron M, Ingouff M, Simoneau P. Molecular characterization of the anthocyanidin synthase gene in Forsythia~* intermedia reveals organ-specific expression during flower development. Plant Science, 1999, 149:73-79
    Rubatzky VE, Yamagucbi M. World vegetables: principles, production, and nutritive values (second edition). New york: International Thomson Publishing, 1997:162-182
    Saito K, Yamazaki Y.Biochemistry and molecular biology of the late-stage of biosynthesis of anthocyanin: lessons from Perilla frutescens as a model plant. New Phytologist, 2002, 155: 9- 23
    Sakhabutdinova AR, Fatkhutdinova DR, Bezrukova MV,Shakirova FM. Salicylic acid prevents the damaging action of stress factors on wheat plants. Bulgarian Journal of Plant Physiology special issue, 2003, 314-319
    Salehuzzaman SNIM, Jacobsen E, Visser RGF. Expression patterns of two starch biosynthetic genes in vitro cultured cassava plants and their induction by sugars. Plant Science, 1994, 98: 53- 62
    Sanchez-Moreno C, Cao G, Ou B, Prior R L. Anthocyanin and proanthocyanidins content in selected white and red wines. Oxygen radical absorbance capacity comparison with nontraditional wines obtained from highbush blueberry. Journal of Agricultural and Food Chemistry, 2003, 51:4 889-4 896
    Satoh H, Nishi A, Yamashita K, Tananka N, Hosaka Y, Sakurai A, Fujita N, Nakamura Y. Starch-branching enzyme I -deficient mutation specifically affects the structure and properties of starch in rice endosperm. Pant Physiology, 2003, 133: 1 111-1121
    Schaffer AA, Petreikov M. Sucrose-to-starch metabolism in tomato fruit undergoing transient starch accumulation. Plant physiology, 1997, 113(3): 739-746
    Scheible WR, Gonzalez-Fontes A, Lauerer M, Muller-Rober B, Caboche M, Stitt M. Nitrate acts as a signal to induce organic acid metabolism and repress starch metabolism in tobacco. Plant Cell, 1997, 9: 783-798
    Schultz JA, Juvik JA. Review: Current models for starch synthesis and the sugary enhancerl (sel) mutation in Zea mays. Plant Physiology and Biochemistry, 2004, 42: 457-464
    Scott IM, Clarke SM, Wood JE, Mur LAJ. Salicylate Accumulation inhibits growth at chilling temperature in Arabidopsis. Plant Physiology, 2004, 135: 1 040-1 049
    Seo BS, Kim S, Scott MP, Singletary GW, Wong KS, James MG, Myers AM. Functional interactions between heterologously expressed starch-branching enzymes of maize and glycogen synthases of brewer's yeast. Plant Physiology, 2002, 128: 1189-1 199
    Shahidi F, Naczk M, Myhara RM. Effect of processing on the soluble sugars of Brassjca seeds. Journal of Food Science, 1990, 55,(5): 1470-1471
    Sheen J, Zhou L, Jang JC. Sugars as signaling molecules. Current Opinion in Plant Biology, 1999,2: 410-418 Shewry PR. Tuber Storage Proteins. Annals of Botany, 2003, 91: 755-769
    Silvia BR, Gustavo BH. Molecular Characterization of Colombian yam germoplasm by "selective amplification of microsatellite polymorphic loci" (SAMPL). Revista Colombiana de Biotecnologia, 2006, 3 (2): 60-66
    Smith AM, Denyer K, Martin C. The synthesis of the starch granule. Annual Review of Plant Physiology and Plant Molecular Biology, 1997, 48: 67-87
    Sokolov LN, Dejardin A, Kleczkowski LA. Sugars and light/dark exposure trigger differential regulation of ADP-glucose pyrophosphorylase genes in Arabidopsis thaliana(thalecress). Biochemical Journal, 1998, 336: 681-687
    Solfanelli C, Poggi A, Loreti E, Alpi A, Perata P. Sucrose-specific induction of the anthocyanin biosynthetic pathway in Arabidopsis. Plant Physiology, 2006, 140: 637-646
    Solovchenko AE, Chivkunova OB, Merzlyak MN, Reshetnikova IV. A Spectrophotometric analysis of pigments in apples. Journal of Plant Physiology, 2001, 48 (5): 693-700
    Sowokinos JR, Spychalla JP, Desborough s. pyrophosphorylases in solanum tuberosum: iv. purification, tissue localization, and physicochemical properties of udp-glucose pyrophos -phorylase. Plant Physiology, 1993, 101:1 073-1 080
    Sturm A. Invertases: primary structures, functions, and roles in plant development and sucrose partitioning. Plant Physiology, 1999,121: 1-7
    Subramaniam R, Reinold S, Molitor EK, Douglas CJ. Structure, inheritance, and expression of hybrid poplar (Populus trichocarpa xPopulus deltoids) phenylalanine ammonia-lyase genes. Plant Physiology, 1993, 102: 71-83
    Sun C, Sathish P, Ahlandsberg S, Janssion C. Analyses of isoamylase activity in wild-type barley indicate its involvement in starch synthesis. Plant Molecular Biology, 1999, 40: 431- 443
    Takos AM, Jaffe FW, Jacob SR, Bogs J, Robinson SP, Walker AR. Light-induced expression of a MYB gene regulates anthocyanin biosynthesis in red apples. Plant Physiology, 2006,142:1 216-1 232
    Tanaka Y, Matsuoka M, Yamanoto N, Ohashi Y, Kano-Murakami Y, and Ozeki Y. Structure and characterization of a cDNA clone for phenylalanine ammonia-lyase from cut-injured roots of sweet potato. Plant Physiology, 1989, 90: 1 403-1 407
    #12
    T(?)ng S, Keurentjes J, Bentsink L, Koornneef M, Smeekens S. Sucrose-specific induction of anthocyanin biosynthesis in Arabidopsis requires the MYB75/PAP1 gene. Plant Physiology, 2005, 139: 1 840-1 852
    Terauchi R, Chikaleke VA, Thottappilly G, Hahn SK. Origin and phylogeny of Guinea yams as revealed by RFLP analysis of chloroplast DNA and nuciear ribosomal DNA. Theoretical and Applied Genetics, 1992, 83(6/7): 743-751
    Terauchi R, Kahl G .Rapid isolation of promoter sequences by TAIL-PCR: the 5'-flanking regions of Pal and Pgi genes from yams (Dioscorea). Molecular Genetics and Genomics, 2000, 263: 554-560
    Terauchi R, Terachi T, Miyashid NT. DNA polymorphism at the Pgi locus of a wild yam, Diosma tokoro. Genetics, 1997, 147: 1 899-1 914
    Tharanathan RN. Food-derived carbohydrates-structural complexity and functional diversity. Critical Reviews in Biotechnology, 2002, 22 (1): 65- 84
    Thomas R, Steffen G Plant protein inhibitors of invertases. Biochimica et Biophysica Acta, 2004, 1696(2):253-261
    Thorbjornsen T, Villand P, Kleczkowski LA, Olsen OA. A single gene encodes two different transcropts for the ADP-glucose pyrophosphorylase small subunit from barley (Hordeum vulgare). Biochemical Journal, 1996, 313: 149-154
    Tian H, Kong Q, Feng Y, Yu X. Cloning and characterization of a soluble acid invertase- encoding gene from muskmelon. Molecular Biology Reports, 2009, 36(3): 611-617
    Tiessen A, Hendriks JH, Stitt M, Branscheid A, Gibon Y, Farre EM, Geigenberger P. Starch synthesis in potato tubers is regulated by post-translational redox modification of ADP-glucose pyrophosphorylase: a novel regulatory mechanism linking starch synthesis to the sucrose supply. Plant Cell, 2002, 14: 2 191-2 213
    Tomas-Barberan FA, Robins RJ. Phytochemsitry of fruit and vegetables (Proceedings of the phytochemical society of Europe). Oxford: Clarendon Press, 1997: 51-85
    Tostain S, Agbangla C, Baco NM, Okry FK, Dainou O. Relationships between wild and cultivated yams ( Dioscorea spp.) from two localities in benin using AFLP markers. Annales des Sciences Agronomiques du B&iin, 2003, 4(1): 1-22
    Trautwein EA, Forgbert K, Rieckhoff D, Erbersdobler HF. Impact of beta-cyclodextrin and resistant starch on bile acid metabolism and fecal steroid excretion in regard to their hypolipidemic action in hamster. Biochimica et Biophysica Acta, 1999, 1437(1): 1-12
    Tsao R, Deng Z. Separation procedures for naturally occurring antioxidant phytochemicals. Journal of Chromatography B, 2004,812:85-99
    Tschannen AB, Escher F, Stamp P. Post-harvest treatment of seed tubers with gibberellic acid and field performance of yam(Dioscorea cayenensis-rotundata) in Ivory Coast. Experimental agriculture, 2005, 41: 175-186
    
    Unger C, Hardegger M, Lienhard S, Sturm A. cDNA cloning of carrot (Daucus carota) soluble acid ,6-fructofuranosidascs and comparison with the cell wall lsoenzyme. Plant Physiology, 1994,104: 1 351-1 357
    Uzunova AN, Popova LP. Effect of salicylic acid on leaf anatomy and chloroplast ultrastructure of barley plants. Photosynthetica, 2000, 38(2): 243-250
    Van Amelsvoort JM, Weststrate JA. Amylose-amylopectin ratio in a meal affects postprandial variables in male volunteers. American Journal of Clinical Nutrition, 1992, 55(3): 712-718
    Vandeputte GE, Delcour JA. From sucrose to starch granule to starch physical behaviour: a focus on rice starch. Carbohydrate Polymers, 2004, 58: 245-266
    Varki A. Glycan-based interactions involving vertebrate sialic-acid-recognizing proteins. Nature, 2007, 446: 1 023-1 029
    Vigeolas H, M(?)hlmann T, Martini N,Neuhaus HE, Geigenberger P. Embryo-specific reduction of ADP-Glc pyrophosphorylase leads to an inhibition of starch synthesis and a delay in oil accumulation in developing seeds of oilseed rape. Plant Physiology, 2004,136: 2 676-2 686
    Viola R, Roberts AG, Haupt S, Gazzani S, Hancok RD, Marmiroli N, Machray GC, Oparka KJ. Tuberization in potato involves a switch from apoplastic to symplastic phloem unloading. The Plant Cell, 2001, 13: 385-398
    Wanasundera JP, Ravindran G. Nutritional assessment of yam (Dioscorea alata) tubers. Plant foods for human nutrition, 1994, 46(1):33-39
    Wang AY, Kao MH. Differentially and developmentally regulated expression of three rice sucrose synthase genes. Plant and Cell Physiology, 1999, 40(8): 800-807
    Wang F, Sanz A, Brenner ML, Smith A. Sucrose synthase, starch accumulation, and tomato fruit sink strength. Plant Physiology, 1993, 101:321-327
    Wang G, Pan JS, Li XZ, He HL, Wu AZ, Cai R. Construction of a cucumber genetic linkage map with SRAP markers and location of the genes for lateral branch traits. Science in china Ser.C Life Sciences, 2005, 48 (3): 213-220
    Wang SJ, Yeh KW, Tsai CY. Regulation of starch granule-bound starch synthascI gene expression by circadian clock and sucrose in the source tissue of sweet potato. Plant Science, 2001, 161: 635-644
    Wang TL, Domoney C, Hedley CL, Casey R, Grusak MA. Can we improve the nutritional quality of legume seeds. Plant Physiology, 2003, 131: 886-891
    Wanger HG Physiological studies of the storage of green peas. Journal of the Science of Food and Agriculture, 1964, 15:245-250
    Welsh J, McClelland M. Finger printing genomes using PCR with arbitrary primers. Nucleic Acids Research, 1990, 18 (22):7231-7218
    Whitbred JM, Schuler MA. Molecular characterization of CYP73A9 and CYP82A1 P450 genes involved in plant defense in pea. Plant Physioogy, 2000, 124: 47-58
    Williams J G, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research, 1990, 18 (22): 6 531-6 535
    Winkel-Shirley B. Flavonoid biosynthesis, a colorful model for genetics, biochemistry, cell biology, and biotechnology. Plant Physiology, 2001, 126: 485-493
    Wu PW, Hwang LS. Determination of soluble persimmon tannin by high performance gel permeation chromatography. Food Research International, 2002, 35: 793- 800
    Xie DY, Jackson LA, Cooper JD, Ferreira D, Paiva NL. Molecular and biochemical analysis of two cDNA clones encoding dihydroflavonol-4-reductase from Medicago truncatula. Plant Physiology, 2004, 134: 979- 994
    Xie DY, Sharma SB, Paiva NL, Ferreira D, Dixon RA. Role of anthocyanidin reductase, encoded by BANYULS in plant flavonoid biosynthesis. Science, 2003, 299: 396-399
    Xie ZX, Chen ZX. Salicylic acid induces rapid inhibition of mitochondrial electron transport and oxidative phosphorylation in tobacco cells. Plant Physiology, 1999, 120:217-225
    Xu DP, Sung SJ, Loboda T, Kormanik PP, Black CC. Characterization of sucrolysis via uridine diphosphate and pryophosphate-dependent sucrose synthase pathway. Plant Physiology, 1989, 90:635-42
    Xu F, Cheng H, Cai R, Li LL, Chang J, Zhu J, Zhang FX, Chen LJ, Wang Y, Cheng SH, Cheng SY. Molecular cloning and function analysis of an anthocyanidin synthase gene from ginkgo biloba, and its expression in abiotic stress responses. Molecullar Cells, 2008, 26 (6): 536-547
    Yamada K, Kojima T, Bantog N, Shimoda T, Mori H, Shiratake K, Yamaki S. Cloning of two isoforms of soluble acid invertase of Japanese pear and their expression during fruit development. Journal of Plant Physiology, 2007, 164:746-755
    Yamanouchi H, Nakamura Y. Organ specificity of isoforms of starch branching enzyme (Q-enzyme) in rice. Plant and Cell Physiology, 1992,33:985-991
    Yang DJ, Lu TJ, Hwang LS. Isolation and identification of steroid saponins in taiwancse yam cultivar (Dioscorca pseudojaponicaYamamoto). Journal of Agricultural and Food Chemistry, 2003 (51):6 438-6 444
    Yang JC, Zhang JH, Wang ZQ, Xu GW, Zhu QS. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology, 2004, 135:1 621-1 629
    Yang JC, Zhang JH, Wang ZQ, Zhu QS, Liu LJ. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research, 2003, 81: 69-81
    Yeh YH, Lee YT, Hwang DF. Yam {Dioscorea alata) inhibits hypertriglyceridemia and liver enlargement in rats with hypercholesterol diet. Journal of Chinese Medicine, 2007,18 (1, 2): 65-74.
    Yildinm E, Dursun A. Effect of foliar salicylic acid applications on plant growth and yield of tomato under greenhouse conditions. Acta Horticulturae (ISHS), 2009, 807: 395-400
    Yordanova R, Popova L. Effect of exogenous treatment with salicylic acid on photosynthetic activity and antioxidant capacity of chilled wheat plants. General and Applied Plant Physiology, 2007, 33 (3-4): 155-170
    Yoshie K, Mina O, Toshihiko f, Masami W. Responses of anthocyanin-producing and non-producing cells of Glehnia littoralis to radical generators. Phytochemistry, 2002, 59: 63- 68
    Yusuf M, Hasan SA, Ali B, Hayat S, Fariduddin Q, Ahmad A. Effect of salicylic acid on salinity-induced changes in Brassica Juncea. Journal of Integrative Plant Biology 2008, 50(9): 1 096-1 102
    Zeeman SC, Northrop F, Smith AM, Rees T, A starch-accumulating mutant of Arabidopsis thaliana deficient in a chloroplastic starch-hydrolysing enzyme.The Plant Journal, 1998, 15(3): 357-365
    Zeng Y, Wu Y, Avigne WT, Koch KE. Rapid repression of maize invertases by low oxygen, invertase/sucrose synthase balance sugar signaling potential, and seedling survival. Plant Physiology, 1999,121:599- 608
    Zeng Y, WuY, Avigne WT, Koch. KE Differential regulation of sugar-sensitive sucrose synthases by hypoxia and anoxia indicate complementary transcriptional and posttranscriptional responses. Plant Physiology, 1998,116: 1 573-1 583
    Zhang D, Quantick PC, Grigor JM. Changes in phenolic compounds in Litchi (Litchi chinensis Sonn.) fruit during postharvest storage. Postharvest Biology and Technology, 2000,19:165-172
    Zhang W, Curtin C, Franco C. Towards manipulation of post-biosynthetic events in secondary metabolism of plant cell cultures. Enzyme and Microbial Technology, 2002,30:688- 696
    Zrenner R, Salanoubat M, Willmitzer L, Sonnewald U. Evidence of the crucial role of sucrose synthase for sink strength using transgenic potato plants. The Plant Journal, 1995, 7: 97-107

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700